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Abstract  

The vast amounts of data that are generated and collected in today’s world bear immense potential for 

businesses and authorities. Innovative companies already adopt novel analytics methods driven by 

competition and the urge of constantly gaining new insights into business operations, customer 

preferences, and strategic decision making. Nonetheless, local authorities have been slow to embrace 

the opportunities enabled by data analytics. In this paper, we demonstrate and discuss how latent 

structures unveil valuable information on an aspect of public life and communities we all face: criminal 

activity. On city-scale, we analyze the spatial correspondence of recorded crime to its physical 

environment, the public presence, and the demographical structure in its vicinity. Our results show that 

Big Data in fact is able to identify and quantify the main spatial drivers of criminal activity. At the same 

time, we are able to maintain interpretability by design, which ultimately allows deep informational 

insights. 

Keywords: Data Analytics, Social Media, Spatial Data, PLS, Criminal Activity 
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1 Introduction 

In recent years, businesses have begun to seize the opportunities created by the vast amounts of data 

generated and collected in today’s world. Business Intelligence and Big Data Analytics provide novel 

insights into business operations, customer preferences, and strategic decision-making. At the same 

time, the use of information technology systems in the public sector continues to increase. This 

development is exemplified by, for instance, e-government initiatives that seek to simplify interactions 

between citizens and public administrations and to facilitate improved participation in democratic 

decision-making processes (Bertot et al. 2010; Effing et al. 2011; Irvin and Stansbury 2004). 

However, compared to the business world, the public sector has been slow to embrace the opportunities 

enabled by the Big Data paradigm. Messatfa et al. (2011) summarize that “most public organization are 

just starting to explore ways to leverage analytics” (p. 2). The reasons for this reluctance are manifold 

and may include strict hierarchies, a lack of competition, and data privacy restrictions. Incidentally, 

public administrations and organizations fundamentally rely on a certain trust from the general 

population and may limit themselves in handling and analyzing data to a degree even exceeding legal 

requirements. To provide the public with perspectives on the tradeoff between data privacy and 

improved public services, researchers need to identify potential benefits and risks associated with data 

analytics applications in the public sector. 

In this paper, we demonstrate and discuss how novel data analytics methods may improve capabilities 

of agencies working on a crucial aspect of public life: combatting crime. The protection of its citizens 

and the enforcement of the law are two primary duties of the modern state. Hence, police departments 

seek to suppress crime while city planners and administrations want to identify drivers and causes of 

crime hot spots in particular neighborhoods. While such spatial evaluations of criminal incidence have 

been conducted for several decades (Bowes 2007; Brantingham and Brantingham 1993; Cohen 1941; 

Grubesic and Mack 2008; Ratcliffe 2004; Roncek 1981), the availability of new data sources and 

techniques for analysis and visualization provides novel insights. For instance, predictive policing uses 

historical data on criminal incidents to identify hot spots and the likelihood of future crimes in certain 

areas (Bachner 2013). The objective of this paper is to identify the underlying reasons of this spatial 

variation in criminal incidents—to determine why certain neighborhoods are more prone to crime than 

others—through spatial data analytics. 

Over the past decade, the availability of data with a spatial component has substantially evolved (Bendler 

et al. 2014b). In these days, even smartphones contain a GPS-unit for routing that also enables social 

media platforms and recommender systems to capture and share the position of the user. Map services, 

such as Google Maps or OpenStreetMap, provide comprehensive information on the structural 

environment, along with details on businesses and attractions in particular areas. These data sources 

produce novel explanatory variables for spatial phenomena. However, they are also affected by a central 

critique of Big Data approaches—a lack of theoretical foundation. Chang et al. (2014) argue that 

analytics methods in the Big Data era continue to require a basis in theory to result in meaningful 

insights. For instance, in the context of criminal incidents, an analysis may show that a higher number 

of cafés may significantly correlate with the occurrence of thefts in the vicinity. However, this direct 

correlation does not necessarily imply a direct relationship since there is no theoretical argument for 

café owners or patrons being particularly prone to crime. Neither does opening a new café automatically 

results in a surge of thefts. Instead, the number of crimes may, together with other variables, reflect an 

unobservable, latent characteristic of the area. These characteristics, if discovered, can be compared to 

theories on the determinants of crime. 

We employ the Projection to Latent Structures (PLS) method to identify latent characteristics that 

explain the spatial variation in criminal incidents and that can be supported by a basis in theory. 

Analyzing a data set comprised of several sources—Twitter, the US Census, police departments, and 

map services—we combine novel spatial analytics methods with a methodology that is well established 

in Information Systems research. We, thereby, outline how data analytics can improve a public service 

that is crucial to the functioning of modern societies. For this purpose, we address the following research 

questions during the course of this paper. 
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(1) How can Big Data Analytics support the identification of crucial characteristics that explain the 

spatial variation of crime? 

(2) Can the identified latent structures be related to theoretical concepts, thus improving the 

interpretability of the results? 

In the following section, we provide an overview of the relevant literature concerning spatial 

criminology and projection to latent structures. Subsequently, we present our research outline for this 

paper describing the sequence we use to employ PLS methodology, regressions, and prediction. The 

two succeeding sections provide detailed explanations of the applied methodology. The gained insights 

are then fed into a predictive approach to forecast spatial criminal activity. Finally, we discuss our results 

and provide a prospect on future research opportunities. 

2 Related work 

The investigation of spatial and temporal characteristics of crime has been an active field of research for 

some time. Over the years, many different approaches have emerged that aim to explain or predict 

patterns of criminal activity in space and time. Such crime-related studies cover a broad range of 

demographic, structural, environmental, and behavioral factors and research their respective impact on 

the emergence of various different crime types.  

2.1 Spatial Criminology 

Especially the spatial investigation received increased attention throughout the time. Cohen (1941) states 

that, in the forty years prior to his publication, “students have become less and less disposed […] 

concerning the influences of physical geography upon crime” (p. 29). Starting from the mid-20th 

century, research on criminology was however carried out with respect to a broad variety of possible 

influencing aspects, especially focusing on socio-spatial characteristics. Block (1979) investigates on 

homicide, robbery, and aggravated assault crimes and states that, “using regression analysis […] [it] is 

found that neighborhoods in which very poor and middle-class people live in close proximity are those 

in which rates of all three types of criminal violence are highest” (p. 46). Roncek (1981) traces criminal 

activity back to three major hypotheses (1) household composition, (2) features of the residential 

environment, and (3) the interaction of the social composition and the features of the residential 

environment. By introduction of data on household composition and social components for crime 

prediction, Roncek’s hypotheses lay the foundation of what current research still includes in 

criminological studies—the relationship between criminal incidents, a delinquent’s social background, 

and the corresponding geographic environment. Besides the pure demographic milieu, the (partially 

corresponding) levels of wealth and education are being considered (Patterson 1991). Nevertheless, 

researchers have mostly studied the direct effects of sociographic, demographic, and geographic 

measures on the emergence of crimes in general or selected types of crime. Contrastingly, Brantingham 

and Brantingham (1993) refrain from searching for a direct association and state that “crime has long 

been thought to be intimately associated with the physical environment in which it occurs. […] The 

relationship between crime and the physical environment is mediated through individual awareness and 

action spaces” (p. 3). Still, the direct effects of physical environment reside as an active research field 

(Andresen 2006; Chainey et al. 2008; Krivo and Peterson 1996; Murray 2001; Nelson et al. 2001). 

Starting in the mid-90s, computer systems improved in performance and storage and thereby started to 

render more complex analyses possible. Novel tools from that era, such as Geographic Information 

Systems (GIS), were employed to deepen the insights of spatial criminology (e.g. Bowers 1999) Driven 

by the increased availability of data roughly starting with the beginning of the 21st century, more 

complex models and calculations were carried out in the past decade (e.g. Ratcliffe 2004, 2010, Bows 

2007, Grubesic and Mack 2008, Day 2014).  

Recently, the availability of user data from online social interactions on various platforms (such as 

Twitter) permits the next step in criminological investigation. So far, the demographic and sociographic 

background of offenders, as well as the structural geographic environment are data sources that can 

reflect the intrinsic driving forces to criminal activity in certain regions. By now, we can also include 
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data that represents the public presence and possibly public attention by also including geo-located data 

from social networks. Traunmueller et al. (2014) have identified that previous work suggests that “there 

is a strong relationship between the built environment and location of crime” (p. 398). Both the initial 

work of Wang et al. (2012), as well as the recent study from Gerber (2014) confirm this perception. 

They provide an approach of predicting criminal activity by employing Twitter messages as a novel data 

source to reflect the location and mood of people in the vicinity of crimes. Similarly, Bendler et al. 

(2014a) employ Twitter data to improve the explanation of crimes in a spatial context. They identify 

several crime types that can be better explained by additionally including social media data. 

2.2 Projection to Latent Structures 

The Projection to Latent Structures (PLS, also: Partial Least Squares) approach is a technique to 

calculate the optimal projection of input variables to a lower number of latent structures among them by 

setting up linear combinations. It has been widely applied in social sciences, especially in the domain of 

marketing and consumer research (Henseler et al. 2009), for example for the purpose of confirmatory 

factor analysis. In 1980, Bookstein (1980) has provided a comprehensive description of the PLS 

approach covering various algorithms. Even though PLS oftentimes allows to reduce the variable space 

to a lower dimension efficiently, it is being conversely discussed. The two major points of criticism refer 

to (1) missing statistical tests due to absence of assumptions on probability distributions, and (2) the loss 

of interpretability by linearly combining seemingly unrelated input variables. Anyhow, PLS is 

oftentimes used as a method to account for causality and endogeneity, even though it bears immense 

risks in statistical terms. Antonakis et al. (2014) provide 10 commandments of causal analysis and 

explicitly exclude PLS from the application for the purpose of causality, because its results cannot be 

tested for overidentifying restrictions. 

These weaknesses however only apply when employing PLS for investigating on causality and 

endogeneity. In a recent research note, Zheng and Pavlou (2010) employ PLS to purely identify latent 

structures in order to feed them into a Bayes network in a subsequent step. Even though PLS is usually 

employed in confirmatory approaches, the authors point out that it can also be applied for exploratory 

purposes. In addition, the related technique PLS Path Modeling (PLS-PM) allows to study the 

dependencies among latent variables in formative or reflective models. The field of PLS and PLS-PM 

is under highly active research and evolution (Dijkstra 2010; Dijkstra and Henseler 2015; Henseler and 

Sarstedt 2013; Hulland et al. 2010; McIntosh et al. 2014; Vinzi et al. 2010; Wold et al. 2010). 

2.3 Research Gap 

In this research work, we extend the previous approaches in spatial criminology that focus on 

hotspot/cluster analysis (e.g. Ratcliffe 2004; Curman et al. 2015) and observable structures (e.g. Gerber 

2014; Bendler et al. 2014a) by introducing the PLS methodology to explore latent structures among our 

input variables. Lee et al. (2011) propose to perform an initial PLS analysis prior to the application of 

further methods when there is no coherent theory available in advance. Consequently, we will perform 

a PLS analysis using spatial data on demographics, sociographics, physical environment, social media, 

and criminal activity in order to seek for meaningful latent structures that can be well interpreted and 

support in answering our research questions posed at the outset. 

3 Research Outline 

As Henseler et al. (2009) delineate, many researchers state that their studies’ goals relate to the particular 

strengths of PLS path modeling. Furthermore, the authors describe that “[t]he most important 

motivations are exploration and prediction, as PLS path modeling is recommended in an early stage of 

theoretical development in order to test and validate exploratory models.” (Henseler et al. 2009, p. 282). 

Following this rationale, we employ PLS and PLS path modeling for exploration and early interpretation 

in the special case of spatial observations. 

Our research concept is set up as outlined in Figure 1. The spatial observations from our four data sources 

census, map, social media, and crime are spatially aligned and preprocessed in order to fit the needs of 



Data Analytics for Spatial Criminology 

Twenty-Fourth European Conference on Information Systems (ECIS), İstanbul,Turkey, 2016 5 

 

 

an exploratory analysis. In the first analysis step, we employ a PLS approach to explore a number of 

latent structures and their interrelations. Subsequently, the identified structures are fed into a path model 

to further investigate dependencies among them. Additionally, we perform a step-wise regression that 

provides insights on the explanatory power of each latent structure when investigating the emergence of 

crime. In a final step, we combine the results from both methods to carry out a predictive approach on 

criminal activity. 

 

Figure 1. Research approach for latent structures in spatial criminology. 

The aforementioned data sources provide measures and observations in various spatial references and 

resolutions. Thus, an efficient alignment and preprocessing is required to combine the data into a 

spatially consistent set of observations. In order to demonstrate our approach, we rely on the following 

data that refers to the geographical area of the City of San Francisco, whereby time-anchored data are 

collected during mid-2013, from June to August. 

Census data reflects demographic and structural information on tract level and is freely obtainable via 

the US Census Bureau. Up to 2010, the US Census Bureau has collected complete census data (SF1) on 

a decennial base. Since then, the American Community Surveys (ACS), which provide the short-term 

changes in demographics, are published in shorter periods. 

Map data refers to points of interest (POIs) as known from mapping services, such as OpenStreetMap, 

Google Maps, or Bing Maps. Since these POIs are provided in a large number of categories, we process 

them in clustered form. The resulting eight logical groups are authorities, entertainment, finance and 

law, food and drinks, health, retail and services, social and religion, and transportation. 

Social media data is represented by over half a million geo-located Twitter messages from the months 

June to August in 2013. Each tweet contains exact coordinates in time and space, which allows to treat 

each of them as an indicator of a person in that spot at that very time. Therefore, we can expect the social 

media data to reflect public presence to a certain degree. 

Crime data has become freely available from more and more urban areas over the past few years 

following the open data approach. We have obtained crime records as published by the SFPD covering 

13 different crime types. Each delinquency record is accurately located in time and space. The 13 crime 

types are namely assault, burglary, disturbing the peace, drugs/alcohol violations, DUI, fraud, motor 

vehicle theft, robbery, sex crimes, theft/larceny, vandalism, vehicle break-in/theft, and weapons. 

The structure of this research work is aligned to the steps described in Figure 1. The upcoming chapter 

deals with the preparation of our dataset and identifies latent structures among the input variables from 

our data. Subsequently, we assess the inner dependencies of the identified latent structures describing 

both path modeling and the step-wise regression approach. In the following chapter, we carry out a 

predictive analysis that employs insights from the previous chapters. This work closes with evaluation 

of our results and a chapter providing concluding remarks. 

4 Projection to Latent Structures for Spatial Observations 

In these times, the ubiquity of computing and, as a result, the commonly sensed “always-on” mentality 

generate masses of data, ranging from social interaction over online purchase to geographic traces of 
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individuals. The analytical potential is immense and opens the door for both businesses and governments 

to infer novel and detailed information on human behavior. Oftentimes, more data is said to be 

equivalent to more information. Contrastingly, extracting intrinsic information from Big Data is a matter 

of asking the right questions and heavily depends on interpretability of the data at hand. This principle 

also holds as valid when exploring and explaining spatio-temporal observations—seeking expressive 

interrelations and dependencies is subject to searching for a presumably meaningful combination of 

measures. 

Especially in the domain of spatial analytics, researchers have to cope with the potentially high degree 

of multicollinearity and unknown interplay effects among different data sources. Due to the nature of 

urbanity, observations in fact are present in tight spatial relationship. For instance, a city center where 

stores and businesses are denser than in residential areas naturally also relates to a higher public presence 

during daytime, potentially higher housing prices, and an increased number of, for example, pickpocket 

incidents. These circumstances restrain analyzing the direct impact of spatial measures on to-be-

explored observations. Latent structures can be employed as a hidden mid-layer that collects the effects 

of input measures (i.e. different data sources) and combines them according to their respective impact 

to joint nodes. Using historical data, we can calculate the likely impact of each data source on such latent 

structures and use the respective loadings to interpret the interplay and to quantify the impact. 

As for our analysis, we mainly rely on the PLS methodology, which is superior over other approaches 

in terms of theoretical embedding. This corresponds to early interpretation and sense-making from 

unknown data in structural aspects. In general, PLS is able to project input variables to a much lower 

dimensional space by providing linear combinations among them and at the same time maintaining the 

maximum explanatory power. Zheng and Pavlou (2010) propose to use PLS to identify latent variables 

prior to feeding them into further steps of analysis—in their case a Bayesian approach. 

4.1 Spatial Alignment and Preprocessing 

In the setting of this research work, all observations are spatially anchored by design. As outlined before, 

spatial observations emerge in geographical clusters by the nature of cities. Tobler (1970) formulates 

his first law of geography by stating that everything is related to everything else, but near things are 

more related than distant things. Essentially, this means that a relationship between different spatial 

observations is possibly present despite a distance between them, and that this distance is the elemental 

factor that quantifies the relationship’s strength. As a consequence, it is indispensable to prepare the 

spatial data to account for such distance-based relationships before entering the analysis itself. 

While census data is available on tract level—represented by spatial polygons—all other sources provide 

observations as point data. The naïve approach of counting points in polygons does not account for the 

spatial dependencies outlined by Tobler and thus is inapplicable. In lieu thereof, we perform kernel 

density estimations (KDE) to transform point data to an area representation. The result of a KDE is 

comparable to a common heatmap and therefore simultaneously contains a distance weighting scheme. 

Figure 2 delineates the alignment process that is applied to all spatial point observations using exemplary 

data. In a first step, the point data—shown in panel (a)—is blurred by application of a KDE (b). Using 

a sampling grid (c) of the desired resolution, we then can transform the continuous KDE result back to 

discrete points (d). For census data, which is available on a polygonal basis, only steps (c) and (d) apply.  

    
(a) Observation sample (b) KDE result (c) Sampling grid (d) Sampled KDE 

Figure 2. Sampling procedure to transform point observations to a grid. 
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With a fixed sampling grid, this procedure results in a matrix of spatial observations for each data source, 

where each matrix element has a fixed correspondence to a specific geographic location. This procedure 

ensures that the spatial dependency between proximal observations is maintained and assigned a weight. 

Essentially, the preprocessing generates a consistent set of spatial observations among all data sources 

that can consequently be employed in PLS and regression analysis. 

4.2 Identification of Latent Components using PLS 

The crime data at hand refers to police records on 13 different crime types in San Francisco, each of 

which is probably individually depending on environmental factors. Our data sources census, map, and 

social media sum up to a total of 16 variables that reflect the environment in its various facets. These 

variables are shown in Figure 3, according to the category they fall into. 

 

Figure 3. Original input variables by data source. 

 

With these variables as a starting point, we seek for a deeper exploration of relations among the 

environmental measures. For this purpose, we carry out a series of PLS applications using each available 

crime type as dependent variable and our input variables (cf. Figure 3) as regressors. Since we follow 

an exploratory approach in seeking to find clusters among input variables and to explain their respective 

logical background, we start our PLS analyses with as many latent structures as possible. Consequently, 

we request PLS to estimate 16 latent variables to be sure that no information is lost during this procedure. 

 

Figure 4. Cumulated variance explained for all crime types. 

When applying the PLS methodology to a set of variables and requiring to estimate the same number of 

latent structures in the end, PLS essentially reconfigures the input measures. It efficiently unveils 



Data Analytics for Spatial Criminology 

Twenty-Fourth European Conference on Information Systems (ECIS), İstanbul,Turkey, 2016 8 

 

 

combinations among the variables that maximize the explained variance for each latent component step 

by step. Figure 4 provides visual evidence of how the addition of latent components improves explained 

variable for each crime type. While the overall model cannot increase the explanatory value for obvious 

reasons, the order and combination of latent structures results in step-wise increase of explained 

variance. As a side note, PLS may estimate diverging latent components for different crime types; the 

actual linear combinations of input variables are not necessarily the same across crimes. However, we 

can see a similar structure across all crime types; the first two components are most valuable in terms of 

explained variance. The values steadily decrease over the upcoming components and fall below 1 in 

component 9 at the latest. This indicates that whatever is measured in the latter components will 

doubtlessly not have a remarkable impact on spatially explaining the emergence of criminal activity. 

4.3 Logical Structure among Latent Components 

In general, the latent structures resulting from PLS are not easily interpreted, since their combination is 

based on maximizing the step explanatory power step by step. Obviously, PLS is unable to optimize for 

human interpretability. Thus, we cannot solely rely on PLS’ magic in reducing the amount of variables 

by linearly combining them into fewer new structures. One would usually visualize the residuals of a 

global model—i.e. by using a dendrogram—in order to identify the required number of latent 

components and employ PLS subsequently. In deep contrast, we are required to estimate the maximum 

possible number of latent structures to maintain interpretability and do the actual sense-making by 

ourselves. This approach is in line with Zheng and Pavlou (2010), who propose to manually prune the 

components identified by PLS into disjoint sets for further investigation. Interpretability is an aspect 

that quickly moves out of focus once automated estimations are applied. 

The loadings identified by PLS for burglary crimes are depicted in Figure 5. Interestingly, the pattern of 

loadings—as shown in panel (a)—is very similar among all crime types, regarding both sign and value 

of each variable’s impact on the latent components. Reading the figure column-wise, we can spot two 

almost singular components for median income and twitter activity. Ranging from component 3 to 11, 

the loadings are essentially depending on points of interest data, whereas components 12-16 mainly 

reflect census data. Panel (b) highlights these four clusters of dependency. We can already detect one of 

the clusters in the latter components we know to be less valuable for explanation due to their low 

explained variance. 

  
(a) Latent components for burglary crimes (b) Identified logical clusters among components 

Figure 5. PLS components for burglary crimes and their logical clustering. 

For ease of understanding, we assign names to the four identified clusters. Since they are distinct in what 

input variables they depend on, naming is based on the logical commonalities in terms of input measures. 

(1) Prosperity. The singular cluster mainly depends on the median income and thus reflects the wealth 

of residents in a specific area. This measure can possibly also refer to the potential value of theft-

related crimes in the respective areas. 
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(2) Presence. Also the second cluster is singular and mainly depends on the Twitter activity. We can 

employ it to reflect the public presence, since each Twitter message is an indication that there has 

been a person in a specific location at a certain time. The aggregate of all these Twitter messages 

thus can mirror the density of people in an area. 

(3) Opportunity. All latent components within this cluster represent points of interest and various 

combinations thereof. Hence, they reflect the physical environment. Specific characteristics of this 

environment may promote or suppress certain crime types, which can therefore be interpreted as the 

given environmental opportunity. 

(4) Readiness. The fourth cluster is solely based on census data. As such, it represents the 

demographical and structural background of residents. Since this cluster does not cover the median 

income, it can be seen as representing the readiness of residents. 

For further investigation, we combine the identified latent components into new variables according to 

their logical clusters outlined above. Their respective spatial distribution is outlined in Figure 6. We are 

aware of the fact, that aggregating latent components by their clusters may lead to a weaker model on 

the whole. However, the aggregation procedure is a tradeoff between maximizing explained variance 

and maintaining interpretability. Summing up the PLS loadings for each cluster makes us lose some 

fraction of explanatory power, since the explained variance is automatically averaged cluster-wise at the 

same time. While this may lead to slightly weaker results, we maintain a high degree of interpretability, 

which in our sense is superior. 

    

Prosperity Presence Opportunity Readiness 

Figure 6. PLS components for burglary crimes and their logical clustering. 

However, even though we are able to assign a meaningful name to each of the clusters, the sense-making 

may still be ambiguous. We therefore have to clarify a few aspects concerning each of the clusters. First 

of all, prosperity majorly reflects the median income of residents. It does not contain information on 

how easily individual properties may be entered, or to what extent security efforts are taken. Altogether, 

prosperity may render as most relevant when explaining crimes against the property and belongings of 

individuals in general. Secondly, presence refers to the general public presence and does not measure 

public awareness in any quantifiable way. Specifically, this means that people who tweet do not 

necessarily represent those—if any—who have noticed a crime. The Twitter activity is mostly unrelated 

to specific criminal incidents. Thirdly, opportunity does only reflect the general (i.e. structural, physical) 

environmental conditions. It does not include any information on individual situational opportunities 

where a crime—for example theft—may seem promising and innocuous to an offender. Opportunity in 

the terminology of this research work refers to the overall possibilities that may emerge from different 

combinations of points of interest and their respective densities in an area. Fourthly, readiness is 

quantified by census measures on education, age, family structure, household type, and gender. It is 

measured in the areas where crimes are committed, not where the potential issuer grew up or came from. 

As such, it may rather be representative for those crimes where delinquents do not navigate to a specific, 

dedicated location for purposeful criminal activity. Even though median income is excluded, readiness 

could also reflect how promising a specific region is in terms of crime against body or property of 

people. Finally, nothing can represent the spatial characteristics of crime committed in the heat of the 

moment. 
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We will further investigate on these thoughts and aim to clarify interpretational ambiguity in the 

upcoming chapters. Since our research target covers explanation and prediction of criminal activity in a 

well-defined urban region, the upcoming analyses can be classified as meso-level. The clusters 

prosperity, presence, and readiness would rather suggest an individual level of analysis, but as they are 

employed in an aggregated form, we lose the references to single citizens, families, or households. Along 

with the opportunity cluster, the level of analysis resides on mid-range. 

5 Assessing Inner Dependencies 

An open door may tempt a saint is a well-known proverb which states that a promising situation may 

even lead the honest into temptation. Transferred to the scenario of this research work, it indicates that 

presence and opportunity may have a much higher impact on criminal activity than prosperity and 

readiness have. 

Thus, the four identified clusters are probably not equally valuable when explaining or predicting 

criminal activity. From early visual inspection of the plots given in Figure 4 and Figure 5, we expect 

clusters to be generally more valuable the more sinistral their components are. This rationale is driven 

by the nature of PLS—early identified latent components are those that probably have the highest 

impact. As a first step, we carry out step-wise OLS regressions for each crime type to estimate the 

explanatory power of each single latent structure presence, prosperity, opportunity, and readiness after 

clustering. In a second step, we assess the dependencies among our four new latent structures by 

application of PLS path modeling. 

5.1 Step-wise OLS Regression 

In order to test and compare the respective impact of the four latent structures on different crime types, 

we perform regular OLS regressions for each crime and sequentially add the regressors one by one. The 

results outlined in Table 1 present the coefficient estimates for burglaries along with the respective t-

statistics and significance codes for each regressor (row) in each successive step (column). In each step, 

all estimates are significant on a 0.001 level and—as a correlation test shows—all regressors are 

uncorrelated with the respective remaining ones. All estimates are stable across the steps, they do not 

vary when new variables are added to the model. Regarding the R² value, we can identify presence as 

the driving regressor when added in Step 2. Opportunity further increases the explanatory power, 

whereas prosperity and readiness only show marginal effects in terms of R². Both information criteria—

AIC and BIC—state that the best model is obtained in Step 4 when all latent components are involved. 

As expected in the preceding section, we are actually losing some part of our model’s power when 

clustering the initial 16 latent components. The regular OLS model including the non-clustered latent 

components results in an adjusted R² of 0.818 and its information criteria AIC and BIC are, respectively, 

 Step 0 Step 1 Step 2 Step 3 Step 4 

(Intercept) 8.3 (130.8)  20.4 (87.8) 7.8 (48.7)  2.4 (18.3)  4.1 (27.5)  

Prosperity  9.5 E–5 (38.2)  9.5 E–5 (60.4)  9.5 E–5 (79.1)  9.5 E–5 (79.8)  

Presence  0.01 (202.6) 0.01 (265.0) 0.01 (267.5) 

Opportunity  0.35 (139.6) 0.35 (140.9) 

Readiness  2.1 (22.6) 

Adjusted R² 0 0.05 0.62 0.778 0.782 

AIC 317143 220433 195357 180635 180133 

BIC 317160 220458 195390 180676 180182 

Stated: OLS coefficients based on 19094 degrees of freedom, t-statistics in parentheses. 

All coefficients significant at 0.001 level 

Table 1. Step-wise regression using latent components for burglary crimes. 
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175140 and 175288. Even though this complete model is superior to our resulting best model (Step 4 in 

Table 1), it is not interpretable at all. However, to allow for deeper sense-making, we take this tradeoff 

and stick to our model of clustered latent structures including prosperity, presence, opportunity, and 

readiness. In dimensions of R² speaking, the loss we face is lower than what prosperity—a single-

component-cluster—has effectuated. 

5.2 PLS Path Modeling 

The previous steps of analysis give evidence that the identified latent structures—and especially their 

clustering—contain valuable and interpretable information on the emergence of various crime types. 

Our four clusters represent the public presence, the wealth of residents, the physical environment, and 

the demographical and sociological background of inhabitants. So far, we have assessed the explanatory 

power of each component independently. In a next step, we employ PLS path modeling to further 

research the dependencies and relations among the respective latent clusters presence, prosperity, 

opportunity, and readiness. For this purpose, we first identify a representative inner model that defines 

the connections among these four variables. We then estimate the edge weights to quantify the respective 

dependencies. 

The PLS path modeling technique requires an outer model and an inner model. The outer, formative 

model describes the combination of original input variables that form the four latent structures as given 

in the last chapter. The inner model is also formative and describes how the four latent structures depend 

on each other and how they respectively influence delinquencies. Based on the goodness of fit (GoF) 

measure, we have identified the following model as the one to fit the data best among all valid 

combinations. Opportunity and readiness are described to be endogenous for the inner model, even 

though they are originally driven by data from the outer model in a global context. Figure 7 delineates 

the inner model and the edge weights how they apply to burglary crimes. The structure of the inner 

model is the same for all observed crime. However, the specific path weights and their signs vary among 

different delinquencies. In general, we can observe a strong dependency between presence and 

opportunity and a remarkable impact of opportunity on delinquency. In the specific case of burglaries, 

we can observe prosperity to have a negative effect on readiness but a positive impact on delinquency. 

Both presence and opportunity have a positive impact on all of their successor nodes.  

 

Figure 7. Formative inner model with path coefficients for burglary crimes. 

As mentioned before, the specific path coefficients of the inner model and their respective signs may 

change depending on the crime type. Regarding assault crimes, outlined in Figure 8 (a), the paths from 

readiness to delinquency, and from prosperity to delinquency have negative signs in contrast to the 

burglary case. Essentially, we can infer that assaults are less likely to happen in areas of increased 

resident wealth and increased readiness. Panel (b) of Figure 8 depicts the inner model and path estimates 

for motor vehicle thefts. It states that especially public presence hinders delinquents from stealing cars 

in the close vicinity. Furthermore, cars are less likely to be stolen in areas of high prosperity. A possible 

explanation is that cars from residents with higher income—as such, probably more expensive cars—

are rather not stolen when parked near their owners’ homes. Such crime-specific dependencies are 
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observed for all analyzed crime types and they unveil relations among the latent nodes that are perceived 

to be reasonable. Based on these insights, we proceed to the next step and attempt to predict the 

emergence of different crimes. 

  
(a) Assault (b) Motor Vehicle Theft 

Figure 8. Inner model evaluation of assault and motor vehicle theft 

6 Crime Prediction using Latent Structures 

As the final step of our analysis, we now attempt to predict crimes solely based on the four identified 

latent structures prosperity, presence, opportunity, and readiness. For our predictive approach, we split 

our data set into a training set and a test set at ratio 7:3. Since our data consists of spatial observations, 

we have to permute all observations prior to selecting 70 per cent for the training set. Otherwise, we 

would not dissolve the spatial correspondence and therefore would predict data at geographical spots 

without having used their vicinity for training. With training and test sets at hand, we perform a regular 

OLS regression using our four latent measures and linearly calculate the prediction for our test set. 

Figure 9 shows two plots that delineate the prediction accuracy and offset density. In panel (a), the actual 

crime observations are compared to the calculated prediction. We can clearly see the linear dependency, 

which states that our prediction is quite accurate. At the same time, the contained heteroskedasticity is 

obvious, which means that our prediction gets increasingly imprecise where more crimes are likely to 

happen. The prediction deviation density is depicted in panel (b). It shows a symmetrical distribution, 

effectively stating that the prediction does not tend towards over- or underestimation. Overall, the mean 

squared error of 0.0209 means that we miss the perfect prediction by 0.145 crimes on an average. 

  
(a) Prediction accuracy (b) CDF for prediction deviation 

Figure 9. Inner model evaluation of assault and motor vehicle theft 

The obvious heteroscedasticity of the prediction is confirmed by a Breusch-Pagan test. Consequently, 

the regression coefficients require for correction to remain interpretable. The OLS coefficients of the 

training regression using our four latent structures are outlined in Table 2 with their t-values already 
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corrected for heteroscedasticity. The correction procedure reduces the t-values, but all estimates remain 

significant on a 0.001 level and thus their explanatory and predictive power is maintained. All in all, 

predicting criminal activity from environmental characteristics works exceptionally well, independently 

from the certain type of delinquency. 

 Estimate Std. Error t-value Pr(>|t|)  

(Intercept) 3.97 E+00 1.91 E–01 20.73 <2 E–16 *** 

Presence 1.02 E –02 1.32 E–04 77.04 <2 E–16 *** 

Prosperity 9.40 E –05 2.03 E–06 46.41 <2 E–16 *** 

Opportunity 3.52 E –01 4.80 E–03 73.34 <2 E–16 *** 

Readiness 2.07 E+00 1.40 E–01 14.85 <2 E–16 *** 

Adj. R² 0.7815     

Coefficients based on 19094 degrees of freedom. Significance codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 

Table 2. OLS regression results for burglary crimes. 

7 Concluding Remarks 

The regression results outlined in Table 5 unveil that the four latent structures have a different impact 

when examining spatial characteristics of crime. Following their t-values, presence and opportunity are 

most valuable. In terms of expressive power, prosperity is the follow-up and readiness is least valuable. 

In order to assess their respective explanatory potentials, we discuss their interplay and attempt to 

interpret the observed effects. 

From the inner path model, we are aware that presence has a significantly high impact on opportunity 

in general. Thus, we can interpret the public presence to reflect one facet of opportunity. Nonetheless, 

it may have a varying impact depending on the certain crime type and in turn is better employed as a 

separate measure. Prosperity as a measure that reflects the wealth of residents may be a driving factor 

for crimes that are aimed against the property of others. Hence, its impact is highest when exploring the 

emergence of, for instance, burglary, vehicle break-in/theft, or motor vehicle theft. Opportunity is highly 

valuable for any kind of criminal activity, most likely because it reflects the physical structure of the 

city as no other measure can. It accounts for spatial distribution and density of points of interest and 

therefore at the same time reflects the natural structure of urban regions. Finally, readiness represents 

the structural, educational, and financial situation of inhabitants by region. As such, it has no answer to 

questions concerning the delinquent if he does not reside where the crime was committed and recorded. 

We can suspect that, with some exceptions, most criminals do not commit purposeful crime in very 

close vicinity of their homes. This assumption is in line with Canter and Larkin (1993). The authors 

distinguish between commuter and marauder behavior using sex crimes as an example. Following a 

commuter behavior, delinquents select a promising area for their crimes and return regularly for further 

activity. In contrast, the marauder behavior means to search for targets around—but not too close to—

the own location. Depending on the crime type, we may observe one or the other, essentially rendering 

readiness useful or not. Being subject to such uncertainty and at the same time being employed in many 

studies nonetheless, we have to ask whether readiness is valuable for spatial explanation or prediction 

of criminal activity at all. As a final addition, nothing can reflect crimes that are committed in the heat 

of the moment. 

In future research, we plan to compare our findings to insights from other cities across the world. 

Furthermore, we want to test the applicability of our proposed methodology on spatial observations 

other than crimes. Many spatial observations would be appropriate that include human activity and 

behavioral patterns in urban regions. In case it turns out to be valuable for a broader domain, it paves 

the way for deeper analyses and valuable insights for many businesses, local authorities, and 

governments. Moreover, IS research in general can provide valuable insights in this field resulting from 

combinations of novel big data approaches and behavioral as well as sociological considerations. 
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