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Abstract

With the development of Web technology, the Micro-Blog has become one of the most popular social
platforms, and calculating and ranking the influences of the users on Micro-Blogs has been issuing an
important research problem. Through improving the traditional the PageRank model, this paper
presents a called PR4AMB (PageRank for Micro-Blog) algorithm, which can obviously improve mining
precisions for evaluating user influences on a Micro-Blog. While considering user link relations like
the PageRank method, the PR4MB algorithm also takes attention to the activity, quality and credibility
of a user on a Micro-Blog, so it constructs a dynamic mining model for user influences on a Micro-
Blog by evaluation user online behaviors. The experimental results show that PR4AMB algorithm, in
comparing with the traditional PageRank algorithm, can more truly reflects the actual influences of
different users on a Micro-Blog.

Keywords: PageRank, User influence, Micro-Blog, Twitter, Ming algorithm.



1 INTRODUCTION

With the advent of the era of big data and the application of Web 2.0 technology, online social
network has been developed rapidly. As a kind of important social platforms, the Micro-Blog (Wei-Bo)
has become an important carrier of public opinion in different aspects, such as society, politics , lives
and so on. Twitter, where is one of the most popular blogging platforms in the word. According to
statistics, up to July 2014, Twitter's active registered users have exceeded 600 million, and the daily
average number of new users is 135000. However, the influences of the blog users on a Micro-Blog
are very different, so evaluating and ranking the blog users is an important issue. The influence of a
user on a Micro-Blog is related to many factors, including not only link relations to other users but
also its online behaviours such as its activity, credibility and the quantity and quality of its blog posts.

The PageRank mode (Page et al, 1999) was proposed by Larry Page and Sergey Brin, the two
founders of Google. The original cause of the model is to achieve the web page ranking, which has
been an important ingredient in the ranking of search results used by Google. However, it has been
explored for analyzing social networks in recent years (Tunkelang et al, 2009). In fact, the PageRank
model is essentially a computing technology for directed graph's node level, so it is nature to apply to
the influence of users on Micro-Blogs.

In 2009, Tunkelang et al. constructed a link-based directed graph and used the PageRank model to
achieve the Twitter user's influence ranking (Tunkelang et al, 2009). In 2010, Weng et al also
successfully created a good-friend relationship graph from Twitter, and proposed an algorithm called
TwitterRank by making use of the PageRank model (Weng et al, 2010). In 2011, Weng et al improved
its TwitterRank algorithm that added user interests to the evaluation system, which can better realize
the analysis of user influence in a specific topic discussion (Weng et al, 2011).

Recently, there are three main topics have been greatly concerned in mining user influences on Micro-
Blogs:

(1) The analysis of interaction behaviors in Micro-Blog users, where social network always takes a
special focus (Yin et al, 2014; Kempe et al, 2003).

(2) Using the theory of information dissemination to study the dynamic behaviors of the network in
the Micro-Blog in order to find the key users (Xiong, 2014).

(3) Conducting the data analysis models from the view of data mining, and find the implicit
interaction rules or user behaviors in the Micro-Blog (Deng et al, 2014; Noordhuis, 2010).

These studies have a core technical support, that is, directed graph analysis. Generally, the users in a
Micro-Blog are always as the nodes of a directed graph, and their social relations or the spreads of
blog posts can been converted into the arcs of the directed graph. Therefore, in this sense, the
PageRank model can be used to calculate user influences of the Micro-Blog.

Based on the PageRank model, the technical solution of this paper is simply described as follows: First,
using the social network concepts and its analysis tools, an directed graph , the logical analysis space
of a Micro-Blog, is built; Then, the influence factors of the user behaviors caused by the blog
communication are analyzed, a integrative evaluation model of the user weightiness is constructed,
Finally, through improving the process of the traditional PageRank algorithm, a dynamic mining
algorithm for calculating the user influences on the Micro-Blog is designed.

2 PRELIMINARIES TO THE PAGERANK MODEL

As is known, the original PageRank model is proposed to evaluate the importance of web pages in a
web site. Simply said, the PageRank model employs such an idea that a web page is more important if
more other web pages link to it. Further, within the PageRank concept, the rank of a page is related to



all pages that link to it, so the rank of a page is always determined recursively by the ranks of those
pages that link to it.

Definition 1 (Rank of Page). Given a directed graph G=<V, A> related to a Web site. The rank of a
page U (¢ G) can be calculated as follows:

PRU)=(1-d)+d Z»POR&) "

Where:
® PR(U) is the page U’s rank value;

® | (U)is the set of these pages that link to U, i.e. any V € I(U), <V,U> € A;

® O(V) is the number of outbound links from page V;
® d is a damping factor which can be set between 0 and 1.

According to Definition 1, the rank of a page V impacts on its inbound page U by weighting rank that
divides its original rank PR(V) by the number of outbound links O(V) of page V. This means that the more
outbound links a page V has, the less will page U benefit from page V. Thereby, the rank of a page can be
inferred from the weighted ranks that all link to it. Node that Formula (1) is called Random Surfer Model
(Rogers, 2002), as it uses damping factor d. Such, even if a page has no inbound page, it can still be jumped
into with probability (1-d), which can be effectively avoid stopping calculating on the way.

In fact, Formula (1) is a foundational description for calculating the page ranks in a Web site, there have
been some computable algorithms to appear, where one of the most popular ways is based on the Transition
Probability Matrix that is called the Google Matrix such that it is used in the Google search engine (Lin,
2009).

Definition 2 (Google Matrix). Given a directed graph G=<V, A>, its Google Matrix M= (m;;), where m;; is
the probability of page j jump to the page i. That is, for i, jE€ G, the Google Matrix related to the directed
graph G can be set as follows:

1/0()), when< j,i>e A
mi i = i ’ (2)
0. otherwise

Where O(j) is the number of outbound pages of j.

For example, for the directed graph shown in Figure 1, its Google Matrix can be obtained by Formula (2).
Figure 2 gives such a Google matrix M.

_________
- .,

Figure 1. A directed graph for page links
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1/3 1/2 0 0
/3 0 1 0

Figure 2. The Google Matrix of Figure 1

As a matter of fact, the ranks of all Web pages in Google engine are iteratively updating until they are
stable. Therefore, calculating Rank Vectors is the main task of the PageRank model.

Definition 3 (Rank Vector). Given a directed graph G and its Google Matrix M, and set R= (ry, Iy,... , )"
is the vector that comprises of all ranks of the pages in G, where n is the number of nodes in G. Then, the
rank vector can be iteratively updated step by step until it is stable to a suitable value, by the following
Formula (3) .

R, =@1-d)*@1..)" +d*M*R, ®)
3 PR4AMB: PAGERANK FOR MICRO-BLOGS

The traditional PageRank model can help evaluating the influences of Micro-Blog users, but its
effectiveness has been questioned (Tunkelan, 2009; Weng, 2010). For example, the traditional
PageRank model only considers link relations, and it is actually supposed the same importance of all
users. However, in a Micro-Blog, users are playing different roles. Therefore, we should take more
attentions to user characters such as user activities and confidences.

All of first, the user activity can be considered as one of the important factors to the user influences.
Generally, the more blogs a user publishes, the more activity this user has in the Micro-Blog, so a
typical measure for calculating a user active degree can be described as Definition 4.

Definition 4 (User Activity). Given a user i in the investigated Micro-Blog, its activity can be
calculated as follows:

Activity (i) =n, /N » (4)

Where n; is the number of blogs that user i publishes, and N is the number of all users write on this
Micro-Blog.

In addition, the user activity only reflects the blog quantities of a user but ignoring its blog qualities, so
it should be necessary to evaluate the blog quality of a user in order to enhance its effectiveness (Yin,
2011). In general, the qualities of the blogs are directly related to the subject of the observation. For
example, if we observe the social problems or issues, then the users who pay greater attentions to these
topics should be evaluated into a higher level. On the contrary, these users whose interests in other
topics such as commodity sales should be given in a lower level. Following this idea, the following
Definition 5 presents a simple evaluating method of the user qualities on a Micro-Blog.

Definition 5 (User Quality). Given a user i and the concerned topic T in the investigated Micro-Blog,
its quality can be calculated as follows:

Quality(iy=m, /M, (%)

Where m; is the number of blogs related to T that User i publishes, and M; is the number of all blogs
that User i write in the Micro-Blog.



There is another factor can also reflect a user influence to a great extent, which is its credibility. For
example, people are used to believe what the authorities or truepennies say, and it is also so in
theMicro-Blog word. In fact, this is a difficult job because the authority of a user can be related to
many factors. However, as a Micro-Blogging platform often provide the certification mechanism, so a
simple and effective method is just making use of these certifications. Definition 6 gives a simple
evaluating method of a user credibility on a Micro-Blog.

Definition 6 (User Credibility). Given a user i in the investigated Micro-Blog, its credibility can be
calculated as follows:

e 1/0(i),when user i is centified
Credibility (i) = { 0 otherwise .6

Where O(i) is the number of outbound users of User i.

In fact, there have been some discussions in adding the other criteria beyond the link structure of users
on the Micro-Blogs (Java et al, 2006; Cha et al, 2010), which can enhance the effectiveness of
evaluating the user ranks. Therefore, we will modify the user weightiness before running the
PageRank algorithm.

Definition 7 (User Weightiness). Given a user i in the investigated Micro-Blog, its weightiness can
be calculated as follows:

w(i) = Activity (i) + Quality(i) + Credibility(i)* (")

Where Activity(i), Quality(i) and Credibility(i) respectively represent activity, quality and credibility
of User i that have been calculated by Definition 4 to 6.

Now, we can discuss the problem of improving the original PageRank model in order to mine the user
influences on a Micro-Blog. A basic idea is just modifying the PageRank model by using the user
weightiness settings.

Definition 8 (Weighted Google Matrix). Given a directed graph G=<V, A>, its Weighted Google
Matrix P= (p;;) , where pj; is calculated as follows:

{w(i)/O(j), when< j,i>e A
i = .

0. otherwise ®)
Where O(j) is the number of outbound nodes of j.

Obviously, pi; in Definition 8 is the value m;; in Definition 2 multiples by the user weightiness w(i), so
a Weighted Google Matrix consider more factors than link structure of users, including of user activity,
quality and credibility.Continuing to doing analyzing for Figure 1, if we have obtained the evaluation
parameters of each node: w(A)=1.2, w(B)=0.2, w(C)=0.8 and w(D)=0.1, then the corresponding
Weighted Google Matrix P can be obtained as shown in Figure 3.

0O 06 0 06
007 0 0 01

1027 04 0 0
003 0 01 0

Figure 3. The Weighted Google Matrix for Figure 1



Using Weighted Google Matrix, the PageRank model can be modified, and become a novel mining
model for Micro-Blog. Algorithm PR4MB in the following describes the main processing courses
based on such an improving PageRank model.

Algorithm PR4MB (PageRank for Micro-Blog)
Input: Micro-blog user social network graph G; damping coefficient d; iteration termination

condition &.

Output: The influence vector of user node R.
Process:

1. Calculate the Google Matrix of G : M=(m;;);

2. FORi G DO

3. Calculate Activity(i), Quality(i), Credibility(i) by Definition 4~5;

4. w(i)= Activity(i)+Quality(i)+ Credibility(i);

5. ENDFOR

6. FORieG DO

7. FORj&EGDO

8. Pij = W(i)* mij;

9. P=(pij);

11.Ry=1;

12.REPEAT

13.  R=(-d)*1+d*P *Ry

14. Ry=R;

15.Until ||R- Ro|[< €;
16.Return R as the final influence vector.

In Algorithm PR4MB, Step 1 is to generate the Google Matrix M like to do in the traditional Page
Rank algorithm; Step 2~5 calculate user weightiness through evaluating the user's activity, quality and
credibility; Step 6~9 generate the Weighted Google Matrix P; Step 10~15 iteratively produce the rank
vectors, and it is sopped when two rank vectors is rather closed.

4 EXPERIMENT AND ANALYSIS

The experimental data comes from the Twitter, a popular social website. We use API got data from
Twitter for nearly 5 years, then selected 3049 blog users to generate the social networks by the Gephi
tool. Though 3049 users are only a small part of the total Twitter users, but the relationship of these
users is relatively complete, so we can use them to test the effectiveness of our algorithm in this paper.

No. Blog Name Certified | Blog No. | Follower No. | Friends No.

1 Oasis Feng 0 6568 2293 86

2 Stephen Colbert 1 3532 7570195 1

3 Bill Clinton 1 278 3117936 10

4 Fenng 0 28778 81452 3485

5 Google 1 6179 10397244 433

6 Bill Gates 1 1578 20692667 166

7 Kai-Fu Lee 1 1197 1303670 142

8 Chris Hadfield 1 7499 1297021 66

9 Barack Obama 1 13235 56418972 644143
10 NASA 1 35883 9206040 231

Table 1. The top ten users information table calculate by Traditional PageRank algorithm



NO. Blog Name Certified | Blog No. Follower No. Friends No.
1 Huffington Post 1 393378 5425645 5567
2 BBC News (UK) 1 247665 3812666 104
3 BBC News (World) 1 195627 9221709 61
4 The New York Times 1 172389 15720420 984
5 Washington Post 1 131347 4154603 1164
6 Wall Street Journal 1 112394 5994789 1008
7 The Associated Press 1 102580 4883727 7339
8 NASA 1 35883 9206040 231
9 NYT Opinion 1 40129 149632 1401
10 Chris Hadfield 1 7499 1297021 66

Table 2. The top ten users information table calculate by PR4MB algorithm

Table 1 and table 2 respectively give the Top 10 users and their corresponding situations found by the
traditional PageRank and the PR4MB algorithm, where the topic is about social issues for PRAMB.

As stated in Table 1 and 2, on the same data set, the mining results between the traditional PageRank
algorithm and the PR4MB algorithm are very different. Though we can't still ensure to say which is
better by them, some of the problems in Table 1 can be found by analysis as follows:

(1) Intable 1, Oasis Feng is thought out the 1st important user, who is not only a non-certified user
but also has 6568 blogs which is not much more than others. Through further tracking calculating
process by the traditional PageRank algorithm, we found two main reasons that result in it: the
first is that the followers of Oasis Feng have higher ranks; the second is that he has less links into
others. Such, he gets more but sends less. However, its irrationality is obvious for such a Micro-
Blog.

(2) Intable 1, the ranked fourth is also a non-certified user and with a less followers than the ranked
5" to 10™. Such a situation is questionable. The reason is that Fenng is famous IT reviewers,
whose blog posts are mostly about IT technical discussions, which has greater authority in IT
field. However he does pay more attentions to the social topics. Therefore, this exposes the defect
that the traditional PageRank algorithm cannot well reflect the user differences and their biases.

In comparison, PR4MB algorithm consider the activity, quality and credibility of a user before
interactively the user rank, which makes the user influence evaluating in an integrated and topic-
oriented way. As shown in Table 2, the top 10 users are found out by PR4MB should be more closed
to the real word on Twitter. They are all certified users as well as with enough posts, followers and
friends. In addition, in order to assess the quality of the articles, we put the theme in social issues, so
the PR4MB algorithm got the first ten users that are mostly the news media with official certifications
which should have greater authoritativeness.

In addition, we also tested the execution time changes in the traditional PageRank and PR4AMB
algorithms with different numbers of users. The experimental data were obtained from the Twitter
platform, which has 3049 users to form a social network. In order to track their time consumptions
with different numbers of users in the traditional PageRank and PR4MB algorithms, we segment it
into a few of different sub-graphs that respectively include 500, 1000, 1500, 2000 and 2500 users. The
experiments was implement in a computer with quad-core CPU, 4G memory and Win 7 operating
environment. Figure 4 gives the corresponding experimental results.
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Figure 4. Time comparison between PR4MB and PageRank algorithms

Figure 4 shows that the execution time of the PR4MB algorithm is slightly higher than the PageRank
algorithm doing in the same data capacity. This is because compared to the traditional PageRank
algorithm, the PR4MB algorithm needs to calculate the user's weightiness values in advance. However,
as far as the time consumptions of the two algorithms in the same data capacity are concerned, their
gap is not very large, and with the increase of the data capacity (number of users), the time rinsing
trends are similar that are very much smaller than the linear growth rate. Therefore, the PR4AMB
algorithm is a higher cost-effective algorithm for the mining Micro-Blogs, since it can get higher
analyzing result with a very less time increasing scale than the PageRank algorithm doing.

5 CONCLUSION

In this paper, a new weighted PageRank algorithm, called PR4MB, is proposed, which is more
suitable for mining Micro-Blogs than the traditional PageRank model. The PR4MB algorithm
considers dynamically online behaviours of users as well as links of users, so it can make the mining
results more objective and accurate. By computing the activity, quality and credibility of a user, its
online behaviours can be measured and the weights of the users are obtained, and so the Google
Matrix of the traditional PageRank model is modified into the Weighted Google Matrix. Experimental
results show that, compared to the traditional PageRank algorithm, the PR4MB algorithm can get
more accurate evaluation results on Twitter with a lighter time cost.
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