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Abstract 

In enterprise application environments, hardware resources show averagely low utilization rates due 

to a provisioning practice that is based on peak demands. Therefore, the consolidation of orthogonal 

workloads can improve energy efficiency and reduce total cost of ownership. In this paper, we address 

existing workload consolidation potential by solving a bin packing problem, where the number of 

servers is to be minimized. Since dynamic workloads, gathered from historical traces, and priorities of 

running services are considered, we formulate the Dynamic Priority-based Workload Consolidation 

Problem (DPWCP) and develop solution algorithms using heuristics and metaheuristics. Relevance is 

pointed out by an analysis of service resource demands and server capacities across four studied 

cases from productively operating enterprise application service providers. After a classification of 

related work, seven algorithms were developed and evaluated regarding their exploited optimization 

potential and computing time. Best results were achieved by a best-fit approach that uses a genetic 

algorithm to optimize its input sequence (GA_BF). When applying the GA_BF onto the four studied 

cases, average utilization rates could be increased from 23 to 63 percent within an average computing 

time of 22.5 seconds. Therefore, the overall server capacity was reduced significantly by up to 83%. 

Keywords: Dynamic workload consolidation, Enterprise applications, Heuristic, Service priority. 



 

 

1 INTRODUCTION 

Energy  costs  have  dramatically  increased  in  recent years and are to become a major factor in the 

total cost  of  ownership  of  data  centers (Filani et al., 2008; Orgerie et al., 2014). Therefore, 

achieving energy efficiency in IT operations is a crucial task for enterprises in order to save running 

costs. In some cases, 40-50% of the total data center operational budget is spent on energy costs for IT 

components (Filani et al., 2008). Although energy efficiency of hardware has been improved in recent 

years, at the same time, the energy consumption of data centers has increased by 56% from 2005 to 

2010 (Koomey, 2011; Splieth et al., 2015). This is mainly caused by low average utilization levels of 

hardware resources in enterprise application environments (Beloglazov and Buyya, 2010; Mi et al., 

2010), since existing consolidation potential is not exploited for the continuously growing number of 

servers. This growth, in turn, is caused by low utilization rates due to a provisioning practice that is 

based on peak demands (Rolia et al., 2003). The average utilization of data center servers was 

estimated by the Gartner Group in 2005 to be less than 20% (Speitkamp and Bichler, 2010). 

According to a newer Gartner report from 2011, servers even run at average utilization levels less than 

15% (Gartner, 2011). An analysis of data collected from more than 5,000 production servers by 

(Beloglazov and Buyya, 2010) showed a capacity usage of usually 10-50% for a six-month 

measurement period (Beloglazov and Buyya, 2010). A case study that we performed preparatory (see 

Section 2) to the work presented in this paper confirmed these observations and showed an average 

CPU utilization of 33% across four enterprise data centers, comprising 206 physical servers and 311 

business applications. Such low utilization rates adversely affect energy consumption, since even idle 

servers, depending on their type and architecture, can consume up to 70% of their peak power 

(Beloglazov and Buyya, 2010).  

Thus, shutting down idle servers is beneficial for the total energy efficiency, aiming at load 

concentration instead of load balancing (Petrucci et al., 2011). In addition to that, cooling 

infrastructure is more effective with fewer servers, because effects of overheating can be avoided 

(Beloglazov and Buyya, 2010). Thus, the consolidation of workloads can achieve higher energy 

savings (Xu and Fortes, 2010) by eliminating unused hardware resources, enabling IT service 

providers to produce services more efficiently. However, the performance of IT systems must not be 

degraded significantly (Beloglazov and Buyya, 2010) in order to support business processes 

effectively. Therefore, IT Service Management (ITSM) frameworks such as ITIL and ISO 20000 

embed the task of balancing performance and operational costs into the capacity management process.  

Load concentration is more effectively if consolidated workloads are orthogonal. In this case, the 

mean utilization can be maximized. The consolidation of orthogonal workloads on a single server is 

enabled by the concept of virtualization techniques (Ferreto et al., 2011) which can be distinguished 

regarding their level of operational abstraction. Common virtualization techniques in the domain of 

enterprise applications are server virtualization and application virtualization. 

Server virtualization decouples the operating system and all application processes from physical 

resources by creating virtual machines (VM). The virtualization layer, built up by a hypervisor, 

controls the allocation of physical resources to VMs and can initiate migrations to different physical 

servers in a running state of the VM. On the other hand, the necessity of a hypervisor and operating 

systems for each set of application causes an overhead that leads to performance degradations (Sahoo 

et al., 2010). Since low response times are still the major requirement of both ERP users and 

administrators (IT-Onlinemagazin, 2015), application virtualization is another common technique in 

the domain of enterprise applications. It decouples applications from their operating system and 

underlying hardware without the need for hypervisors and additional operating systems, thus, leading 

to less performance degradation. In fact, application landscapes that are distributed across multiple 

physical servers, can share the same operating system through the use of centralized storage, which 

ensures flexibility and decreases maintenance costs. This concept is particularly used for standard 

business software such as SAP ERP systems which are based on the same technology platform and 



 

 

have similar or equal requirements on operating system level. Therefore, one implementation of 

application virtualization was introduced by SAP as adaptive computing (AC) (SAP, 2015a). While 

this concept enables applications to be started on any physical server, on the downside, relocations 

require downtime during the migration phase and need to be well-planned due to ERP’s exceptional 

significance for business continuity (Müller and Turowski, 2015). Therefore, in the domain of 

enterprise applications, dynamic online migrations are no option and applications need to be allocated 

to hardware resources based on their expected peak demands in order to guarantee performance 

operational level agreements for a certain time period (Rolia et al., 2003).  

However, a static consolidation in terms of a single workload value that represents the applications 

peak demand leads to bad resource utilization (Mi et al., 2010), because workloads can change 

significantly over time (Petrucci et al., 2011). For enterprise applications, the workload is often 

repetitive and, thus, predictable in seasonal patterns (Rolia et al., 2005; Bichler et al., 2006) such as 

daily or weekly recurrences (Setzer and Stage, 2010). An analysis of the data collected as part of our 

case study confirms this statement, since the average CPU utilization across all applications changes in 

accordance to typical working hours and days. Thus, orthogonality of workloads can be identified 

from historical data. Changes in identified patterns happen slowly, allowing allocations to be adapted 

over time (Cherkasova and Rolia, 2006). Larger data centers may save 30-35% of servers by 

considering complementary workloads as part of their capacity management (Setzer and Stage, 2010). 

In addition to that, different types of applications need to be considered, since dedicated development 

and quality assurance applications’ performance is not as crucial as those of productive ERP 

applications. Thus, the optimization of server consolidation while guaranteeing sufficient application 

performance can improve energy efficiency of enterprise data centers.  

A server's CPU is the main bottleneck for enterprise applications (Mi et al., 2010; Speitkamp and 

Bichler, 2010). At the same time, CPU is known to be the greatest energy consumer in servers 

(Barroso et al., 2013; Splieth et al., 2015). Therefore, it can even be used to estimate server energy 

consumption as being done in data centers operated by Google (Fan et al., 2007; Splieth et al., 2015). 

Consequently, the CPU’s utilization can be used in order to trade-off performance and energy 

consumption. CPU utilization as well as capacity can be measured in SAPS (Speitkamp and Bichler, 

2010) and gathered from historical workload traces in order to identify seasonal patterns. Based on this 

information, enterprise applications can be placed on available physical servers aiming at a maximized 

average utilization and a minimized amount of required capacity while ensuring operational level 

agreements depending on the type of application. This is a combinatorial problem and closely related 

to the well-known bin packing problem which is NP-hard. Figure 1 visualizes the application 

virtualization concept and an exemplary solution of the optimization problem at application layer. The 

size of a server represents its capacity and the individual workloads of ERP systems and databases are 

represented by their shapes leading to certain applications that are more compatible to each other than 

different ones. In the visualized example, the applications on server 4 could be moved to servers 2 and 

3. Consequently, the average utilization increases and the number of running servers (bins) can be 

reduced. 

 

Figure 1. Workload consolidation on application virtualization infrastructure 



 

 

Many approaches for solving such bin packing problems exist, but those are either not scalable even to 

moderate problem sizes (Mi et al., 2010) or not applicable for enterprise application consolidations. 

In this paper, we describe an approach for the efficient optimization of resource allocation for 

enterprise applications that complies with existing service level agreements by taking service priorities 

into account. The approach was developed according to the design science research paradigm (Hevner 

et al., 2004; Peffers et al., 2007) and is based on foundations that we formulated in Mueller et al. 

(2016). The relevance of the research is pointed out in Section 2 by analyzing load and capacity data 

of servers running at four data centers as part of preparatory case studies. In Section 3, existing 

approaches that may be applicable to solve the problem are discussed. A mathematical formulation of 

the optimization problem is given in Section 4. In section 5, a number of solution algorithms is 

proposed including heuristics such as first-fit-decreasing (FFD), meta-heuristics such as a genetic 

algorithm (GA) and hybrid approaches such as a genetic algorithm using first-fit (GA_FF). Based on 

the workload traces of the three data centers, the evaluation of the developed approach is carried out in 

Section 6 by comparing the solution algorithms in terms of possible savings and execution times. 

Section 7 summarizes the findings of the paper and provides an outlook to further research activities. 

2 OPTIMIZATION POTENTIAL ACROSS FOUR STUDIED CASES 

According to the introduced literature (see Section 1), average utilization levels of servers in enterprise 

data centers vary between 10 and 50%. In addition to that, we studied 206 servers of four cases, each 

representing a productive data center that was monitored for periods of 14-21 days by our industry 

partner. In all cases, the servers host exclusively SAP software within an environment of virtualized 

applications as shown in Figure 1. These kinds of ERP systems follow a three-tier-architecture of 

presentation, application and database layers. The presentation layer is located on client-side, so the 

logical entities that are to be placed on available servers include SAP application instances and 

databases (In the following, we refer to both of them as services). The application layer of an ERP 

system, in many cases, is distributed across multiple SAP application instances that can be placed on 

individual physical servers. In such standardized environments, the total CPU capacity of each 

physical server and the CPU demands for each service can be measured in SAPS. SAPS stands for 

“SAP Application Performance Standard” whereby 100 SAPS represent either 2,400 SAP transactions 

or 2,000 fully processed order line items per hour (SAP, 2015b). Therefore, a service that serves 

150,000 SAP transactions per hour must not to be placed on a server with a capacity lower than 6,250 

SAPS. As preparatory work, we imported the monitored data from our industry partner into a 

relational database schema so that we were able to group the consumed SAPS per service and time 

interval and to query for servers and their respective SAPS capacity. Appropriate time intervals can be 

hours and days. In all cases, the existing servers are heterogeneous with varying CPU types, amounts 

and frequencies. In order to evaluate the scalability of our approach, we selected cases of different 

sizes, thus, the amount of services varies between 15 and 103 and the amount of servers varies 

between 4 and 88. We define the average optimization potential as the average amount of unused 

capacity for each server across all observed time intervals in terms of idle SAPS.  

 

Figure 2. Capacity and utilization overview of the four studied cases 



 

 

Figure 2 shows this value as well as the average used SAPS across all services, the average maximum 

capacities across all servers and the average server utilization for each case. The optimization 

potential, represented by AVG_IDLE_SAPS in Figure 2, was calculated using average demands 

across all services. For placement decisions, average demands cannot be considered due to ERP’s 

exceptional significance for business continuity (Müller and Turowski, 2015). Instead, peak or near-

peak demands for each time interval need to be considered (Rolia et al., 2003; Speitkamp and Bichler, 

2010). Therefore, the de facto optimization potential depends on the definition of peak demands which 

can be represented by a particular quantile of all observed demand values (Speitkamp and Bichler, 

2010). Since different types of systems have different performance requirements resulting from their 

operational level agreements (OLA), the quantile definition must depend on the system type. For 

development systems, e.g., the 0.95-quantile of all values for a particular hour might be an acceptable 

sizing bases instead of using their peak demands, since overload situations will result in higher 

response times (Speitkamp and Bichler, 2010), which might be acceptable for development systems 

but is not desired for productive systems. As preparatory work, we classified the services of all studied 

cases regarding their system types, which include production (PROD), development (DEV), quality 

assurance (QA), database (DB) and other (OTHER). We will refer to these cases again, when using 

them for the evaluation of our optimization problem and implemented algorithms in Section 6. 

3 RELATED WORK 

Capacity management is a challenging task for shared environments that can involve significant 

manual effort (Cherkasova and Rolia, 2006), particularly as today’s data centers can be formed by 

hundreds or thousands of servers (Jennings and Stadler, 2015). Therefore, approaches have been 

developed to automate the steps of placing services on available physical servers in accordance to their 

demands. Virtualization techniques such as server virtualization and application virtualization enable 

services to be decoupled from physical resources. These techniques are increasingly used in business 

environments (Vogels, 2008). Thus, relocations of enterprise applications have become possible with 

little effort and allocation adaptions can be made more frequently. As a consequence, automatic 

service placement has attracted increasing interest and is relevant in both practical consolidation 

projects (Speitkamp and Bichler, 2010) and scientific literature.  

The optimization potential, identified in Section 2, can be addressed by solving a bin packing problem 

where the overall size of used bins is to be minimized. Since these problems are proved to be NP-hard, 

heuristics and metaheuristics are applied to solve these types of problems (Bichler et al., 2006; Poli et 

al., 2007; Liu et al., 2008; Xu and Fortes, 2010; Jennings and Stadler, 2015). Although an optimal 

solution cannot be guaranteed, those are much more efficient than mathematical programming 

approaches (Ferreto et al., 2011). Heuristics can be very effective for a certain type of problem (Poli et 

al., 2007) but tend to waste resources in general (Feller et al., 2011) and depend strongly on the input 

sequence (Liu et al., 2008), e.g. first-fit-decreasing (FFD) or best-fit-decreasing (BFD). FFD is proved 

to be never suboptimal by more than 22% for a one-dimensional bin packing (Bichler et al., 2006). In 

contrast, metaheuristics provide a more flexible way to deal with varying problems (Mi et al., 2010). 

The problem’s item characteristics depend on the type of considered workload for the service that is to 

be placed. Therefore, we distinguish the related work regarding the considered workload, which can 

be either static or dynamic (Feller et al., 2011). For a given service, a static workload refers to the 

maximum or a particular quantile of demands gathered from historical traces, thus, the optimization 

problem has no time dimension. Dynamic workloads include all demands for multiple time intervals, 

e.g. the peak SAPS demand for each hour or week of that service, leading to at least two-dimensional 

item sizes. Therefore, an optimization algorithm uses multiple varying values and is able to consider 

typical workload patterns of different services; thus, orthogonality in time can be identified. In the 

following, we discuss related work in order of publication year, before providing a classification of 

these (see Table 1). 

Rolia et al. (2003) developed a genetic algorithm (GA) and a linear integer programming model for 

optimal resource management in data centers. In summary, they concluded that the GA performed 



 

 

better and is more robust to definition extensions. In order to avoid overloading, servers and thresholds 

for unused capacity are considered. While minimizing the number of servers used, a service is defined 

by all processes running on a server at the time of workload monitoring. In real data centers, this 

number of processes (n) can represent 1 to n different applications. Therefore, a set of applications, 

running on one monitored server, will always run together on the newly allocated server after solving 

the optimization problem, which leads to the risk of wasted optimization potential. In addition to that, 

application types cannot be distinguished regarding their particular performance requirements. For 

evaluation, 41 servers needed to be grouped in categories of similar hardware, including the restriction 

of homogeneous CPUs, which is not realistic for today’s heterogeneous data center environments 

(Heath et al., 2005). 

Rolia et al. (2005) presented an approach for capacity management in enterprise application clusters. 

The considered daily patterns lead to a two-dimensional bin packing problem. Productive and non-

productive services are distinguished and potential placement constraints for certain applications are 

considered. A genetic algorithm was developed to optimize the current allocation and it was evaluated 

using a case study from 26 servers. The evaluation was not conducted using the heterogeneous CPUs 

of the enterprise application environment, but with respect to a particular reference CPU speed. 

Bichler et al. (2006) defined two different problems for server allocation with constant (SSAP) and 

variable workload (SSAPv). As workload, they consider CPU utilizations for 5-minute averages 

during a month and aggregated these to hourly demands for a typical day. The approach is applicable 

only for homogeneous data centers with servers having identical capacities and cost. The used 

algorithm requires a solving time of 5 minutes to several hours depending on the problem size. For 

evaluation, data of 30 servers from a data center provider was used. In the same year, Cherkasova and 

Rolia (2006) presented a shared resource pool management with respect to quality of services, thus, 

different priorities of demands were considered. The performance requirements must be defined 

manually in terms of limits for degraded and acceptable performance. Therefore, these requirements 

do not depend on the system type gathered from historical traces. A genetic algorithm was developed 

to optimize existing allocations and evaluation was performed using data from 26 applications. To 

apply the approach, the server’s CPUs need to be homogeneous but their number can vary for each 

server. 

In 2010, three publications cover the resource allocation problem and its optimization. Stillwell et al. 

(2010) defined a resource allocation problem with static, but multi-dimensional workload as a mixed-

integer linear program. The approach enables to identify optimal allocations in exponential time. 

While distinguishing between fixed and proportional resource demands, the optimization goal is to 

provide each request with a maximum on needed resources. Greedy heuristics and a genetic algorithm 

were developed and the evaluation was performed based on generated data. Xu and Fortes (2010) 

developed a multi-objective grouping genetic algorithm to minimize resource wastage, power 

consumption and temperature hot spots at the same time. The approach is applicable for static 

workloads only and the operations are highly problem-specific. Evaluation was performed using 

simulated data.  

Speitkamp and Bichler (2010) developed an LP-relaxion-based heuristic to solve two types of bin 

packing problems (SSAP and SSAPv). In a first step, an LP-relaxed solution is found and fractional 

assignments are combined greedily as a second step. The approach was evaluated using real workload 

data gathered from traces of 259 ERP servers and 160 web servers that were monitored for three 

months in 5-minute intervals. Within the workload, daily patterns were found and for each hour, the 

0.95-quantile was used as the sizing bases. Thus, peak demands have been excluded because overload 

situations were identified to be unlikely and will only result in increasing response times. Both the 

workload and capacity were measured in SAPS, representing the servers CPU utilization and capacity. 

The computation time seems to be worse than exponential and depends heavily on the problem size 

and the number of placement constraints. Therefore, the approach is limited to a maximum of 700 

servers and, thus, not applicable for large data centers that can be formed often by hundreds of 



 

 

thousands of servers (Jennings and Stadler, 2015). In addition to that, only homogeneous data centers 

were considered. 

Feller et al. (2011) developed an ant colony optimization (ACO) algorithm to minimize energy 

consumption of data centers by solving a multi-dimensional bin packing problem. Different resources 

and time intervals but homogeneous bins were considered. The workload for each time interval was 

defined by the respective peak value and a simulation-based experimental evaluation was performed. 

Another Pareto-based ACO was developed by Gao et al. (2013) to solve a multi-objective 

optimization of resource wastage and power consumption. It uses a multi-dimensional resource vector 

and a threshold for server utilization. VM placement decisions are made based on the two dimensions 

CPU and memory. On the other hand, only static workloads are considered and resources were 

normalized, thus, the approach is restricted to homogeneous bins. The approach was evaluated in 

comparison with other meta-heuristics in terms of spacing and the number of solutions in the resulting 

Pareto front. 

In order to identify publications that are most closely related to the introduced optimization problem 

(see Section 1) as well as applicable to address the optimization potential (see Section 2), we classify 

the publications regarding their application areas. The application area is formed by the considered 

workload type, restrictions for the bin composition and potential operational level agreement (OLA) 

distinctions. Table 1 lists these characteristics for each publication. 

 
Publication Workload Bin Composition Service Distinction 

Rolia2003 dynamic Similar server groups with homogeneous CPUs no 

Rolia2005 dynamic Homogeneous CPUs yes 

Bichler2006 dynamic Homogeneous Servers no 

Cherkasova2006 dynamic Homogeneous CPUs yes 

Stillwell2010 static Homogeneous Servers no 

Xu2010 static Heterogeneous servers no 

Speitkamp2010 dynamic Homogeneous Servers no 

Feller2011 dynamic Homogeneous Servers no 

Gao2013 static Homogeneous Servers no 

Table 1.  Classification of related work 

Those publications that do not use varying workloads as input for the optimization problem are not 

suitable for business environments since existing workload patterns are not identified. Thus, only one 

(static) time interval is considered by taking its peak demand, which leads to the risk of wasted 

optimization potential. The remaining publications consider dynamic workloads, but are limited to 

homogeneous servers or CPUs. However, in reality, large clusters are formed by many heterogeneous 

machines with different capacities, number of CPU cores, frequencies and specific devices (Petrucci et 

al., 2011). Finally, some of the mentioned approaches are not scalable to arbitrary problem sizes due to 

long computation times up to several hours. As a conclusion, the identified related work is either not 

applicable to solve the introduced optimization problem or addresses the optimization potential with 

significant restrictions. Therefore, if the allocation of services in heterogeneous data centers need to be 

optimized based on dynamic workloads, the development of a new and efficient approach is necessary. 

Furthermore, the approach requires a mechanism that distinguishes between different service types, 

since, e.g., productive services usually have higher performance requirements than development 

services. 

4 OPTIMIZATION PROBLEM FORMULATION 

As stated above, an allocation is sought in which the overall server operational costs are to be 

minimized while performance of the services has to be guaranteed. The workload of the services to be 

placed is dynamic. Therefore, the optimization problem described here is closely related to the Static 



 

 

Server Allocation Problem with variable workload (SSAPv) from (Speitkamp and Bichler, 2010) 

whereby static does not refer to the type of workload but to the consolidation mode (sometimes called 

offline-approach). 

In contrast to their work, the optimization problem considers different types of services that have 

different performance priorities. Enterprise applications that are used as productive business process 

support must not suffer from severe performance degradation. Other services, for instance, 

development or quality assurance services have a lower performance priority. In this work, the 

different performance priorities of services are encoded into the process of mapping several data 

points into a single demand value for a fixed sequence of time intervals 𝝉 = (𝜏1, … , 𝜏𝐾). In the 

following problem formulation, we refer to services as instances (I) and to servers as hosts (H) in order 

to distinguish their acronyms and increase readability. 

A Dynamic Priority-Based Workload Consolidation Problem (DPWCP) is a tuple (𝐻, 𝐼, 𝑞) with 

𝐻 = (𝑐1, … , 𝑐𝑛) a list of host capacities, 𝐼 = (𝐼1, … , 𝐼𝑚) a list of instances and 𝑞: ℕ → [0,1] a function. 

An instance 𝐼𝑗 = (𝑝𝑟𝑖𝑜, (𝒅𝟏, … , 𝒅𝑲)) is formed by its priority 𝑝𝑟𝑖𝑜 ∈ ℕ and a vector of data points 

𝒅𝒌 = (𝑑𝑘1 , … , 𝑑𝑘𝑙) for each time interval. Using the function 𝑞, a single, priority-dependent demand 

value 𝑑𝑗𝑘 can be computed for each time interval as the 𝑞(𝑝𝑟𝑖𝑜)-quantile of the data points 𝒅𝒌. 

An allocation of instances to hosts is a mapping 𝑎: 𝐼 → {1,… , 𝑛} . A binary variable 𝑏𝑖  encodes 

whether a host is used or not in an allocation: 

𝑏𝑖 = 0 ⇔ ¬∃𝐼𝑗: 𝑎(𝐼𝑗) = 𝑖 

Since the allocated capacity is to be minimized, the optimization problem is 

min∑𝑏𝑖 ⋅ 𝑐𝑖

𝑛

𝑖=1

 

s.t. ∑𝑑𝑗𝑘 ≤ 𝑐𝑖 for all 1 ≤ 𝑗 ≤ 𝑚 with 𝑎(𝐼𝑗) = 𝑖 and all 1 ≤ 𝑘 ≤ 𝐾. 

 

Thus, the DPWCP can be seen as a two-dimensional bin packing problem (demand and time) with 

variable bin sizes and unique items. 

In order to consider existing placement requirements or restrictions resulting from security, business or 

high availability considerations, our developed solution approach allows service placement constraints 

to be defined prior to the optimization run. Therefore, pre-allocated services and their needed 

resources will be excluded from the optimization by decreasing the respective server’s capacities as 

also done in other approaches (Rolia et al., 2005; Bichler et al., 2006). In that manner, e.g., productive 

services can be placed on dedicated servers. This leads to a reduced number of needed spare servers, 

since HA-capabilities are usually only needed for servers that serve productive services. 

For the configuration of 𝑝𝑟𝑖𝑜 , we distinguish five service types, namely production (PROD), 

development (DEV), quality assurance (QA), database (DB) and any other type (OTHER). The 

decision of a particular quantile for each service type needs to be made by system architects, since it 

influences the probability of overload situations. In the case that service placement constraints allow 

productive services to be placed together with any other service type, processes can be prioritized on 

operating system level (Ohlin and Kjær, 2007) to avoid performance impairments due to concurrently 

occurring peak demands. However, the probability of such overload situations to occur due to low 

quantiles was identified to be very low. An analysis performed by (Speitkamp and Bichler, 2010) 

resulted in 0.025 percent capacity violations when choosing the 0.8-quantile and 0.12 percent when 

using the 0.4-quantile. For evaluation (see Section 6), we conservatively configure no quantile to be 

less than 0.9, leading to reduced optimization potential in favour of a negligible risk of capacity 

violations. 



 

 

5 SOLUTION ALGORITHMS 

In order to solve the DPWCP, exact and approximate approaches can be applied. However, since the 

original bin packing problem is NP-hard (Bichler et al., 2006), exact approaches are not efficient 

enough for real-world use cases. Therefore, heuristics and metaheuristics are applied to bin packing 

problems (Poli et al., 2007; Liu et al., 2008; Jennings and Stadler, 2015). 

For solving the SSAPv, (Speitkamp and Bichler, 2010) propose an LP-relaxion-based heuristic. The 

scalability of this approach is, however, questionable (cf. Section 3). Greedy heuristics or 

metaheuristics are very efficient and have been applied successfully to the SSAP and similar 

problems. Thus, these approaches could be adapted for efficiently solving the DPWCP. In the 

following, three different types of solution algorithms are discussed: greedy heuristics, a genetic 

algorithm and a hybrid algorithm. This results in seven possible solution algorithms. 

5.1 Greedy Heuristics 

Greedy heuristics have been successfully applied to bin packing problems for years. Two of the most 

popular algorithms in this area are the first-fit decreasing (FFD) and best-fit decreasing (BFD) 

algorithms. Both are proved to achieve results with less than 22 % more bins than an optimal solution 

for a one-dimensional bin packing (Bichler et al., 2006). However, their applicability for multi-

dimensional bin packing has been questioned by (Speitkamp and Bichler, 2010). Nevertheless, 

(Stillwell et al., 2010) showed that greedy heuristics are also successfully applicable to multi-

dimensional bin packing. 

Therefore, both algorithms have been implemented for the DPWCP. In both algorithms, the list of 

services is sorted descending by demand. According to (Stillwell et al., 2010), there are two applicable 

ways of sorting the service list: based on the maximum demand in time or based on the sum of 

demands per time interval. This classification leads to the four greedy heuristics used in the following, 

labeled as FFDmax, FFDsum, BFDmax and BFDsum. 

In the first-fit algorithm, the services are processed in the sorted order and are allocated to the first 

server which has enough capacity. The best-fit algorithm, however, allocates a service to the server 

with lowest remaining capacity that has enough capacity for the service to be allocated. 

In order to implement the best-fit algorithm, the list of servers is sorted after each allocation of a 

service. Therefore, the remaining capacity at the time point of maximum loading is considered. When 

the list of servers is sorted ascending by remaining capacity, a first-fit allocation can be applied.  

5.2 Genetic Algorithm 

Genetic algorithms are metaheuristics that have previously been adapted for solving resource 

allocation problems, e.g. in (Rolia et al., 2003) or (Stillwell et al., 2010). This type of algorithms bases 

on evolutionary principles such as natural selection. Therefore, solution candidates are encoded in a 

gene sequence and form a population. We implemented a genetic algorithm with comma-selection and 

1-elitism which behaves as follows. First, a random population is generated and evaluated. In each 

generation, offspring are created that replace the original population. These new candidates can be 

subject to mutation. After the population is evaluated, only a fraction of the candidates is considered 

for the next generation based on a selection strategy. The best individual is saved from the genetic 

operators in order to ensure a stable solution quality. 

According to the genetic algorithms for resource allocation found in the literature, a solution candidate 

is encoded as an integer sequence of length 𝑚 for the services. Each gene is a number between 1 and 

𝑛, determining the server to which the service is allocated. An example for this encoding with 𝑚 = 6 

and 𝑛 = 4 could be:  

(1 1 3 2 4 1) 



 

 

The population can be instantiated by choosing a random server for each service. For recombination of 

different solution candidates, a uniform crossover is applied. Thus, two individuals create two 

offspring by exchanging genes randomly. Mutation is implemented as a swap of servers for two 

services with a certain probability (cf. (Stillwell et al., 2010)). A tournament selection is used for 

choosing individuals for the next generation (Bäck, 1996). Therefore, 𝑡  individuals are chosen 

randomly from the population and sorted by their objective function value (fitness). The individual 

with the 𝑘th best fitness is selected with probability 𝑝𝑡(1 − 𝑝𝑡)
𝑘−1 . This procedure is repeated until 

𝜇 − 1 individuals are selected. 

Using these genetic operators, there is the possibility that an allocation is infeasible due to overloaded 

servers. Repair mechanisms can be used to transform infeasible solution candidates to feasible ones 

(cf. (Stillwell et al., 2010)). However, the introduction of repair mechanisms introduces a bias in the 

search process. Therefore, penalty functions are recommended (Coit and Smith, 1996). For this 

problem, the following penalty function is used: 

𝑝(𝑎) =  ∑max

(

 0, max
1≤𝑘≤𝐾

(( ∑ 𝐼𝑗. 𝑑𝑘
𝑎(𝑗)=𝑖

)− 𝑐𝑖)

2

)

 

𝑛

𝑖=1

  

To calculate the penalty, the maximum quadratic overloading in a time interval is summed up for all 

servers. The penalty is then subtracted from the objective function value. 

For the experiments conducted with the genetic algorithm, the label GA is used.  

5.3 Genetic Algorithm with Greedy Allocation 

The third class of algorithms is a hybrid of the greedy heuristics and a genetic algorithm. Because 

greedy algorithms such as first-fit or best-fit can always identify an optimal allocation for at least one 

ordering of items for one-dimensional item sizes (Lewis, 2009), the idea is to use a genetic algorithm 

to optimize this ordering sequence (cf. e.g. (Liu et al., 2008)). Therefore, a solution candidate is 

encoded as a permutation of the services of length 𝑚. Random permutations are used to initialize the 

population. The mutation operator swaps the position of two services with a certain mutation 

probability. For this genetic algorithm, tournament selection was applied, too. Recombination of 

solution candidates encoded as permutations provides some challenges since the result of a 

recombination should also be a permutation. Additionally, the offspring should contain parent 

information in order to guide the search process to promising solutions. Therefore, edge recombination 

was chosen (cf. (Larrañaga et al., 1999)). This recombination process bases on the adjacency matrices 

of the graphs formed by two solution candidates. In the end, the offspring should contain edges which 

have been contained in the parent individuals. 

In order to evaluate the fitness of a solution candidate, a heuristic is applied to allocate resources for 

the ordered services. Because no overloading is possible, no penalty must be defined. According to the 

two implemented heuristics, the two hybrid algorithms are labeled as GA_FF and GA_BF. Since the 

three implemented metaheuristics are stochastic in their nature, 100 iterations of each algorithm are 

carried out to achieve meaningful results. 

6 EVALUATION 

In Section 5, we introduced seven algorithms for solving the optimization problem. For each algorithm 

and studied case (cf. Section 2), we performed optimization runs using both daily and weekly 

workload time intervals, resulting in a total number of 56 optimization runs. For each algorithm, we 

calculated mean values of their computing time and solution quality indicators. The solution quality 

can be defined by the percentage of reduced server capacity for the new server landscape in terms of 

SAPS. 



 

 

Table 2 shows the mean performance of the algorithms in the eight optimization runs (two for each 

case), whereby mdb refers to the mean relative difference to the best objective value achieved across 

all algorithms. Therefore, the lowest number refers to the algorithm with the best mean solution 

quality. The frequency of achieving the best objective value is represented by fb. Thus, FFDmax 

achieved the best solution quality in 25% of all cases (2 out of 8 cases). In some cases, the same and 

best solution was achieved by multiple algorithms. The mean runtime varies between 0.0114 seconds 

and 22.460 seconds and the runtime of heuristics is only 1/1000 of the genetic algorithms. 

 
Algorithm label mdb fb Mean runtime in s 

FFDmax 0.2030 0.250 0.0125 

FFDsum 0.1780 0.250 0.0114 

BFDmax 0.0029 0.375 0.0217 

BFDsum 0.0056 0.250 0.0235 

GA 0.4153 0.125 20.294 

GA_FF 0.1593 0.250 18.046 

GA_BF 0.0009 0.875 22.460 

Table 2.  Comparison of the implemented algorithms 

Figure 3 presents the 0.9-confidence intervals of mdb for the seven algorithms. It can be seen that the 

pure GA performs poorly while greedy heuristics that use a GA to order the input sequence perform 

better. For all cases, algorithms based on a best-fit allocation perform better than first-fit ones and 

BFDmax achieved barely better solution qualities than BFDsum. While GA_FF does not perform 

significantly better than any FFD heuristic, the GA_BF achieves better solution qualities in seven out 

of eight optimization runs and, therefore, shows the lowest mdb by a clear margin. 

 

Figure 3. Mean relative differences (confidence intervals) to best objective value 

The mdb was used as a relative value in order to compare the developed algorithms to each other and 

evaluate, which of them achieves best solution quality results. The actual quality, of course, reflects 

the exploited optimization potential for each studied case. As the GA_BF performed best for all cases, 

Table 3 shows the savings in terms of SAPS capacity when comparing the studied server landscape 

with the server landscape that was optimized using the GA_BF. In general, high savings up to 83% 

were possible and the mean utilization could be increased massively by up to factor 6. In 3 out of 4 

cases, using daily patterns based on workloads for each hour leads to more savings compared to 

weekly patterns that are based on workloads for each weekday. The optimization potential highly 

depends on the workload of all services. Therefore, in case 2, only 25% of the servers (one out of four) 

can be switched off since these already show a comparatively high mean utilization. In contrast, the 

workload patterns of case 1, 3 and 4 enabled the optimization run to exclude more than 50% of the 

running servers. 
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 Case 1 Case 2 Case 3 Case 4 

Number of services 96 15 103 97 

Number of servers (before optimization) 31 4 89 82 

SAPS capacity (before optimization) 274,000 20,184 374,000 516,500 

Mean utilization (before optimization) 16.51 % 51 % 16.52% 8.25% 

Number of servers (after optimization) 14 3 22 11 

SAPS capacity (after optimization) 83,112 13,875 95,905 87,554 

Mean utilization (after optimization) 72.2 % 74.2 % 54.4 % 51.5 % 

Maximum SAPS reduction 69.67 % 31.26 % 74.36 % 83.05 % 

Best pattern weekly both daily daily 

Table 3. Exploited optimization potential for each studied case 

Whereas Table 3 shows aggregated results, we also studied solution qualities for particular servers in 

order to evaluate service placement decisions of the algorithms. Therefore, Figure 4 exemplifies 

details on the CPU utilization levels for two servers which we have randomly taken from Case 1. In 

order to comply with privacy regulations, actual names of ERP instances were renamed to Service 1-n. 

As can be seen in Figure 4, existing low utilization levels were raised by grouping an increased 

number of services on the same server. The services were chosen with respect to their workload 

orthogonality, thus, capacity limits are never exceeded when deploying the resulting allocation 

solutions for the monitored workload. 

 

Figure 4. Comparison of server utilization levels before and after optimization run 

The savings, listed in Table 3, were achieved using a mixed quantile configuration for the extraction of 

workload values from the historical traces. Our approach allows the configuration of a quantile for 

each service type. In the mixed configuration, we used the 0.98-quantile for productive and database 

services. For workloads of development services, we used the 0.90 quantile and for quality assurance 

services the 0.95-quantile was taken as a basis. Any other services that could not be classified using 

these types were treated as productive services, thus, using the 0.98-quantile. Since the quantile 

configuration influences the probability of overload situations, we compared three different 

configurations to each other, presented in Table 4. In the peak configuration, each data vector is 

mapped to its maximum as a reference for the other scenarios. In the secondly listed configuration, the 

0.95-quantile is used for each service with no respect to its priority as conducted in Speitkamp2010. In 

our experiments, using the 0.95-quantile achieves better savings, since most services are productive 



 

 

and fewer resources are allocated to productive systems. However, the mean performance that can be 

guaranteed for productive systems is less than 84 % while in the mixed configuration almost 97 % can 

be achieved. Hence, the effect of different quantiles for different priorities can be significant. 

 
 Mean savings compared to  

peak value 

Mean performance of  

productive systems 

1.0-quantile (peak) 0.00 % 100.00 % 

0.95-quantile 23.85 % 83.99 % 

Mixed quantiles 15.84 % 96.96 % 

Table 4. Comparison of different quantile functions 

Overall, efficient solutions for solving the DPWCP were conducted using the mixed quantile 

configuration. Heuristics provide good results within a fraction of a second while a GA consumes 

significantly more time for worse results. In contrast, the best-fit approach with GA-optimized input 

sequence provides best results. To compare the algorithm’s scalability, we created a fifth, theoretical 

case of over 1000 services that represents all services and servers of case 03 multiplied by 12. In this 

case, GA_BF computed best results within 40 minutes, which indicates a polynomial complexity. In 

comparison, (Speitkamp and Bichler, 2010) mentions that such cases cannot be solved within 24 hours 

using their developed LP-relaxion-based heuristic. 

7 CONCLUSION AND FUTURE WORK 

Average utilization rates of servers in enterprise environments have been identified to be very low. 

Using workload consolidation, utilization rates can be increased and idle servers can be switched off. 

This is beneficial for the data center’s energy efficiency and, therefore, reduces the TCO. In order to 

distribute all workloads of services across available physical resources in an optimal way, a bin 

packing problem was formulated. To ensure that individual performance requirements of particular 

service types are met, a priority function was embedded into the problem formulation. Since bin 

packing is known to be NP-hard, seven different heuristics and metaheuristics were applied. All 

developed algorithms were able to optimize existing allocation scenarios that were gathered from four 

productively running data centers. However, the solution quality and computation time differs. While 

a genetic algorithm performed poorly, greedy heuristics such as first-fit-decreasing (FFD) and best-fit-

decreasing (BFD) calculated useful results after fractions of seconds. Since greedy heuristics can 

always identify an optimal allocation for at least one ordering of items for one-dimensional item sizes, 

we developed a best-fit approach that uses a genetic algorithm to order the input sequence. This 

GA_BF achieved the best solution qualities for all studied cases within up to 22.5 seconds. 

Furthermore, we extracted both daily (hourly time interval) and weekly (daily time interval) workload 

patterns from the historical traces and compared their respective solution qualities to each other. In 

most cases, using hourly time intervals leaded to better results in terms of capacity savings. The 

GA_BF shows a polynomial complexity, thus, a theoretical case that comprises more than 1000 

services could be solved within 40 minutes which indicates a significant improvement compared to the 

most closely related work found in the literature. Equally important, optimization algorithms need to 

consider service priorities in order to guarantee SLA-compliant performance. Therefore, identified 

optimization potential was efficiently and practically addressed by solving the DPWCP. For the future, 

several extensions to the work presented in this paper are planned. First, a field study will be 

conducted in order to compare the developed algorithms and their solution qualities for a greater 

number of different data centers. Therefore, we plan to add a variety of additional cases whereas 

developed cleaning and processing logic can be leveraged. In order to be able to include also memory-

intensive applications like in-memory databases, we plan to add memory consumption as another 

dimension to the bin packing problem. Furthermore, together with our industry partner, we plan to 

automate the developed approach in a way that consultants can consume a web service that processes 

workload data and server capacities of any customer data center. 
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