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Abstract 

What is really ‘new’ in Big Data? – Big Data seems to be a hype that has been emerging during the past 

years. But it requires a more thorough discussion beyond the very common 3V (velocity, volume, and 

variety) approach. We established an expert group to re-discuss the notion of Big Data, identify new 

characteristics, and re-think what actually really is new in the idea of Big Data by analysing over 100 

literature resources. We identified typical baseline scenarios (traffic, business processes, retail, health, 

and social media) as starting point, from which we explored the notion of Big Data from a different 

viewpoint. We concluded, that the idea of Big Data is simply not new, as well as we need to re-think our 

approach towards Big Data. We introduce a fully new way of thinking about Big Data, and coin it as 

the trend of ‘Cognitive Big Data’. The publications introduces a basic framework for our research 

results. However, this work remains work-in-progress, and we will continue with a refinement of the 

Cognitive Big Data Framework in one future publication. 
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1 INTRODUCTION 

Recent advances in technology, the wave of the new digital economy, and the digitalization of industries 

let countless novel methods of technological possibilities, scientific research, social interaction, business 

intelligence, and data analytics emerge. All these trends together caused an exponential increase of 

generated data, including its new facets, forms, and processing speeds (Johnson 2012a). Besides creating 

new opportunities, the trend towards increasing amounts of data, new processes for handling vast 

amounts of data, and its related technology has been coined as “Big Data” during the recent years. 

Similar to the term Web2.0, the term Big Data tries to summarize a number of related (and non-related) 

trends and is a rather blurred term of discourse. Thus giving one accurate definition is a rather vain 

exercise, because of the issues related to society and technology (Ward and Barker 2013a).  

In the public eye, Big Data seems to be a rather disruptive innovation, having given birth to wide range 

of new technologies, process, and possibilities. However, a wide range of technologies represent rather 

incremental innovations rather than true breakthroughs and novelties. Thus the notion of Big Data can 

be rather seen as a term for a powerful tool for knowledge creation, processing of huge amounts of data, 

and expressing hopes and fears of the new potentials. The goal of this research work, is to shade new 

light on the notion of ‘Big Data’, and it represents a discussion or discourse for its potential, and its 

impact. It shall shade a few more thoughts into its trends, and surveys the current state of the art, 

industrial applications, social motivations, and goes as far to describe the cognition of Big Data. 

Thus what is really new in ‘Big Data’? – Within the scope of this study we try to shade a different light 

on Big Data research through the thorough investigation of literature resources and on the example of 

three baseline scenarios for typical Big Data applications: real-time traffic data, business process 

management, health care, retail, and social media. Our main goal was to explore the cognitive elements 

of Big Data, and tie these to existing business applications.  

Please also note, that due to the page limitations of this paper, the appendix (the evaluation of 

particular projects) can only be found online on: www.artur-lugmayr.org/Publications. 

2 METHOD AND APPROACH 

The approach of this paper is theoretical, thus we identified the most common fields of Big Data 

application in literature by conducting a thorough literature review based on over 60 resources. As 

follow up, we created several baseline scenarios where typical Big Data has been applied. In focus group 

discussions we refined these by cross-examining literature with theoretical approaches in data and 

computer science. These have been used to apply epistemological theories and led to the creation of an 

alternative view on Big Data, and a framework for its re-definition. 

2.1 Baseline Scenarios for the Scope of this Study 

To allow a different kind of discussion around the theme Big Data, we approached our study by 

identifying four scenarios in different application areas. These acted as baseline for this study, and we 

utilized these to identify features, characteristics, and approaches for a new definition of Big Data: 

 Real-Time Traffic Data and Decision Making (based on (Intel 2013)): real-time features, and the 

opportunities that emerge from traffic monitoring for Big Data research have let us to adopt this as 

one of the baseline scenarios. One study that we have been considering was the traffic management 

system of the city Zhejiang, which attempts to avoid traffic jams and accidents. Through a 

centralized data management system, the city was able to monitor, provide a highly efficient traffic 

routing system, and manage local traffic by applying Hadoop technology in combination with Intel’s 

Xeon architecture (Hadoop n.d.). The system can recognize register plats form a collection of over 

2.6 billion records in less than a second, and is based on more than a terabyte of collected data per 

month; 
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 Business Process Management (based on (Davenport and Dyché 2013)): the second identified base 

scenario related to enable industry to increase their performance and the efficiency of processes 

through Big Data. We selected UPS as scenario, as UPS tracks package movements and transactions 

in resulting to over 16 petabytes of storage data by serving over 16 million packages to customers, 

and tracking over 8 million of these per day. Real-time vehicle tracking to monitor daily 

performance, online maps, and route optimizations allow significant savings for UPS; 

 Health Care Big Data (based on (Davenport and Dyché 2013)): a second scenario has been 

described in (Davenport and Dyché 2013): utilization of Big Data as one of the key performance 

indicators of United Healthcare, to provide additional consumer satisfaction. For this purpose call 

center data is collected, and analysed utilizing Hadoop and NoSQL. Customer satisfaction 

evaluation is based on the recognition of emotion in voice; 

 Big Data as Cross-Domain Analysis in Retail or for Epidemics Prediction: this baseline scenario 

relates to the correlation of different data-source as e.g. weather data and sales. One study has been 

conducted by Walmart and Kellogg’s Pop-Tarts (Mayer-Schönberger and Cukier 2013), which 

attempted to correlate weather history with sales transactions prior to hurricanes. A similar cross-

domain analysis has been conducted by Google Flu Trends, analysing influenza alike illnesses to 

predict the spreading of influence ahead of governmental instructions as e.g. the US Center of 

Disease Control (see e.g. (Dugas et al. 2012) and (Ginsberg et al. 2009)); 

 Social Media Analysis: social media analysis has been well researched, and can be considered as a 

prime example in Big Data research. Twitter network analysis, integration of social media data into 

business processes, and the analysis of social media as part of customer relationship management 

systems are one of the prime concerns in this use-case. 

These non-exhaustive scenarios where the starting point for our exploration, and the discussions as part 

of the expert groups. We analysed these scenarios, and attempt to shade a fully new way on how to think 

about Big Data research. However, this work is still research-in-progress, and we aim at a more thorough 

analysis after the research project is completed. 

2.2 Literature and Related Works 

To accomplish this study, we have examined over 100 literature sources, where the most significant 

resources are enlisted in the appendix of this publication. This table classifies literature resources, 

identifies the key-aspects, and research contribution of each single publication. Please note, due to the 

restrictions of the length of the paper, the list of investigated publications can be downloaded from: 

www.artur-lugmayr.org/Publications.  

3 REVISING THE VISION OF ‘BIG DATA’ – AN 

EPISTOMOLOGICAL APPROACH 

Many expectations and promises, what changes Big Data will bring to businesses and private lives has 

been discussed in scientific research, as e.g. in (Brynjolfsson et al. 2011). Thus, is ‘Big Data’ indeed a 

paradigm shift that we are observing, or simply a notion enriching well-known methods? Within the 

scope of this section, we provide a systems theoretical and epistemological perspective to examine the 

disruptiveness of Big Data, and develop several criteria for the categorization of its applications. 

3.1 Knowledge and Wisdom Processing rather than Velocity, Volume, Variety (3V) 

The 3V (eventually a 4th V – Veracity) discussion around the theme of Big Data is rather short sighted. 

Computational power increases, methods for processing data will become more sophisticating, as well 

as data science will let data structures emerge to process a wide variety of data sources. Thus, the key 
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issue in Big Data Research needs to be centred also outside this very limited viewpoint. Big Data 

processing is about finding patterns, knowledge patterns, and eventually wisdom. In accordance with 

the discussion addressed in (Floridi 2012), the epistemological challenge of Big Data is about finding 

patterns in data sources. The likelihood of finding patterns and connections between data increases with 

increasing amounts of data – but the size of data volume is not the relevant indicator to increase the 

possibility to identify patterns in data sets. In opposite, patterns can be identified in data sub-sets or large 

data-sets (Floridi 2012). To identify more advanced patterns as e.g. knowledge or wisdom, it’s also an 

important issue to provide possibilities to identify and decide which parts of the data is of relevancy, 

and which can be neglected (Bollier and Firestone 2010) . We conclude, that the relevant indicator in 

Big Data research requires to be tied to the capability to identify knowledge and wisdom patterns, 

independent of data volume, variety, or velocity. The indicator for the analysis is based on complexity 

management, adapting available computational power, velocity, and data variety. Thus, the 

identification of a meaningful subset and data granularity upon which computational methods are 

applied to gain insights into knowledge and eventually wisdom patterns shall act as indicator in Big 

Data research. 

3.2 Completeness of Observed Data 

In statistical analysis the problem of bias in the sample is addressed by randomization and other methods. 

In Big Data, data collection is not restricted to samples, but basically to collecting as much potentially 

related data as possible. This raises questions about the representability of the data collected. It appears 

safe to assume two basic cases: The observed data can be either complete or incomplete with regard to 

the research question to be answered. Complete observation is usually only possible with a narrow 

research question that can be answered relying on internal data like the complete sales records covering 

all customers of a company. In the case of complete observation we can assume bias-free data. 

In practically all cases that rely on external data, we have to assume incomplete observation and thus a 

bias. A prime example is social media, where only the respective companies have access to the full data 

sets and decide on how much data is exposed to the public for free or paid access. Twitter used offers to 

offer different plans to access 1, 10 or 100% access respectively (González-Bailón et al. 2012), with no 

certainty about how the data is selected from the main unit. Yet even with the open access APIs, there 

may be a bias depending upon which particular API is used (González-Bailón et al. 2012). The challenge 

is to take this bias into account when interpreting the results of data analysis and, if possible, assess its 

impact on the results. 

It should be noted that the discrimination between a complete and an incomplete observation is far from 

being definite and depends a lot on the question that shall be answered. In the Google Flu Trends 

example, we can be sure that Google has access to the entirety of flu-related queries, yet the definition 

of what is a flu-related query and what not is not trivial. As well this should not be mistaken with a full 

coverage of all persons searching for flu-related medical advice, as the web alone has countless further 

sources and there are countless more sources of information beyond the web. 

3.3 Meaning and Quality of Data 

Next to the obvious implications of the idea of data completeness in Big Data, it deems useful to revisit 

further established categories of data quality. For this purpose we use the seminal data quality framework 

introduced by Wang and Strong in 1996 (Wang and Strong 1996). This model was developed in 1996, 

so well before the term Big Data was coined. The framework has been developed to assess data quality 

from the perspective of data customers, so it rather applies to processed data, not data acquired through 

data-mining. Yet this might indicate a major shift already, that companies start actively mining their 

own data instead of solely relying on external providers. 

 



Intrinsic DQ Relevance in Big Data 

Believability In Big Data, this is a difficult criteria, as it implies a “plausibility” check by a human actor. As many Big Data applications 

just work with correlations and people expect to find unexpected correlations in the first place, believability cannot be a 
criterion to assess DQ in Big Data. 

Accuracy This is an ambivalent criterion in Big Data. While of course more accuracy is always better, there are supposedly two ways 
to increase accuracy in Big Data: First, the accuracy of single data items can be increased and second, the number of total 

data items. 

Objectivity Data objectivity can be assessed first by considering the bias of the sample. A huge sample does not automatically mean 

more objectivity, rather it is about the decision about which part of the data to look at and which to ignore. Second, 

objectivity is about what is actually measured and what not, i.e. whether all information that could possibly confirm or 
contradict a research question is actually included in data item. 

Reputation Reputation refers to the data source. As Big Data relies a lot on data scraping and we are dealing with large amounts of 
unstructured data, this criterion seems to fit more when talking of data already processed by intermediaries, i.e. if you 

actually buy data. 

Contextual DQ 

Value-added Traditionally, data would be acquired with respect to a certain problem. In contrast, the hope in Big Data lies partly in the 
discovery of new problems. Thus it is hard to tell, whether certain data will add value or not. 

Relevancy Also relevancy can be defined only with respect to a pre-defined problem. 

Timeliness Expectation towards Big Data is real-time in many cases. 

Completeness Completeness of a data set can only be determined in relation to a research question, yet Big Data approaches promise that 

the questions would emerge from examining all available data. As discussed earlier in this paper, completeness in Big Data 

means all the data there is in the domain researched and completeness is the exception, not the rule. 

Appropriate 

Amount of 
Data 

The demand for appropriateness of data volume tries to balance the effort of data analysis with the expected gain. In Big 

Data, more data always holds the promise of more and unexpected gain. Also technology and processes for analysis of 
complex data sets have vastly increased, so it could be argued that the idea of Big Data renders this criterion void. 

Representational DQ 

Interpretability If we follow the turn from causality towards correlation, interpretability is not an issue of the data set as such. It rather 

applies to the results of the analytic algorithms, i.e. to refined and abstracted data intended for human decision making. 

Ease of 

understanding 

As interpretability, also “understanding” is a human category, not applicable to data that is processed automatically. This 

also has to be applied to the interpretational framework provided by Big Data analysis tools. 

Representationa

l consistency 

The use of unstructured data is often cited as a key element of Big Data. Reaching representational consistency is thus a 

requirement towards the data processing algorithms, not to the source data itself. 

Concise 

representation 

Data sets in Big Data do not have to be human readable, so again, this is a requirement towards the output of a Big Data 

processing system, not the source data. 

Accessibility DQ 

Accessibility The data mining technologies developed in recent years have made data accessible that would not even have been considered 

a data source a decade ago. Thus accessibility is another criterion that has to be considered in relation to the state-of-the-art 

in data processing technology. In Big Data, we have open and closed data sources, as well as dynamic and static data 
sources. While e.g. certain census data may be open, it is not updated frequently and quickly growing old and possibly 

unusable. Social media data is available in real-time, but filtered through the different access policies of social media 
services. The ideal accessible Big Data data source is: -Updated in real-time, -Accessible in real-time, -Exposes the complete 

available data for a certain request, -Open and free 

Access 

Security 

Access security refers to aspects like exclusivity of access to certain data as a competitive advantage, as well as the technical 

security of data storage and access. Both aspects play an important role in Big Data. On one hand, many sources of 

unstructured data are openly available on the internet and given enough processing power, any traceable transaction on the 
internet can be turned into data. On the other hand, this is what everybody is doing, so a real competitive advantage can only 

arise from exclusive access to certain data sources. The primary gate keepers at the moment are large social media 

companies, which creates a new kind of digital divide into data-rich and data-poor [59]. The second aspect of technical 
security of Big Data storage is important not only to keep competition from illegal data retrieval, but because trust of 



customers is a particularly valuable resource in this domain. Security breaches involving customer data seriously affect the 
readiness to share private data with companies. 

Table 1. Quality of Big Data (based and extended from (Wang and Strong 1996)). 

Thus the broader picture of this way of discourse is simply that many criteria address the idea that data 

should be human-readable and human-interpretable. In a way, back in the 1996s, data was already 

considered as an answer, but not as a resource to solve the problem. This is expressed by the demand 

that data should carry distinguishable meaning. Therefore we conclude, that in Big Data research the 

notion of meaning is a category that has been only introduced after data analysis, or manifested by far 

too less in data research till date. Thus, meaning is not inherited inside data, but is emerging through the 

application of processing algorithms, identification of knowledge/wisdom, or patterns as based on data. 

3.4 Correlation, Causation, and Predictability  

Chris Anderson addresses the primacy of correlation over causation as a bit more prosaic as "the end of 

theory", as we could test our hypotheses directly “in the wild”. We possibly could derive future events 

from past patterns without having a theory of why they should happen. The high probability of spurious 

correlations (Bollier and Firestone 2010) are frequently mentioned as an epistemological problem of 

Big Data. 

Yet how do we decide whether a correlation is spurious? Herbert Simon (Simon 1954): Spurious 

Correlations explains that we need to rely on two types of a priori assumptions, logical assumptions 

such as preceding events cannot be caused by later events and the assumption that other environmental 

variables do not interfere with the correlation to be tested. Although Simon argues that these assumptions 

are a priori as they are not founded in statistics, but are otherwise empirical and by far not arbitrary. Still 

it remains that we cannot judge the causality of a correlation without relying on prior empirical 

experiences, which limits us in both analysis and decision-making. 

In Big Data it might make sense to differentiate correlations not into spurious and genuine types by a 

proof of causality, but rather on their viability for a certain purpose, using the term of viability as defined 

by Glasersfeld (Glasersfeld 1998). Thus we would discriminate solely viable and non-viable correlations. 

The downside of these terms is that there is no absolute value (truth) in them, but it can only be decided 

in the context of a purpose, whether a correlation is viable. Such a context may be the desire to fit the 

observation made into a larger model or a goal to be reached.  

We shall give an example to illustrate this: A classic example is the legend that somebody pointed out 

a correlation between the wages of Presbyterian ministers in Massachusetts and the rum prices in Havana 

– simply people ‘lie based on statistics. While there cannot be any causal explanation by logic or 

empirical experience, the question is not whether this correlation is spurious. The question is whether 

we could use this correlation to forecast raises in rum prices or increasing demand for rum in 

Massachusetts and build a successful trading business upon this information. If so, we do have a viable 

correlation. Both rum prices and minister wages are triggered by general developments in world 

economy, so a correlation viable for this purpose can be doubted in this case. 

However viability does tell anything whether the successful solution is optimal and whether there are 

alternatives. Taking a look again at the Walmart example, obviously Pop-Tarts sales rose when they 

were placed at the front of the store. So obviously Big Data analysis has helped to increase revenues 

here. Yet it can be assumed that anything positioned well visibly and in large supply will sell better. Had 

they looked for causal explanations - maybe people like to buy fancy, but practical food to cheer up their 

minds during hurricanes - they would have had much broader options to increase sales of possibly more 

than one product.  

A more general view on this example suggests the main difference between acting upon correlation 

versus causality: In the first case we just amplify a phenomenon inherent to the system, in the second 



case causal information empowers us to change the system. In other words, correlations can be used to 

improve the performance of existing systems, while true innovation can only happen if we make causal 

assumptions. Revisiting Anderson's statement, it seems that the strength of Big Data is not to render the 

idea of causality void, but to point us to search for causality in places we never considered in the first 

place. There exist many other examples, as e.g. the promise of Big Data applications delivering more 

accurate and earlier predictions than usual statistical means. An often cited example is the case of Google 

Flu Trends already described earlier in this paper. 

3.5 Automated Decision Making vs. Data Observability 

While Big Data technologies have vastly increased our means of processing vast amounts of data, human 

attention remains constant. In Big Data, automation through algorithms help us to decide to focus our 

attention, i.e. to decide what to look at, implicitly ignoring anything else. What we see as users is always 

a representation of aggregated data on a distinct abstraction level. This level can be anything from 

statistical figures describing the data-set as a whole to a single data unit. Yet we can focus our attention 

only to the whole data-set on a high abstraction level or to very few single data units on a concrete level. 

Therefore, the algorithms used and their configuration restrict a priori what we may see or may not see 

in a data-set. For example, pre-set thresholds determine what will be surfaced as a pattern and what not. 

Correlations too weak for the threshold will not come to our attention, even though they might carry 

valuable hints for certain applications. The algorithm can only identify patterns, but does not reason 

about their potential meaning for applications. The higher the velocity of a Big Data application is, the 

more it has to rely on algorithms, first for the decision on what to data to observe, second for decisions 

on how to react upon the observation.   

 Complete Observation Incomplete Observation 

Automated Decision Making Traffic Observations Algorithmic Financial Trading 

Human/Fuzzy Decision Making Visualisation of corporate 

data 

Real-Time Feedback to 

Newspaper Editors 

Table 2. Automated Approaches towards Defining Big Data: Illustration of the different 

automated (algorithmic) approaches towards Big Data, including a few practical 

examples. 

From this point of view, we can distinguish between the following 4 possible features of Big Data 

applications: 

 Automated-complete: Many real-time applications rely exclusively on automated (algorithmic) 

decision-making, with human users action as supervisors only. When acting on complete data, 

algorithms can be considered reliable and predictable, so that once the system is in place and 

configured, it could basically run unsupervised. A simple example for this kind of applications are 

automated recommendation systems used by online retailers, but also advanced traffic control 

applications can be counted into this category, depending on the way traffic flow is measured. 

 Automated-incomplete: Automated decision-making that is based on incomplete data is prone to 

unpredictable behaviour. This is for example the case in real-time finance transactions, where all 

actors have different incomplete data about the market. These systems need constant human 

supervision and adjustments. 

 Human-complete: These kind of applications mostly applies to the visualisation of organisation-

internal data for purposes of strategic planning or operative controlling. They are informative and 

demand for suitable representation of the analysed data. 

 Human-incomplete: These kind of Big Data applications do inform decisions of human users. They 

are applied in areas where no meaningful automated decisions can be taken upon incomplete data. 



The prime challenge is to find data representations that optimally support decision-making (Lurie 

and Mason 2007). An example are social media monitoring tools used to optimise the reach of media 

content. 

4 DISCUSSION 

We summarized our view on Big Data in diagram with four paired dimensions. On the one axis we are 

look at the relation between Data Completeness and Decision Making, on the other we see the relation 

between Rule Induction and Knowledge Levels. In comparison with the prevailing 3V model of big data 

we think that our model is a much more suitable foundation to discuss both epistemological and ethics 

implications of big data. It might as well help to shed a light on the real technological challenges of big 

data to be solved. This is necessary because the 3V model addresses scalability challenges only. If the 

amount of data grows, new and more powerful technology is needed to process it. This leads to a 

perpetual race, but can never be solved for once and for all. This makes the 3V model a perfect marketing 

tool, but does not fit as a theoretical model for future scientific research on big data. The model is 

illustrated in Figure 1, and includes the Cognitive Big Data Model in it’s core, and the associated 

emergent changes and challenges. 

 

Figure 3. Cognitive Big Data: Illustration of our Framework for thinking about Big Data – 

Cognitive Big Data is the new direction in research and many emergent changes and 

challenges on various levels 

4.1 Cognitive Big Data Framework 

We have been identifying a set of challenges, which are tied to the Cognitive Big Data model: 

 On the Data Completeness dimension, we see that it is highly important to better understand what 

is not the obvious from the data. With incomplete data from possibly a multitude of sources we 



cannot apply classic statistics as we know it, as even one half of the main unit bears a high degree 

of uncertainty if we cannot describe what the other half might be; 

 Related to that, on the Decision Making dimension we apply algorithms displaying unpredictable 

behaviour when the data base just changes slightly. How can we know where our algorithms have 

their tipping points (Gladwell 2006) and how can we create more resilient algorithms? While the 

focus so far has been on creating algorithms for data analysis, we might have to create algorithms 

that analyse such algorithms, especially when we are thinking about self-learning algorithms which 

evolve based on inducted rules. This may lead from the open data movement to an open algorithms 

movement. 

 The classic model of Knowledge Levels might become obsolete. Humans have the desire to 

understand how things work and only if they can find a plausible explanation, they accept a 

correlation. This in turn means they are more likely to ignore a correlation they cannot explain. 

Algorithms do not feel this desire; they do not care if a correlation is spurious in human eyes or not. 

They simply decide based on the viability: If a rule inducted from an identified correlation leads to 

a successful result, the rule will be considered viable. In a way, this is a very pure ontological 

viewpoint, considering just the facts, ignoring any attempt to explain. This allows a very fast 

evolvement of models about the world (or a part of it that a particular big data application considers). 

However, these models will always remain less complex than the real world and they will always 

lag behind reality, as big data systems can only measure what already happened. It remains to be 

researched what the future role of humans is in the techno-social eco-system of big data will be. 

 Under the perspective of Rule Induction this means that explaining causality is not anymore a 

requirement to achieve predictability.  

4.2 Emergent Challenges of Cognitive Big Data 

Within the scope of this section, we collected our implications of emergent changes and required 

considerations in discussing Cognitive Big Data. These are briefly described in the following: 

 Big Data requires New Models to be still ’New’ in Decades to come: large volumes of data, 

high velocity of data processing, as well as a wide variety of data is existing since the beginning of 

computation. New emerging technologies, as e.g. new computational models, new computer 

architectures, algorithm research will solve many issues related to these bottlenecks. Thus, if Big 

Data should still remain a trend that is ’new’, it requires a re-thinking about the approach. Figure 1 

illustrates the key components of our framework, which will remain valid if these new 

technologies are emerging; 

 Big Data Enables Competitive Advantage and Leads to Innovative New Business Areas: From 

a business perspective, Big Data – independently if we define it as discussed in this paper, or based 

on common publications - is a main tool in catalysing and supporting business processes. It’s 

doubtful, that the increasing amount of information will change how businesses will make use of 

the new possibilities for business intelligence analysis and to support business processes (Rogers 

2011). It is obvious, that any new innovation will lead to new businesses activities focusing 

collecting and interpreting complex information from corporate internal and corporate external 

sources. It’s a growing area, which will enable many new business niches for newcomers (Johnson 

2012b); 

 Social Impact of Big Data as Knolwedge Creation Eco-System: Big Data is not solely a 

technological phenomonon, Big Data is a cultural, scholarly, and technological phenomenon 

creating knowledge eco-systems, and how we think about knowledge itself (Boyd and Crawford 

2012). The research field of Digital Humanities i.e. investigates human knowledge, cultural aspects, 

as well as it utlizes latest computational method to make knowledge in humanities available 



(Lugmayr and Teras 2015). Privacy, and the digital footprint we are leaving behind every single day 

by using computers and smartphones (Michael and Miller 2013) might render all the positive aspects 

of recomender systems, personalization techniques, and workforce productivity monitoring towards 

a ’big brother’ system where we are constantly monitored. Other issues, such as ownership of data, 

and companies offering data sets to researchers (Boyd and Crawford 2012) are another issue 

impacting our social life and increases. Nevertheless, examples such as smart cities (Calabrese 2011) 

or open data archieves by governmental organisations illustrate the benefit, as well as the  backdraft 

of these developments; 

 Big Data is a Hype, and Expectations High – ’Real’ Big Data Processing will Require New 

Technologies: Big Data research is currently peaking it’s plateou of expections, when illustrated on 

a hype cycle. Viewing Big Data from this perspective, many new technologies will need to emerge 

before promises will be able to be kept. Thus a new way of thinking, as we discussed within the 

scope of this paper, is required, that Big Data does not become a disillusion, and will shift towards 

a stable position on it’s plateu of productivity. Models and frameworks like ours, will ensure, that 

Big Data will be shifting towards maturity. Viewing Big Data on the basis of Porter’s framework of 

Five Forces (QuickMBA n.d.), Big Data will be supporting decission making in business intelligent 

systems accross business areas and provide competitive advantage. Currently investments, new 

processes required to be established ’Big Data’ inside businesses, and it’s limitations are still high. 

Nevertheless, Big Data will increase competitive advantage; 

 Towards ’Algorithmic’ Regulation and Non-Rationality: in financial industries, automated 

trading algorithms are today’s stock brockers. This example illustrates the complexity of automatic 

and algorithmic data processing. As sugested by e.g. Tim O’Reilly – who predicts the dawn 

of ’algorithmic regulation’ – it might be required to introduce regulations that limit calculations in 

real-time. In financial industries this trend is already taking place today – it might be a matter of 

time, until real-time processing in the context of business applications is regulated as well. One 

other example is illustrated in (The Cybernetic Theory of Decision: New Dimensions of Political 

Analysis 2002), who introduced systems theory into political thinking. He argues, that rational 

assumptions in politics lead to random, contextless, and systematic decisions, where a non-rational 

way of problem solving would be for the good of the populations and other participants. 

With this paper we wanted to contribute with a different viewpoint towards the way of thinking about 

Big Data, and introduced the idea of Cognitive Big Data. This research work is still in process, and we 

will contribute with a deeper discussion in a follow-up publication. 

Please also note, that due to the page limitations of this paper, the appendix (the evaluation of 

particular projects) can only be found online on: www.artur-lugmayr.org/Publications. 
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