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Abstract 

Prosocial crowdfunding, such as Kiva, puzzles researchers regarding what motivates online peers to 

lend for free, and how voluntary online participation could be organized to create great social goods. 

A common practice of prosocial lending websites is to enable self-organizing teams. In this paper, we 

are interested in the impact of team ranking, and thus team reputation on its lending performance. 

Contradicting predictions could be derived depending on the theoretical lenses. While social identity 

theory suggests that better ranking strengthens individual identification and promotes lending 

participation; economic theory on public goods indicates that good ranking may trigger a crowd-out 

effect. To empirically explore the relationship between team ranking and team performance, we 

collected data from Kiva, the largest prosocial crowdfunding platform. Kiva enables lenders to form 

teams, and teams are ranked monthly on both lending performance and member recruitment. Our data 

analysis suggests that appearance on the top ranking list leads to a reduction in future team lending 

indicating that good team-rank triggers the crowd-out effect. Meanwhile, salience on the member 

recruitment list does not show any significant impact on lending performance. Our finding suggests 

that team reputation may not promote identification in this context. 

 

Keywords: Prosocial Lending, Crowdfunding, Lending Team, Team Ranking, Reputation, Group 

Identity, Public Goods 

 



 

 

1 INTRODUCTION 

Crowdfunding has emerged as a new way of financing. According to the Crowdfunding Industry 

Report, the market achieved an annual growth rate of 167% in 2014.1 A variety of crowdfunding 

platforms raise funds for different purposes such as personal financial needs, business ventures, 

creative projects, or charity. While some of these platforms provide profitable investment 

opportunities, such as P2P lending platforms and equity-based crowdfunding, others are dedicated to 

funding creative, culture, or philanthropic projects in the form of donations (Belleflamme and Lambert 

2014; Burtch et al. 2014; Lin and Viswanathan 2015). Funders on donation-based crowdfunding 

platforms require no explicit financial rewards (Burtch et al. 2013).  

Kiva (www.kiva.org) is one of the earliest and the most successful crowdfunding platform. Launched 

in 2005, it now serves low-income entrepreneurs in 83 countries to alleviate poverty with prosocial, 

interest-free loans from lenders all over the world. Kiva lenders do not collect interest and have little 

protection for loan defaults. They are motivated by prosocial and altruistic incentives rather than 

reciprocity (Burtch et al. 2013).  

To enhance social interaction between lenders and strengthen philanthropic behavior, Kiva enables 

lenders to form self-organized teams. Teams may be created on different bases, such as common 

interests, shared beliefs, and similar social affiliations. Lenders can join multiple teams, and they can 

attribute their loans to their teams, which will be counted as the team’s lending performance.  Kiva 

ranks teams regarding the funding performance and new member recruitment. Top-ranked teams are 

shown on the team Team Leaderboards with Leader Tags attached to the teams’ profile pages (Figure 

1). Team ranking creates a team-based reputation system. Given the voluntary nature of lending 

participation and the loans are without credit assurance and bears no interest, team and team reputation 

is a critical mechanism to organize and motivate prosocial lending on Kiva. However, it is not clear 

whether and how self-organized teams were able to leverage its reputation to maintain and enhance 

member participation. Specifically, when people observe their teams on the Team Leaderboards, 

would they feel more motivated and thus lend more? In this paper, we empirically investigate the 

impact of team ranking (reputation) on team lending performance using data collected from Kiva. 

Reputation has been recognized and studied as an important motivation for prosocial behavior in the 

economic literature in public goods provision (e.g., Harbaugh 1998; Bénabou and Tirole 2006; Ariely 

et al. 2009). In the information systems literature, the effect of online reputation has been studied in 

different contexts where voluntary participation presents (Resnick et al. 2000; Lerner and Tirole 2002; 

Pavlou and Gefen 2004; Roberts et al. 2006; Shen et al. 2015). For instance, Lerner and Tirole (2002) 

illustrated that reputation is an important motive for developers to make contributions to open source 

software projects in the absence of monetary incentives. It was shown that contribution-based 

reputation positively related to the success of open source projects (Daniel et al. 2013). In online 

communities, Pavlon and Gefen (2004) suggested that positive reputation motivates people to 

maintain continuous contributions. In the context of user-generated online reviews, Shen et al. (2015) 

showed that users react to reputation systems and make contributions strategically to build and 

maintain a good reputation. Specifically, comparing with users on review websites without ranking 

systems, reviewers on websites with such systems are more likely to avoid reviewing crowed items. 

There, however, has been little discussion on the team-based reputation system and team performance. 

Team-based organization introduces additional layers to individual motivation. It has repeatedly been 

demonstrated that people behave differently when acting in a team (Heap and Zizzo 2009; Tan and 

Bolle 2007). For example, Charness et al. (2007) showed that salient group membership significantly 

affects the perception of the environment. In the economic literature, Akerlof and Kranton (2000) 

                                              
1 2015CF Crowdfunding industry report. http://reports.crowdsourcing.org/index.php?route=product/product&product_id=54 



 

 

proposed that group identity should be considered as a component of the utility function. They show 

that group identity leads to distinctive model predictions in the situations as gender discrimination in 

the workplace and household labor division. 

 

 

Figure 1. The Team Page, LeaderBoards, and LeaderTags on Kiva 

 

Theoretically, team-based organization and reputation mechanism introduce additional factors that call 

on different theoretical lenses. First, belonging to a team creates virtual social identities. Social 

identity theory suggests that when individuals identify with the team, they consider themselves as a 

part of a team, and behave consistently with the identity (Shih et al. 1999; Benjamin et al. 2007). 

Being part of a reputable team strengthen identification and motivate members to participate and 

enhance team lending performance. Second, team reputation and team performance are collective 

outcomes. While each member may value good team reputation, the production of good team 

performance depends on others’ lending participation. From the perspective of public goods 

economics, good team reputation may serve as an indication that other members of the team are 

making significant efforts, which gives the incentive for individual members to reduce contribution 

and free-ride. In other words, team reputation may trigger a “crowd-out” effect. From this perspective, 

ranking high may lead to worse team performance.  

Given the contradictory theoretical predictions and the research gap in our understanding of team 

organization and reputation systems in the context of prosocial crowdfunding, we empirically study 

the impact of team ranking on team lending performance with data collected from Kiva. Our 

preliminary results suggest that appearance on the Team Leaderboards (and the presence of Leader 

Tags) regarding lending performance leads to a reduction in subsequent team lending, which 

demonstrates a significant crowd-out effect of team reputation in the focal context. Meanwhile, we fail 

to find any significant impact of the appearance of the Team Leaderboards regarding member 

recruitment, suggesting an insignificant identity effect. 

This research makes several contributions to the IS literature on crowdfunding. First, to the best of our 

knowledge, this research is among the first to examine the impact of team level reputation mechanism 

on prosocial lending behavior while the previous discussion on reputation mechanism focuses on the 

individual level. Second, this research adds to growing literature on crowdfunding participation. 



 

 

Researchers have identified various factors that affect individuals’ funding decisions (Agrawal et al. 

2015; Lin et al. 2013; Zhang and Liu 2012; Gerber and Hui 2013; Bretschneider et al. 2014). 

Specifically, a few recent studies investigated what motivate prosocial lending behavior. For example, 

Burtch et al. (2014) documented the impact of geographic distance and cultural differences and 

showed that lenders prefer to lend to borrowers who have similar culture and proximate geographical 

location. Galsk et al. (2011) shown that lenders on Kiva showed a preference for individual borrowers 

over groups of borrowers, which is consistent with the identified victim effect. Heller and Badding 

(2012) demonstrate that lenders are selective on borrowers’ demographic characteristics and the 

proposed uses of funds. Adding to this line of research, the current study demonstrates the impact of 

team reputation. Third, this research broadly contributes to the literature on group-based incentive in 

online voluntary participation by generating interesting empirical observations in a new context (e.g., 

Zhang and Zhu 2011). 

The rest of the paper is organized as follows. Section 2 introduce our research context and discusses 

the team reputation mechanism. A brief theoretical discussion is carried out in Section 3. Section 4 

reports on our empirical study and results. Section 5 concludes and introduce the plan for follow-up 

studies. 

2 RESEARCH CONTEXT 

Kiva is an online crowdfunding platform created for the purpose of poverty alleviation. It serves as a 

platform for people to help others (poor people) to gain access to funds to start their small or micro 

projects to improve living standards. Since its inception, the idea of an online platform for poverty 

alleviation through crowdfunding has been echoed by individuals and organizations. Through 

collaboration with local partners (typically microfinance institutions), Kiva gradually expanded its 

reach globally. To date, More than two million users have joined to support projective on Kiva, and 

over 800 million loans have been made on the platform.  

Lending on Kiva, while being in the form of loans, is of prosocial nature. Lenders receive no interest 

on their loans, and they lose the principal when borrowers default. Kiva charges no fees for its services, 

and promises that money from lenders will all be transferred to borrowers. Although loans are made 

on a project base and repayment is expected, lenders usually continue to support more projects with 

returned principals.  

2.1 Kiva Teams and Ranking 

Kiva lenders build self-organized teams around their common interest, belief, affiliation or location. 

The platform classifies teams into 17 different categories (e.g., alumni, business, common interest, and 

schools). The team founders may invite other lenders to join a team. Lenders may join one or more 

teams that are by their interests, beliefs or identities. A lender may attribute her loans to any of her 

teams. All attributed loans from the members of a team count as the team’s lending performance (total 

amount loaned).  

Kiva has a team-based reputation system. It ranks the teams periodically (monthly) based on two 

performance indicators: total amount loaned (lending performance) and the number of new members 

(member recruitment). For each indicator, three top-ten lists are published, namely, all-time, last 

month, and this month. The top-ten lists across all the teams and within each category are shown on 

the team front page. On each team’s homepage, the ranking position of the focal team is presented 

saliently as leader tags once the team made the top-ten list (Figure 1). For example, if a team ranked 

number two (in the top ten) within its category regarding the lending performance last month, a tag 

“#2 for Amount Loaned (Last Month)” is shown on the team’s profile page. Only teams with top-ten 

performance in either lending performance or member recruitment will be shown on the team front 



 

 

page and awarded with leader tags. With team and reputation features, Kiva is an ideal setting for 

studying the impact of team reputation on team lending performance.2 

3 THEORETICAL DISCUSSION  

Research on prosocial behavior has shown that reputation and thus reputation system has a significant 

impact on individual behavior (e.g., Resnick et al. 2000; Lerner and Tirole 2002; Pavlou and Gefen 

2004; Roberts et al. 2006; Shen et al. 2015). Team-based organization adds layers to individual 

motivation systems. We discuss the impact of team reputation on team performance from two 

theoretical perspectives, social identity theory and economics theory on public goods provision.  

Social identity refers to a person’s self-perception derived from being a member of a social group 

(Tajfel 1974). Social identity theory points out that self-perception as a group member is an important 

source of self-esteem and pride. As a result, individuals will try to strengthen the status of the group or 

discriminate other groups to increase group identity and image (Tajfel and Turner 1979). When people 

consider themselves as one of a group, the self-esteem derives from the membership of the group 

makes them behave more consistent with the group identity to maintain the group status and image 

(Shih et al. 1999; Benjamin et al. 2007). By voluntarily joining a team, Kiva lenders associate 

themselves with a team and take upon the team identity. They would behave by the teams’ identity and 

aim. When the team has a good reputation in lending or recruiting (appearing on the top-ten lists), the 

members would feel stronger identification with the team, behave more consistently with the team’s 

objective and contribution more enthusiastically to the team. It is thus expected that members of 

reputable teams tend to show intensified lending behavior, which in turn strengthen the subsequent 

team performance. In other words, team-based reputation enables a positive feedback loop by creating 

enhanced team identification and good team reputation (high ranking) has a positive impact on lending 

performance.  

Discussion on the economics of public goods provision focuses on how rational individual act when 

making contributions to public goods. An important insight in this research stream is that individual 

tends to free-ride on others’ contribution, which leads to a crowd-out effect. In other words, when 

others increase their contributions, the supply of public goods increases and lead to the decrease of 

individual’s marginal benefit from making a contribution. As a result, each will choose to decrease his 

or her contribution to the public goods (e.g., Andreoni 1990). Although it has been proposed that 

warm glow motivation may alleviate the extent of crowd-out effect in private provision of public 

goods, partial crowd-out may nevertheless result (Andreoni 1989; Andreoni 1990). In our context, 

while each member of the team cares about team reputation, the creation of good reputation depends 

on all team members’ contribution. Team reputation, different from individual reputation, could be 

viewed as a public good. When the team makes to the top-ten list, members are signaled that other 

team members are making significant contributions. Realizing the superior of reputation has been 

achieved, the marginal utility that lenders gain from making an additional contribution to the team is 

decreased. From this perspective, good team ranking may lead to decrease in member contribution.  

The above discussion leads to distinct predictions on the impact of team reputation on team lending 

performance. In the following, we report an empirical study using data collected from Kiva, offering 

evidence regarding which theoretical mechanism has a more salient impact. 

                                              
2 In our empirical analysis, we use category-level ranking in the last month as team reputation factor as we believe category 

individual users will take category level heterogeneity into consideration when evaluate ranking as reputation. 



 

 

4 EMPIRICAL ANALYSIS 

4.1 Data 

Our study is based on observational data collected from Kiva.org. The dataset includes both a full site 

snapshot data set collected on the September 18th, 2015 and a weekly panel data set covering eight 

weeks from October 21st to December 9th, 2015.  

The full site data set contains all the loans and teams since the launch of Kiva in 2005. There are in 

total 844,073 loans and 37,975 teams. We also collected weekly data from October 21st to December 

9th, 2015 (8 weeks) to track real-time changes in ranking and team performance. Once a week, we 

obtained data on all loans listed during this period, each week’s ranking lists (category level rankings) 

and team performance (total amount loaned and the number of new members). The 8-week data 

recorded 6,031 active teams (defined as at least one member contributed to one loan during the data 

collection period). Among them, 673 teams made to at least one of the top-ten lists in same category 

teams during the eight week period. As team reputation is reflected in these top-ten ranking lists in our 

context, we focused on these 673 teams in the preliminary analysis. For each team, we collect weekly 

data of their ranking positions, total amount loaned as well as team features such as starting date. For 

each loan, our data include the listing date and the size of the loan. With the weekly data, we can build 

panel data by team and week and track the dynamic performance of the teams. 

4.2 Empirical Model and Results 

The study aims to investigate the impact of team reputation on team performance of prosocial lending. 

For the dependent variable, team performance, we use amount loaned by the team every week. The 

weekly amount loaned is calculated as the difference between the amount loaned of two adjacent 

weeks. The independent variable of interest, team reputation is measured with a dummy variable: 

whether the team is on the top-ten list or not (within same category teams). It can be referred from the 

ranking position information on each team’s homepage. To ensure the temporal sequence in a causal 

relationship, we use team reputation achieved in the last month to explain team lending performance in 

weeks in the following month. Control variables include both team and site-level factors. For each 

team, we control the tenure of the team on Kiva, calculated based on the starting date of the team. As 

projects available for funding may change from week to week and thus affect amount loaned, we 

control for the number and average size of projects listed on Kiva every week.  

Our empirical model is as follows: 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑖𝑡 = 𝑅𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑖𝑡 + 𝐴𝑔𝑒𝑖𝑡 + 𝑁𝑢𝑚𝐿𝑖𝑠𝑡𝑒𝑑𝑖𝑡 + 𝐴𝑣𝑔𝑆𝑖𝑧𝑒𝑖𝑡 + 𝑢𝑖 + 𝜀𝑖𝑡 

where i represents the teams and t indicates the time periods. ui represents team fixed effect to control 

for unobserved team-level heterogeneity, such as team category, team size. Performanceit is the log of 

the amount loaned by team i in week t. Reputationit is the reputation indicator, whether team i is on 

Last Month top-ten list of the same category teams at the beginning of week t, one for yes and zero 

otherwise. The list can be either for amount loaned or the number of new members. Ageit measures the 

number of weeks of team i’s existence on Kiva from the starting date until the beginning of week t. 

𝑁𝑢𝑚𝐿𝑖𝑠𝑡𝑒𝑑t and 𝐴𝑣𝑔𝑆𝑖𝑧𝑒𝑡 refer to the number and averages size of projects listed in week t. We also 

controlled for week-of-month fixed effect. 

Table 1 reports the descriptive statistics of the variables. The average weekly amount loaned is $4,128 

with relatively large standard deviation, indicating the distribution is skewed. We thus take the log of 

this variable in our estimation. In our sample, the average team age is 251 weeks, almost five years. 

There are on average 2,202 projects listed on Kiva per week, and the average size of projects listed is 

910 USD. 

 



 

 

 

Variable N Mean Std. Dev. Min Max 

Amount Loaned 4,711 4,128 25,344 0 684,250 

Last Month Ranking (New Member) 4,711 0.156 0.363 0 1 

Last Month Ranking (Amount) 4,711 0.222 0.416 0 1 

Team Age (Weeks) 4,711 251 126 0 381 

Number of Project Listed on Kiva 4,711 2,202 310 1,938 2,851 

Average Size of Listed projects 4,711 910 68 799 992 

Table1. Descriptive statistic of variables 

 

Table 2 reports estimation results. We estimated three models. In the first model, we consider 

reputation indicator represented by the appearance on the top-ten list of the amount loaned. In the 

second model, we consider reputation indicator represented by the appearance on the top-ten list of 

new members. In the third model, we include both reputation indicators in the first and second model. 

The team fixed effect and week-of-month effect were controlled in all three models. As shown in the 

table, the reputation indicator, represented by the appearance on the top-ten list of the amount loaned 

has a significant negative impact on (at 1% significant level in Model 1 and 3). However, the 

reputation factor represented by the appearance on the top-ten list of new members are not significant 

(Model 2 and 3). The results also suggest that, on average, older teams have weaker leanding 

performance. Average loan amount reduces when there are more projects listed on Kiva.  

 

Dependent Variable Amount Loaned 

  Model 1 Model 2 Model 3 

Dummy (On Top-ten List, Amount Loaned) 
-0.984*** 

 
-0.994*** 

(0.192) 
 

(0.192) 

Dummy (On Top-ten List, New Member)  
-0.260 -0.292 

 
(0.189) (0.188) 

Age 
-0.081*** -0.089*** -0.079*** 

(0.023) (0.023) (0.023) 

Number of Projects Listed on Kiva 
-0.001*** -0.001*** -0.001*** 

(0.000) (0.000) (0.000) 

Average Size of Listed projects on Kiva 
-0.001 -0.000 -0.000 

(0.001) (0.001) (0.001) 

Constant 
27.38*** 29.13*** 26.70*** 

(5.245) (5.259) (5.263) 

Week-of-month effect Yes Yes Yes 

Team effect Yes Yes Yes 

Observations 4,711 4,711 4,711 

R2 0.062 0.057 0.063 

Note: Standard errors in parentheses, * p<0.05 ** p<0.01 *** p<0.001 

Table2. Investigating the relationship between last month ranking list and performance of teams 



 

 

4.3 Discussion  

The empirical results show that comparing to teams that do not appear on the top list, top-ranked 

teams, regarding amount loaned, have less team lending in subsequent periods. This surprising finding 

supports the prediction derived from economic theory on public goods provision. It indicates that team 

members treat team ranking (reputation) as a signal of other members’ contributions. Good reputation 

thus leads to stronger crowd-out effect. Meanwhile, appearance on the top member recruitment list 

shows no significant impact on team lending afterward, which indicates that there is no significant 

enhancement in identification resulting from good team reputation in our context. Together, these 

findings suggest team based reputation mechanism appears to be not effective in enhance team identity 

and promote prosocial lending. On the contrary, users seem to treat reputation as a public good and 

exhibit crowd-out effect in team contributions. 

Our finding has some interesting implications. First, it suggests team reputation takes effect in a 

different way from individual reputation on prosocial behavior. While reputation is often identified as 

an important motivation for people to do good things at the individual level (Lerner and Tirole 2002; 

Pavlon and Gefen 2004), team reputation may work through more complicated motivational 

mechanisms and could be treated as a public good. Second, team reputation mechanism could be 

designed differently to alleviate crowd-out effect. While we did not find a significant positive 

performance gain from the appearance on top recruitment list, it does not show a significant crowd-out 

effect. Other ways of award team with good reputations may be proved to enhance identification while 

avoid triggering the crowd-out effect.  

5 CONCLUSION AND EXTENSION 

In this paper, we empirically investigated the effect of team ranking on team performance in the 

context of prosocial crowdfunding. We find that reputation (as the appearance on top-ten lists) has a 

negative impact on subsequent team lending performance. While reputation has been a central focus in 

studies on online voluntary participation, most of the previous studies only focused on the individual 

level reputation. Our study suggests that team-based reputation mechanism functions differently and 

warrants further investigation.  

The current study has some limitations. First, there could be alternative explanations for the negative 

impacts of previous rankings. For example, a member may face budget constraint or have depleted her 

social capital to work for the previous ranking. Thus, it is difficult for her to maintain a high level of 

contribution in the following month. However, it is not likely that all team members may have 

depleted their resources simultaneously. We plan to examine in further details of individual-level 

participation and attribution behavior under the influence of team reputation. We hope to identify 

whether the underlying mechanism for the diminishing effect of team reputation is crowd-out effect or 

other alternative explanations. Second, our results suggest that team reputation does not significantly 

improve identification with the team. It would be interesting to examine the moderating role of team 

characteristics and identify the causes of ineffective identification. Third, the current paper only looks 

at lending performance; one can further investigate other team level performance indicators as well as 

team-based interactions, aiming at a better understanding of team-based mechanisms in prosocial 

crowdfunding. 
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