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Abstract 

Short distance public transport faces huge challenges, although it is very important within a 

sustainable transport system to reduce traffic emissions. Revenues and subsidization are 

decreasing and especially in rural regions the offer is constantly diminishing. New approaches 

for public transport systems are strongly needed to avoid traffic infarcts in urban and rural areas 

to grant a basic offer of mobility services for everyone. In the proposed work a demand centered 

approach of dynamic public transport planning is introduced which relies on regional traffic 

data. The approach is based on a demand model which is represented as a dynamic undirected 

attributed graph. The demands are logged through traffic sensors and sustainability focused 

traveler information systems. 
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1. Introduction 
The influences and requirements of public transport are changing continuously, thus 

municipalities and cities are facing huge challenges. Since several years, more and more people 

are using private cars for their mobility demands, especially in rural regions of Germany. As a 

result, the ridership and revenue on public transport is heavily decreasing. Simultaneously, the 

costs of energy and manpower for public transport are increasing rapidly (Kirchhoff and 

Tsakarestos 2007). In urban areas a similar trend is noticeable which leads to massive 

challenges for local authorities. 
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Through this trend the share of public transport in the modal split of Germany decreased from 

7.2% in 2002 to 6.9% in 2009 (Federal Environment Agency 2012). The occurred lack of yield 

from decreasing passenger volume and increasing expenses require new actions and measures 

from public government as well as from transport companies. Some actions to retain public 

transport are price hikes but they are very restricted and may lead to a drop in ridership 

(Kirchhoff and Tsakarestos 2007). Statistically the costs for public transport services increased 

by 24.6% in the years 2010-2015 regarding the German statistical federal agency (Statistische 

Bundesamt 2015). Nevertheless the public sector subsidizes the public transport system nearly 

to 50%. In this way existing supply with public transport services is ensured and payable, 

especially for low-income inhabitants. A big problem for local authorities is the distribution of 

the subsidization because the financing is very complex and non-transparent. In general, the 

subsidy goes strictly from government to the public transport companies, past the regional 

contracting authority (Werner 2011). Therefore a measurement of efficiency and effectivity 

and an intervention is not possible for the municipalities. Following these developments, the 

availability of public transport in rural areas with no counterbalance to the motorized individual 

car traffic is in danger (Kirchhoff and Tsakarestos 2007). The concatenation of circumstances 

between lower revenues and raising costs manifests as follows: 

 
Figure 1: Revenue-cost helix 

A further influence is the rising life expectancy of people whereby more people are not able to 

ensure their mobility of their own anymore. The so called demographic change indicates that 

in the year 2060 nearly 30% of the inhabitants of Germany are 65 years or older 

(Bundesministerium des Inneren 2011). Coincidently, the stronger urbanization is a huge 

challenge for future city authorities to avoid the traffic infarct. This trend can be avoided trough 

raising costs of fuel and a more attractive public transport services. On a long term perspective 

the prices for fuel is steadily increasing and a lot of commuters will switch from private cars to 

public transport (Kirchhoff and Tsakarestos 2007). A simulation of Hautzinger et. al. 

(Hautzinger, et al. 2005) shows that a rise of fuel prices by 10% will reduce the car traffic by 

2.9%. At the same time the share of public transport will rise by 0.4% (Hautzinger, et al. 2005). 

Furthermore, the European Union and the federal government imposed laws to reduce 

pollutants in downtown regions and to shift the commuter traffic from cars to public transport, 

which puts an additional need of actions on the local authorities (Kirchhoff and Tsakarestos 

2007).  

 

Unavoidable, an efficient public transport is the only suitable solution for future traffic systems 

to grant payable and sustainable mobility services for every person. In this context the diffusion 

of more and more data sources in the public area (e.g. inductive loops or camera sensors) and 

lower 
revenues

smaller 
portfolio

smaller 
ridership
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mobility requests on traveler information systems from citizens via smartphone applications 

are giving the possibility to predict mobility demands in real time (Di Lorenzo, et al. 2016). 

The combination of these datasets leads to an accurate reflection of the mobility behavior and 

performance in a region. Through this understanding it is possible to create a dynamic 

customer-oriented mobility portfolio tailored to the needs of the people in specific regions in a 

sustainable way. The most promising approach is the usage of ICT-based solutions to reduce 

the expenses for resources and reducing harmful environmental impacts. The increasing 

digitalization and huge distribution of smart phones provide now an optimal basis to establish 

new planning und steering styles in public transport, c.f. (Di Lorenzo, et al. 2016). The 

following chapter introduces the different forms of demands and the underlying data sources. 

Also the needed terms of supply for a dynamic public transport system are introduced. Chapter 

3 describes the demand model and the used path finding algorithm. 
 

 

2. Mobility demands and demand detection 
In the first step relevant terms for understanding different forms of demands and offers are 

defined. In general, mobility demands are demands of inhabitants in regions or cities to 

accomplish a superior objective, e.g. working or shopping. Usually, such individual objectives 

are gathered through a traveler information system (TIS) and are represented as a request to get 

from point A to B with several additional parameters, e.g. departure time or via stops. In 

general, daily mobility demands are mainly region-based. 

 

A transport demand is a demand which is generated from mobility demands. This demand is 

specified as a calculated shortest trip from A to B. This trip is routed over at least 2 (origin, 

destination) to several (via points) public transport stops. 

 

Fixed offers are conventional public transport routes which are following a fixed schedule with 

fixed stops and a fixed type of vehicle. For example, a long term offer is a fixed offer. 

Dynamic offers are based on the demand model proposed in this work. These offers are 

changing over time and always fulfill the demands of the inhabitants with direct connections 

or by using intermodal sections. They are separated in short or middle time dimensions.  

Special offers are offers provided by the operating association as i.e. a municipality or city. 

These offers may be trips to major events or increased demands as e.g. in holiday seasons. 

The offers are separated in three time dimensions. Short term offers are nearly ad hoc offers 

which are accomplished by regionally distributed vehicles. These offers have a time limit up 

to 60 minutes and are served by taxis or call-me-buses. Middle term offers are provided by 

regional transport associations or private companies and have an upper time limit of 24 hours. 

Long term offers are propositions which are equal to conventional public transport services. 

The trips are not changing for a specific range of time. They are served by the same type of 

vehicle in a fixed scheduled sequence. 

Trip offers are the routes provided for public transport association. They may be dynamic or 

fixed, short, middle or long term and the type of the vehicle is not specified. So a vehicle may 

be a big bus, several small buses, or even cars. These offers are provided by public or private 

mobility providers. 
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The in Chapter 3 described demand model is based on the following two systems. An analytical 

system of traffic sensors and a sustainability focused traveler information system. These 

systems are used to determine the demands of a crowd in a region. The collection of demands 

is very important to provide a sustainable and reliable future public transport system. 
 

2.1 Mobility demands from traffic sensors and enriched data 
The student project group “Regional Analysis and Prediction Platform by In-Memory Data” 

(RAPID) of the University of Oldenburg, Department Very Large Business Applications 

developed an analytical platform for traffic flows based on an in-memory system (SAP Hana1). 

Such visual exploration and analytic systems are increasingly demanded by municipalities and 

cities (Di Lorenzo, et al. 2016). 

The first dataset is provided by the municipality and consists of 158 position plans of traffic 

sensors which generating values at least every 90 seconds. The sensors are classified as follows. 
 

Detector type Location of detector 

Normal detectors On the stop line or 30 meters in front of the stop line to enhance 

the green phase 

Inductive loops On exits of crossings or on the stop line 

Demand buttons for 

pedestrians and cyclists 

Mounted on traffic signals 

Table 1: Types of sensors 

As second dataset the municipality provided data of the local public transport. The protocols 

are documenting at which timestamp a specific waypoint was passed by a bus. Unfortunately, 

there was no real time data of the public transport available thus a simulation of the bus traffic 

was performed to consider their influence on the traffic system. Delays are not considered in 

the simulation. The model of the public transport system is represented as an attributed graph 

(see Chapter 3) whereby a transport stop was stored as a node and a connection between two 

stops is stored as a relation. Transport stops have attributes like name, number of bus routes 

and geo-position of the stop. To consider the different time-dependent mobility behaviors of a 

region the departure dates are clustered in four different types: Monday-Thursday, Friday, 

Saturday and Sunday/Holidays. 

 

Based on this sensor data the amount of traffic emissions is calculated and predicted. The 

following paragraph describes the approach in detail. 

 

First, the calculated average carbon dioxide emission for the car-based traffic composition in 

the observed municipality is 187g CO2 per kilometer per car. This average is used as basic 

value for determining local deposits. The average amount of cars on an inductive loop is used 

and multiplied with carbon dioxide values (Treiber and Kesting 2010). Fabric new vehicles 

have a limit of 130 grams CO2 per kilometer. 50 µg/m3 is set as upper limit for acceptable 

values. Every value above is considered as harmful. Through this threshold, violations and 

compliances are easy to determine by an analyst of the municipality. As shown in Figure 2, the 
                                                           

1 High Performance Analytic Appliance developed by SAP (hana.sap.com) 
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emissions in a downtown region are very problematic. The city center is a traffic-calmed zone, 

so there are no traffic sensors. The ring around the city center is equipped with a lot of traffic 

sensors. The size of the circles are indicating the amount of cars passing a sensor. The color of 

the circles shows the emission levels caused by the traffic. Red means “very high” and green 

means “in acceptable range”. 
 

 

Figure 2: Emissions in a downtown region 

The inductive loops are stored as nodes with further information and further relations. The 

attributes of the nodes are geo-positions, names and types. The relations are storing attributes 

for the driving directions. These relations are containing the last passed node to get the driving 

direction (nodeFrom) and the following node to determine the target direction (nodeTo). 

Additional attributes are the number of counted lanes by an inductive loop and the number of 

lanes in driving direction of the street. The lane position describes the lane number where a 

sensor is available. The last attribute is the turn. It describes the possible driving directions of 

the driver as a number. 100 means only to turn left, 010 to drive straight, 001 to turn right, 

every direction is 111. 

 

The prediction of the traffic volume was the core task of the project group and was separated 

in short and long term predictions. The short term predictions build the future dataset for the 

next 15, 30 and 60 minutes. The long term prediction generates the dataset for any chosen day 

in the future. 

The short term prediction used the data of the previous 15 days. These 15 days have to be in 

the same day classification as described before because the traffic volume is different on 

weekdays and weekends. A similar evaluation was given by Roland Chrobok (Chrobok 2005), 

who observed traffic on highways. To predict the value for the actual time + 15 minutes; all 

values from the last 15 days for every inductive loop are selected and for each loop an average 

value is calculated. The same procedure was used for the 30 and 60 minutes intervals. An 

estimation derived a value of 0.2 for the exponential smoothing parameter A. The value St is 

calculated from the last 15 values with decreasing weighting. 
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𝑆(𝑥𝑡) =  𝐴 ∑(1 − 𝐴)𝑖𝑥𝑡−𝑖 ; 𝑣 ≅ #𝑣𝑎𝑙𝑢𝑒𝑠

𝑣−1

𝑖=0

 

 

(1) 

 

A restriction of this approach is that the values for a day classification like Friday and weekend 

is nearly a week in the past. Thus the last influences are not considered in the prediction. As a 

result, another prediction approach is used for these groups instead of using the last 15 days 

while the last 15 values are used to predict. 

 

The used formula is exponential smoothing. The weighting of the values decreases the older 

the timestamps are. The formula only calculates the first 30 seconds in the future so it was 

executed 30 times to get the value for 15 minutes. This approach can be used for any point of 

time but the error rate will increase rapidly for values greater than 15 minutes. 
 

 

Figure 3: Prediction of traffic volume on inductive loops 

By comparison to the short term prediction, the long term prediction is based on a regression 

model which relies on the described sensor data and additional weather data to calculate the 

traffic volume for any given day in the future. The predicted date was classified in one of the 

beforehand described groups and the last 15 days are selected. Afterwards, an average over the 

values for the whole day in 30-second intervals was built. This leads to a prediction as shown 

in the upper Figure 3. 

𝑆(𝑥𝑡) =
1

𝑑
∑ 𝑥𝑡

𝑑−1

𝑡=0

; 𝑑 ≅ #𝑑𝑎𝑦𝑠 

 

(2) 

These short and long term predictions are used to determine the superior traffic flows in a 

region or city. On these superior traffic flows the dynamic public transport services are aligned 

to increase their occupancy rates. Beside the alignment, traffic jams, and other incidents can be 

detected in real time by this tool. It can be used to give a municipality or city the possibility to 

optimize and control their traffic system more efficiently. 
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2.2 Mobility demands from traveler information systems 
The customer focused demand detection is possible through the usage of traveler information 

systems. One of these systems is developed in the project German showcase of electric mobility 

in Lower Saxony initiated by the German government (BMWi) in 2012. The project had a 

duration of three years. The sustainability focused TIS is developed within the sub-project ICT 

services in the work package customer oriented mobility, to overcome the lack of sustainable 

awareness of the traveler. This TIS is enhanced with a Sustainability Customer Relationship 

Management System (SusCRM) with operative and analytical components (Wagner vom Berg 

2015) and a customer centric intermodal mobility service. 

 

The system is able to track modal choices of travelers, analyze and summarize his mobility 

behavior and deliver reports on the ecological, environmental and social impacts of his travels. 

By this, the system is able to change the behavior of a traveler to a more sustainable 

consumption. The user can access the application via a mobile application called Guyde which 

also is a virtual assistant supporting the traveler during the whole trip, if favored. Through this 

guidance an observation and intervention on a customer level is possible. 

 

The generated data of the sustainable focused TIS consists of conventional models of 

intermodal trips, with sub-routes and transports. As additional information, specific vehicles 

are stored on the transport layer and specific restrictions as luggage or buggy are considered. 

Also, each trip is assessed in terms of costs and sustainability. To nudge users to a more 

sustainable selection three dimensions are integrated in the assessment process: steering 

behavior, historic behavior and target behavior of the customer. 

 

As feature of the data warehouse, every trip option and the user choices are comparably stored. 

Based on this historical door to door requests, a prediction of mobility demands in a region or 

city can be determined very accurately for individual persons. A similar approach is used by 

Lathia et al. (Lathia, Froehlich and Capra 2010). The above described data is used to model the 

customer oriented demands in the following demand model for the observed region. 

 

 

3. Demand model 
The described tools in the sections 2.1 and 2.2 are offering an analytical access for 

municipalities to local mobility behaviors and can be used as basis for a finer mobility planning 

and controlling. As next step, these approaches are combined to a regional demand model for 

a dynamic customer oriented public transport system. The services tailored to the customer 

demands are depending on different circumstances. Some of these parameters are e.g. peak 

values of simultaneous passengers on a trip, customer centered demands (bicycle transport, 

bags and parcels or buggies and wheel chairs) or a short term planning horizon. Derived from 

this, different transport types are identified. In case of high passenger occurrence figures 

conventionally articulated buses are used or the passengers are distributed on several normal 

buses which are serving the same track. If taking a bike, a bus or a car with bike mounting can 

be used. On a short term planning horizons in a region distributed vehicles are used (e.g. taxi, 
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call-me-bus) to provide ad hoc mobility services. To achieve this, a central demand platform 

has to be implemented. In the following section such a platform is suggested. 
 

 

3.1 Architecture of the demand platform 
The proposed demand platform includes the demand model for an inhabitant oriented public 

transport system. At its heart, the demand component contains a transport demand model, 

which is mainly based on two types of data. On the one hand is the infrastructure data which 

generally are basic sensors distributed in a city or region (cf. Section 2.1). In the proposed 

work, this data consists of several data sources, as i.e. inductive loops integrated in the asphalt 

of the street. Also used are camera sensors mounted on traffic lights for counting cars, trucks, 

bikes and pedestrians. On the other hand there is customer generated data such as transport 

requests on an electronic traveler information system (cf. Section 2.2). A further extension of 

data sources is intended. In this case data from the traveler information system described above 

is used. Besides these two types of data the municipality or any other operating instance may 

fill the model with additional fixed or special demands. This data which is not restricted could 

have the form of conventional regular trips. Also there may be specific trips which are special 

tours or excursions, trips to major events, or any other irregular event or occurrence. As 

explained in Chapter 2 there are different types of transport offers as short, middle and long 

term offers. Each of these offers has to be yield or otherwise the system will not be accepted 

by the public. 
 

 

Figure 4: Architecture of demand model with inputs and outputs 

Based on these datasets it is possible to identify transport demands in a region which are in line 

with local laws and sustainability requirements. The infrastructure data is used to determine 

superior traffic flows but determining demands for a specific customer are not very accurate 

within this dataset (Section 2.1). Derived from the infrastructure data, general expression for 

traffic flows on a specific day group and time can be given. Based on this, several regular 

public transport routes are identified. Also influences like traffic jams and huge load factors on 

roads can be detected and considered. The demands of the traveler information system are on 
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a customer centered level. In this case we have precise demands from door to door and for any 

specific customer. These demands are mapped on the model by using public transport routers 

to determine the shortest way to a destination over one to several transport stops. 

 

Besides the traffic data, data and demands from the municipality are integrated. There are, as 

described before, special demands like trips to fairs and major events. Additionally, the 

municipality provides data and maps of an area. For advanced consideration this data includes 

data of planned road constructions or similar information. Also, data of the street types is used 

for trip calculation. This data consists of road size and several other circumstances. As last 

input source, data from distributed vehicles in a region is included. Necessarily, this data is 

used to distribute demands to specific service providers which are geographically near to the 

demand request.  

 

Unlike the conventional trip planning in public transport a dynamic trip planning is established. 

Dynamic trip planning is based on demands gained by the demand model. In a region a set of 

public transport stops are available which are dynamically served by different public vehicle 

types. To fulfill demands, it is necessary to know the basic conditions of a region. For example, 

to calculate dynamic trips a map of the region and the specific road types are essential for 

planning. Not every type of vehicle is able to drive on small roads or narrow crossings and 

curves. Also, possible traffic jams have to be considered in calculating trips. The routing 

component is described in Section 3.3. 

 

3.2 Demand model as a dynamic undirected attributed graph  
The demand model is represented as a dynamic undirected attributed graph at a specific point 

of time. Each node in the graph is a public transport stop. 

Let the set of graphs G = {G1,…,Gt} be a sequence of graphs Gi = (V, E, A) with T = {1,…,t} 

as a set of timestamps. V is the set of vertices and Ei the set of edges that connect vertices of V 

at time 𝑖 ∈ 𝑇 (𝐸𝑖 ⊆ 𝑉 𝑥 𝑉) and A, the set of attributes that map each vertex-time pair to a real 

value: ∀ 𝑓 ∈ 𝐴, 𝑓 ∶ 𝑉 𝑥 𝑇 → ℝ (Pitarch, et al. 2014). 

 

Figure 5: Example of a dynamic undirected attributed graph of mobility demands 
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The set of graphs G includes different demand requests over time. In Figure 5 a graph Gi for a 

specific timestamp i is shown. The black colored nodes are public transport stops with no 

transport demand. The nodes A-D are representing demands whereby the demands are A to B 

and C to D. Each edge is the shortest road-based connection between two stops. The attributes 

of the edges are distance, transport demand identifier and superior traffic flow. In Figure 5, the 

shortest connections between two stops are visualized as black edges, two distinct demands are 

colored in orange or blue (from TIS). The red line in the center of the figure shows the overall 

traffic flow through an area derived from the infrastructure data. 

 

To achieve a best possible occupancy rate on public transport vehicles trips are approximated 

to the superior traffic flow. Thus the demand from C to D is fulfilled as trip (orange line) 

attached to the traffic flow (in red) to boost occupancy rate for this transport service. The 

demand from A to B is in consideration of economic and sustainable factors not directly linked 

to the superior traffic flow. By this, a small public transport vehicle can be used as a call-me-

bus or a taxi to fulfill the demand request. 

 

3.3 Calculation of optimal paths in graph-based public transport systems  
To achieve such a trip planning component, several approaches have to be combined. Koszelew 

introduces a method for determining optimal paths in public transportation networks (Koszelew 

2007). Usually, algorithms are determining the shortest path in a network but they are not time-

dependent. As described before, the demand model is time-dependent and can be used in a 

network model as proposed by Koszelew. An adopted version of the proposed algorithm is 

used. This version is based on the certain labeling algorithm which is a solution of the K-

shortest path problem and covers user preferences. The public transport network is defined as 

described in Section 3.2. In order to find the optimal path with a best possible occupancy rate 

further Key Performance Indicators (KPIs) like sustainability and costs for connections 

between stops have been added on the edges. Upper limits for these two parameters have to be 

set. The occupancy rate is defined as Minoc, trips with rates smaller than 25% are not offered. 

Maxsus is set as sustainability indicator; its maximum value is equal to conventional public 

transport network emissions. The in the following paragraph summarized algorithm from 

Koszelew determines the K-shortest paths for a given public transportation network. The set of 

input parameters includes additional parameters which have different importance (e.g. transfer 

time). The preferences are ordered and if the algorithm doesn’t determine a route the weakest 

weighted parameter will be ignored until a route is determined. If two or more routes are 

resulting the routes are prioritized by the importance of the preferences (travel time, etc.). 

 

The proposed algorithm consists of four main steps (see (Koszelew 2007)). First, it generates 

paths without changes and a standard breadth-first-search method is applied to construct the 

shortest path. Then the last kind of paths are determined which are including changes and 

distances. Then all additional preferences are determined for each path. 

 

Finally, the algorithm divides the set in a set of subsets according to the number of preferences 

in which they are sorted as best fitting or less fitting (Koszelew 2007). Nevertheless different 
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path optimization algorithms (e.g. Chinese postman) can be implemented but have to be tested 

within the demand model (c.f. (Lu, et al. 2015)). 

 

Besides the routing, a rerouting is very important to avoid disturbances. Shang et al. have 

introduced such an unobstructed route planning system (Shang, et al. 2014). Also, route 

optimization benchmarks may be used to validate trips in public transport system in further 

steps (Kilic and Gök 2015). 

 

3.4 Restrictions and similar approaches 
First, similar demand oriented public transport models are addressed by the German Aerospace 

Center (DLR) simulation tool SUMO (Krajzewicz, et al. 2012). Further approaches focusing 

on agent-based demand modelling, as described by (Huynh, et al. 2014). A broad overview for 

demand centered public transport is provided by Nelson et al. (Nelson, et al. 2010). 

 

The proposed demand model is still at experimental stage. Further tests and developments have 

to be performed. The model will be evaluated in the interdisciplinary research project “NEMo 

– Sustainable fulfillment of mobility demands in rural areas” funded by the Volkswagen 

foundation. Besides the technical evaluation, the acceptance on the customer side is also 

considered. 

 

A problem of this approach may be the cross-financing of public line networks in which 

productive lines are financing weak lines with low passenger volume. This should be 

compensated by a more effective public transport system with higher occupancy rates of 

transport vehicles. A further challenge is the question how to inform the travelers with 

information about the short term dynamic offers. A possible solution may be a mobile 

application based approach or intelligent signs at transport stops. 

 

 

4. Conclusion 
The public transport is mainly influenced by two inverse trends: cost pressure and securing the 

public mobility of the population with public transport services. The basic methods for 

planning public transport services are outdated and still relying on questionnaires, censuses and 

rarely requests on traveler information systems or ticket systems (Di Lorenzo, et al. 2016), 

(Schnieder 2015). Some approaches are aiming to implement new technologies on the vehicles 

or infrastructure but this is very expensive (cf. (Vassilis 2013)). This results in infrequent 

adjustments in public transport services because of high expenses. 

 

In this paper a demand model for future public transport systems is proposed to introduce a 

new steering opportunity for local traffic agents and public transport associations. This demand 

model is used to achieve a more dynamic customer oriented public transport system to ensure 

the mobility of the population and at the same time minimizing emissions. In term of Green IS 

the proposed solution shows new ways to organize and manage public transport systems in a 

more sustainable way by using ICT based solutions. 
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The next steps are to enlarge the competition in public transport systems by allocating demand 

oriented transport orders to private service providers. Enabling the private sector to participate 

in public transport services leads to a stronger portfolio of transport services and a broader 

access for society. 
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