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Abstract  

The acquisition and processing of events from sensors or enterprise applications in real-time represent 

an essential part of many application domains such as the Internet of Things (IoT), offering benefits to 

predict the future condition of equipment to prevent the occurrence of failures. Many organisations 

already use some form of predictive maintenance to monitor performance or keep track of emerging 

business situations. However, the optimal design of applications to allow an effective Predictive Mainte-

nance System (PMS) capable of analysing and processing large amounts of data is only scarcely exam-

ined by Information Systems (IS) research. Due to the number, frequency, and the need for near-real-

time evaluation systems must be capable of detecting complex event patterns based on spatial, temporal, 

or causal relationships on data streams (i.e. via Complex Event Processing). At the same time, however, 

due to the technical complexity, available systems today are static, since the creation and adaptation of 

recognisable situations results in slow development cycles. In addition, technical feasibility is only one 

prerequisite for predictive maintenance. Users must be capable of processing this vast amount of data 

presented without considerable cognitive effort. Precisely this challenge is even more daunting as op-

erational maintenance personnel have to manage business-critical decisions with increasing frequency 

and short time. Research in Human Factors (HF) suggests Situation Awareness (SA) as a crucial sys-

tem’s design paradigm allowing human beings to understand and anticipate the information available 

effectively. Building on this concept, this paper proposes a PMS for promoting operational decision 

makers’ Situation Awareness by three design principles (DP): Sensing, Acting, and Tracking. Based on 

these DPs, we implemented a PMS prototype for a scenario in Oil and Gas pipeline operations. Our 

finding suggest that the use of SA is of particular interest in realizing effective PMS. 

 

Keywords: Predictive Maintenance, Situation Awareness, Sensing, Acting, Tracking. 
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1 Introduction 

The understanding of maintenance has changed significantly over the last decades; from reactive to 

proactive maintenance, from being a cost-factor to being a driver for the organisation’s success 

(Fredendall et al., 1997). Predictive maintenance defines a technique that enables organisations to im-

prove the efficiency and effectiveness of their maintenance actions (Tian and Zuo, 2010). In modern 

organisations, maintenance often is not only perceived as a separate function that performs repairs; it 

rather represents a vehicle to achieve the firm’s strategic goals. Thus, investments in maintenance can 

result in improved quality, safety, flexibility, and lead times (Teresko, 1992). 

However, even today, many maintenance decisions are made due to subjective evaluations based on 

staff experience and qualification (Christer, 1999). But with increasing shortage of skilled tradespeople, 

it becomes mandatory to reduce the effects of retiring specialists (Bailey, 2015). Bailey (2015) argues 

that these employees can be hard to replace and that this problem could be mitigated by leveraging 

information technology applying techniques like predictive maintenance. Further, Babiceanu and Seker 

(2015) argue that the Internet of Things (IoT) is greatly enhancing the capabilities of equipment in terms 

of shared communication and data (e.g. sensor data to measure temperature) to interact and make deci-

sions. According to the authors, IoT offers huge opportunities to collect and process data in order to 

apply the predictive maintenance concept effectively. For instance, it grants access to an increasing 

amount of real-time data from various machines, pipeline sections, and vaults as well as provides tech-

niques and computational resources to gain new insights from the data. This offers huge opportunities 

for the business in terms of flexibility and reliability (Babiceanu and Seker, 2015). Existing research 

offers much insight about the modelling of maintenance decisions and the employment of sensor data 

to help in the decision process. However, in-depth reviews of maintenance strategies are scarce in the 

existing literature and practice (Veldman et al., 2011). Further, the optimal design of the database and 

real-time applications to allow an effective Predictive Maintenance System (PMS) capable of analysing 

and processing large amounts of data are not very well researched, although many organisations already 

use some form of predictive maintenance (White, 2004). Specifically, design efforts need to minimize 

user’s action distance – the time required to capture and process data as well as to determine which 

action to proceed (Hackathorn, 2002).  

To answer this call, this paper suggests a PMS leveraging Situation Awareness (SA) as a crucial design 

paradigm for increasing decision-making and performance of such a system (Endsley and Jones, 2012). 

SA is defined as “the perception of the elements in the environment within a volume of time and space, 

the comprehension of their meaning and the projection of their status in the near future” (Endsley, 1988, 

p. 97). From the perspective of HF research, PMS shall support decision makers in their SA perception, 

understanding, and anticipation of the current situation. This research approach examines the applica-

bility of SA on the design of PMS. In particular, useful lessons can be expected with regard to the 

construction of a human-centred user interface (Limberger and Mühlhäuser, 2008). Although the rele-

vance of SA-driven design has been confirmed in areas like Military operations and Aviation (Endsley 

and Jones, 2012), research has only made little effort on applying SA (1) in the field of Information 

Systems (IS) development and (2) in predictive maintenance research. Specifically, we will suggest a 

PMS for Oil and Gas pipeline operations. In this industry required information can be hard to detect or 

available due to the variety of admissible situations or the inaccuracy of data. In addition, the complexity 

and dynamic nature of pipeline operations could make an operational specialist fail to comprehend the 

significance of information (e.g. tank venting) and consequently hinder the user to anticipate future 

events (e.g. in case of overfill of tanks). For instance, in 2010 a leaking oil pipeline near Marshall, 

Michigan, remained undetected for 17 hours (Munroe, 2012). Although the responsible personnel rec-

ognised a major pressure decrease, neither the operator nor the control centre in Edmonton was aware 

of the situation. A PMS drawing the attention of the operator to a possible leak as the probabilistic reason 

could have significantly reduced the extent of the disaster. Thus, a SA-oriented PMS can offer the pos-

sibility to standardise the maintenance decision process and help to model the condition of the monitored 

equipment. In order to tackle the aforementioned obstacles in Oil and Gas pipeline operations, we have 
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identified three design principles (DP): (a) autonomously sensing abnormal readings of pump locations, 

(b) enable the operational decision maker to act appropriately with an equipment repair or replacement 

order, and (c) support him to track the success of the triggered response in real-time as well as estimate 

probable future states of the process. The remainder of this paper is as follows: Firstly, we describe the 

evolvement of predictive maintenance. Secondly, based on extant HF research results, we analyse soft-

ware requirements and suggest DPs. Thirdly, we instantiate our design principles by implementing a 

running software prototype, before we conclude our paper. 

2 Evolvement of Predictive Maintenance  

Historically, reactive maintenance or corrective maintenance (Tsang et al., 2006) – maintenance actions 

after the occurrence of issues to resolve these – was the dominating form of maintenance (Pun et al., 

2002). Pun et al. (2002) argue that a shift to a proactive-based, cost effectiveness, and high service level 

type of maintenance has taken place in the last decades. The authors state that this led to the introduction 

of preventive maintenance – maintenance actions to prevent the occurrence of issues. Predictive mainte-

nance takes this view even one step further, as it concentrates on predicting the future condition of 

equipment to prevent the occurrence of failures (Camci, 2014; Faiz and Edirisinghe, 2009). Faiz and 

Edirisinghe (2009) state that the characteristics of predictive maintenance are the mitigation of failure, 

the detection of the causes of failure, and the uncovering of hidden failure. Compare and Zio (2014, p. 

135) state that “predictive maintenance (…) is founded on the possibility of monitoring equipment to 

obtain information on its condition”. The authors elaborate that this information is used to identify prob-

lems before they occur and predict their impact on the remaining useful life of the equipment. Predictive 

maintenance focuses on the prediction of the future development of the equipment’s condition and the 

threshold which determines the occurrence of the failure (Compare and Zio, 2014). According to Faiz 

and Edirisinghe (2009), predictive maintenance provides guidance for maintenance decision-making.  

Condition-based maintenance is “an advanced maintenance strategy to achieve the reliable, cost-effec-

tive operation of engineering systems” (Tian and Zuo, 2010, p. 700). Data about the condition of equip-

ment is gathered to predict the equipment’s actual state (also called health condition) and make mainte-

nance decisions thereupon (Liu et al., 2013).When making maintenance decisions, it can be implied that 

inspection costs are weighed against possible failure costs (Faiz and Edirisinghe, 2009; Golmakani, 

2012). Through condition monitoring existing problems can be detected and it can be analysed how 

serious these are and how long it would take before the equipment experiences failure (Tsang et al., 

2006). The ultimate goal is to extend the remaining useful life (Compare and Zio, 2014) of the equipment 

(Mosallam et al., 2014; Tsang et al., 2006). Ionescu (2013) argues that predictive maintenance is part of 

condition-based maintenance. Following this argumentation, predictive maintenance, as used in this pa-

per, complements condition-based maintenance.  

3 Designing Predictive Maintenance Systems 

SA describes an operational decision maker’s state of knowledge with respect to a set of three ascending 

levels (Endsley, 2015): (a) Level 1 is described as the user’s perception of the characteristics, status, and 

dynamics of relevant elements in a situation, (b) Level 2 is defined as the user’s comprehension of the 

meaning of the objects and events for its situation, and (c) Level 3 is characterised as the user’s ability 

to project (near) future actions of the elements in the environment. These three levels of SA are deter-

mined by task or system factors (e.g. interface design, process complexity) on the one hand and individ-

ual factors (e.g. working memory, goals) on the other side (Endsley and Jones, 2012). Thus, SA is 

achieved through an iterative process of searching for and evaluating of information until adequate de-

cisions can be made (Endsley, 2015). IS should support decision-making and especially decision prep-

aration by assisting the user in obtaining the above mentioned three levels of SA (Lambert, 2009; Yang 

et al., 2009). Based on this theoretical foundation, we analyse the requirements (R) for a PMS in Oil and 

Gas operations and subsequently present our deviated DPs. The requirements are derived from extant 

HF research outcomes. We argue that the three levels of SA can be synthesised to deduce three DPs.  
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From a cognitive perspective, PMS should support a user’s perception of all relevant data and infor-

mation of the system environment, its elements and their relationships (SA Level 1). As a first step in 

providing such perception, data needs to be made available (Endsley, 2008). However, the continuously 

increasing heterogeneity of data elements perceived by users represents a major challenge to achieve a 

high level of perception (Kokar et al., 2009). Consequently, our PMS should be able to process data 

from various sources (e.g. real-time or historical data) without having to reformat or migrate that data 

(R1). In other cases, data is available, but data detection and discrimination is problematic. This phe-

nomenon is often associated with misplaced salience (Endsley, 1995). Salience is defined as the com-

pellingness of specific shapes of information which largely depend on its physical characteristics 

(Endsley and Connors, 2008). Certain signal characteristics like the colour red, movement, and larger 

noise are more likely to attract a user’s perceptual system (Endsley and Jones, 2012). Salient properties 

are important system features to promote SA. However, if such properties are utilised too often or inap-

propriately, it may lead to users’ confusion and errors since the user would not be able to identify the 

critical information (Endsley and Jones, 2012). An alert of a predicted breakdown of a valve in two 

weeks needs to be treated differently than one of an actual breakdown (i.e. with different alert modes) 

while still drawing the user’s attention to it. Current trends in salience utilise dashboards to display a 

dense array of information immediately and clearly in a small amount of space (Mortenson et al., 2015). 

Accordingly, our PMS design should leverage salience without overemphasising to support a user’s 

ability to detect and discriminate data (R2). Our third requirement facilitates a user’s ability to monitor 

and observe data by tackling attention tunnelling. Operational decision makers have to switch their at-

tention between different sources of information to maintain a high SA level (Endsley and Connors, 

2008). However, users often lock their attention on certain aspects of the environment that they attempt 

to process, while unintentionally neglecting their scanning behaviour. As a result, operational decision 

makers will achieve a high SA in the area of their concentration, while becoming out-dated elsewhere 

(Bolstad et al., 2006). Consider an alert of a (predicted) defect in one area: a relevant alert must not 

monopolise the attention of the user from upcoming ones or the overall status of the system. Thus, 

dynamically switching attention between different areas of interest remains a challenge for users and 

needs to be considered explicitly in our system (R3). The volume and frequency at which data is changed 

generate the need for fast information absorption which quickly exceeds the sensory and cognitive abil-

ities of a user. In a given state, a user can only receive and process information to a certain degree at a 

time. Given abstract information (e.g. temperature or pressure) such dissolution may occur in 20-30 

seconds (Endsley and Jones, 2012). When the auditory or visual information exceeds the cognitive 

threshold of a user, the decision maker’s SA will generate gaps or become outdated (Bolstad et al., 

2006). Often such issues arise in areas where systems fail to provide a fair degree of accuracy of the 

relevant cues in data sampling (Endsley, 1995). For instance, a screen showing all sensor data of all 

pumps and valves of a pipeline would overwork the perceptual capacity of any user. Thus, the system 

has to prevent such data overload (R4). We combine the requirements into our first DP: 

DP 1 – Sensing: A PMS should provide all task-relevant data in a comprehensive manner using appro-

priate means to attract the user’s perception (SA Level 1) of important information while keeping him 

receptive to the overall status.  

The dynamics of operational decision-making situations usually require a timely integration and provi-

sion of necessary knowledge (Watson, 2009). Only if this goal is met, users can achieve an understand-

ing of the current situation (SA Level 2). To provide a high comprehension of perceived data, errant 

mental models (MM) need to be addressed. MMs represent large knowledge units in the long-term 

memory which support the user’s understanding how something works (Endsley and Jones, 2012). How-

ever, errant MMs might cause errors during the execution of a task. Such errors are typically insidious 

since an operational decision maker might not recognise that the utilised MM is incorrect. For instance, 

human beings tend to use even far-fetched explanations to fit conflicting information to their incorrect 

MM (Endsley and Connors, 2008). Providing recommendation support along the workflow of an oper-

ational decision maker implies a high value (Bucher et al., 2009) as it may automatically identify data 

needed for a decision or indicate alternatives for actions (R5). With ever growing computer processing 
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power, the analysis of data can be obtained in (near) real-time (Mortenson et al., 2015). Of particular 

interest is the fact that current process flow data only makes sense in the context of process history, e.g. 

in relation to previous state descriptions (Gluchowski et al., 2009). Thus, information delivers more 

value when it is embedded in the course of the day (situational context) and visualised in comparison to 

the history of bygone days (historical context) (R6). With such knowledge, users could achieve imme-

diately and even intuitively a high understanding of the situation and reduce the probability of forming 

and maintaining errant MMs. In addition, context information would support the user in assessing alter-

native decisions (i.e. recommendations) by taking also cost, risk, or other correlates into consideration. 

We combine these requirements to our second DP: 

DP 2 – Acting: A PMS must provide means to enable the user’s understanding of current business 

situations (SA Level 2) to make decisions invariant of errant mental models.  

From a cognitive perspective, our system also needs to support the projections of probable future states 

of an environment (SA Level 3). Users may fully understand the current situation, without being able to 

anticipate the (near) future (Endsley, 1995). Mental projection represents a challenging task as many 

decision makers overly confide on their mental simulation abilities. Thus, our system needs to prevent 

overreliance on a user’s mental simulation abilities (R7). For instance, the application of predictive 

business process monitoring could be leveraged to identify abnormal patterns and to make empirical 

predictions about business situations (Metzger et al., 2015). Such practice includes techniques of statis-

tical process control, data mining, and simulation and offers support for the analysis of the impact of 

various alternative actions to a user. Thereby, the user should be enabled to not only perceive infor-

mation on an aggregated level (e.g. average cycle time of a business process), but also to drill down into 

the individual process instance to track down its progress and to identify the bottlenecks of the respective 

process before they become a problem. Such capabilities could be enabled by key performance indica-

tors (KPI) and metrics implemented on the process instance level (R8). Accordingly, the operational 

decision maker could anticipate immediately the perceived trends without being highly dependent on its 

mental simulation abilities. We formulate these requirements as our third DP: 

DP 3 – Tracking: A PMS should present the current status and possible future outcomes in a compre-

hensive manner enabling the user to anticipate (near) future business situations (SA Level 3). 

4 Instantiating the Design Principles - The PMS Prototype 

 

Fig. 1 Design Principles and Design Decisions 
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Following the design suggestions, we discuss the chosen design decisions (DD) and present a prototypi-

cally instantiation of our DPs in the Oil and Gas pipeline operations context. We illustrate our software 

prototype also in a screencast.1 Figure 1 summarises our deviated DPs and chosen DDs.  

4.1 Sensing Business Situations 

The first step in gaining SA is the perception of the different elements in the current situation. Following 

our first DP, our PMS supports SA Level 1 by both collecting and filtering a vast amount of various 

data types as well as visualising them in a comprehensive manner. We decided to use an Event Stream 

Processor to (a) steadily sense and acquire streams of event data from diverse sources into a SAP HANA 

in-memory computing platform and (b) to systematically identify imminent breakdowns (so called busi-

ness situations) that represent unusual or abnormal system behaviour (DD1). We define a business sit-

uation as a significant change in state worthwhile for user notification. Research distinguishes between 

three types of sensing: physical (e.g. position data), virtual (e.g. database trigger), and logical sensing 

(i.e. data combined from various sensors). Our Event Stream Processor entity supports all three sensing 

types leveraging several adapters to acquire data in real-time. The underlying operational systems in-

clude databases, business systems like ERP, machine data from a variety of sensors, and clickstream 

data capturing user activity on websites. In case the Event Stream Processor identifies a business situa-

tion (e.g. pump sensors report a drop in pressure), an Alert Manager (DD2) entity forwards and visual-

ises the warning on the operational decision maker’s screen for subsequent actions that range from sim-

ple filtering and analysing to triggering multi-layered assemblage of error handling and other related 

routines. The operational decision maker in charge will use a dashboard where the respective notification 

is visualised on a tablet or desktop computer with a geographic view of the pipeline including the pump 

locations and details of the business situation. Alerts can be distinguished by differing colours, sizes, 

and effects. As shown in Figure 1, severe alerts are displayed at the location of the event through red 

flashing circles; less severe ones are coloured in yellow. While the user drills into a specific issue, our 

system helps him not to lose attention to the overall status of the system and new alerts. The left side of 

the screen is reserved for an overview using a three-colour-scheme to indicate the overall status of all 

relevant parts and showing some key figures to avoid attention tunnelling. Further, we complement the 

Sensing component with a Query Engine for running interactive queries for high-speed analytics at scale 

(DD3). A single query can include data from various sources (i.e. relational or proprietary data stores), 

enabling analytics across the company’s ecosystem. Our Query Engine targets users who require re-

sponse times ranging from sub-seconds to minutes. For instance, the user can trace down which areas 

are most affected by pump failures. 

4.2 Acting on Business Situations 

Our second DP (Acting) refers to supporting an operational decision maker to invoke an appropriate 

adaptation to business situations. An appropriate response, however, demands for a precise understand-

ing of the situation (SA Level 2). Next to high level information such as flashing alerts, our PMS fosters 

the understanding of its users by giving background information on the reasoning process. By clicking 

on an alert, the PMS provides a filtered list of the relevant data and events that caused the alert. The user 

will then have the possibility to drill down to respective abnormal pump readings and predicted failure 

rates as well as maintenance records. In addition, cost data, such as diverse risk scenarios for e.g. a 

pipeline break or a pump failure, will be provided to the user. The user can thus examine the system’s 

reasoning and draw his own conclusion about the current status. Our PMS further supports the opera-

tional decision maker in his understanding by proposing next best actions to deal with business situations 

based on two techniques: Collaborative Filtering (DD4) and a Business Rule Engine (DD5). Collabora-

tive filtering represents a technique leveraged by recommender systems to propose recommendations – 

                                                      

1  Software information including a screencast for the upstream incident management scenario are available at 

https://www.youtube.com/watch?v=jjmltuUikVg 
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in our case, next best actions – based on past user behaviour. In case of a pump failure the system informs 

the user of his option to repair or replace the pump. While giving additional information such as costs 

based on the designated pump vendor, the PMS might immediately suggest to replace the pump instead 

of a repair if the user usually reacts in this way (cf. Figure 2). The Business Rule Engine enables domain 

experts, who possess tacit knowledge about Oil and Gas pipeline operations, to use a text-based IF-

THEN rule construct or decision tables to codify business rules for certain situations. Based on these 

findings, the operational decision maker can invoke a suitable action, e.g. in form of an equipment repair 

or replacement action, to respond appropriately. The user could create a rule to immediately alert the 

local staff if a certain error occurs. Once an alert is displayed, the operational decision maker can access 

not only sensor data but gets immediate access to a responsible employee at the critical station. Enabled 

by a Workflow Engine (DD6), the user can trigger previously integrated mitigation workflows as well 

as receive contact information about the person in charge in order to reduce the reaction time.  

 

Fig. 2 Screenshot of the User Interface for Sensing and Acting on Business Situations 
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cycle times of the running process instances (DD9). This offers the user the possibility to immediately 

undertake corrective actions. The user can also leverage various forms of charts (bar, column, line or 

table) in order to adjust the trend line visualisation comprehensively.  

 
Fig. 3  Screenshot of the User Interface for Tracking Successful Outcomes of Actions 
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current situation (Level 2), and (c) tracking, i.e. facilitating a user’s ability to track the success of the 

chosen response in order to anticipate future events (Level 3). Based on the identified DPs, we imple-

mented a PMS prototype. We are aware that our research comes with some limitations: Yet, the DPs are 

derived from HF findings and applied within an Oil and Gas pipeline case. However, to strengthen the 

generalizability of the developed DPs, further research in terms of reviewing various contexts is re-

quired. In addition, the functionality of our prototype needs to be contrasted against the functionality of 

existing PMS software used by organisations. As a next step, this prototype will be developed further 

with a glance on performance to strengthen its usability and ease of use following the call of Peffers et 

al. (2012) for more practice relevant research. Subsequently, we plan to resume our results in a first 

version of a design knowledge for SA-driven design. Although our study shows some shortcomings, we 

consider it as a valuable contribution for both, scholars and practitioners. From an academic point of 

view, each DP and requirement indicate how to acquire a precise goal extending the existing body of 

knowledge for PMS. To our knowledge, there are currently only scarce attempts to design PMS in re-

search (Schwegmann et al., 2013a). For instance, Schwegmann et al. (2013b) showcase a prototype to 

illustrate “how process-aware information systems can work together with analytical systems in near 

real-time” (p. 453). However, our presumption was confirmed that there is no derived artefact so far, 

that explicitly considers cognitive concerns, such as SA, in the design of PMS to support operational 

decision makers. From a practical perspective, we perceive the implementation of such software as ben-

eficial, as studies confirm that the average maintenance cost on pumps of energy companies are 50% 

lower for plants operating a predictive maintenance program instead of reactive maintenance (Sullivan 

et al., 2010). These benefits, although limited to the energy industry, show the huge potential of em-

ploying PMS in practice. Besides, our PMS prototype is also relevant for PMS designers in practice as, 

up to date, no alternative system addresses the identified requirements and DPs in a holistic fashion, 

although organisations already utilise some form of predictive maintenance. We believe that using our 

software will facilitate to tackle the risk of pump breakdowns and oil leakage due to a higher SA of the 

operational decision maker in charge.  
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