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Abstract  
Service provision in low power network environments remains a very difficult task due to the 

lightweight nature of the devices involved. This paper explores and demonstrates the efficacy of 

the light weight resource allocation protocol (LRAP) in allocating services in a heterogeneous 

network environment consisting of primarily low power nodes. We show that with the correct 

resource brokering approach, services can be provisioned on nodes in a way which does not 

cripple individual nodes in network, while ensuring that services are distributed to nodes in the 

network where the lowest impact on overall performance will be made. This strategy provides an 

effective way of providing services especially in low power environments 

 

Keywords 
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1. Introduction  
 

Community clouds [1] are multi-tenant infrastructures which are shared among several 

organizations that have shared concerns. They are expected to form smart networked 

environments delivering critical services with high availability and optimal system performance 

in order for the applications to execute without delays and interruption. When deployed in 

Internet-of-Things (IoT) settings, community clouds can be used as backbone infrastructures for 

ubiquitous sensor networks [2] in diverse applications such as pollution monitoring, precision 

agriculture [3], water quality monitoring [4] and weather forecasting [5] for drought mitigation 

[6]. However, with the expected rise in the demand of community cloud computing services and 

systems, the amount of machines to monitor and manage might become too large a task for an 

administrator [6] to handle. The design and implementation of systems that can manage 

themselves autonomously is a solution to this problem. The autonomous service provisioning in 

community clouds require a) a lightweight cloud monitoring system that provide situation 

recognition in terms of availability of resources (processing, memory and communication) and b) 

a lightweight resource allocation process that may be built on optimal allocation techniques to 

match resources demands to their availability. The Lightweight Network Monitoring Protocol 

(LNMP) was presented in [7] as a first step towards community cloud management enabling 

resource monitoring by determining where resources are being consumed in the grid to enable 

making informed decisions on where to allocate services in the community cloud. While 
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addressing the first requirement, the LNMP protocol plays an important role in meeting the 

second requirement as it allows the cloud to allocate services to nodes in response to the  

performance statistics collected by the protocol. 

  

1.1.  Service provision in low power environments  

 

The autonomous service provision in community cloud systems depends on how the cloud sys- 

tem deals with load. One way consists of having multiple servers to spread the load of service 

requests. The load can be spread by the help of DNS servers using DNS round-robin techniques 

[8] to spread the load to multiple servers. Using various load balancing techniques works well on 

networks of heterogeneous hardware to select from, but becomes more complex when the size of 

the network rises, and more importantly when the hardware profiles of the devices change. 

Furthermore, it is difficult to assess if each service request that has been made carries the same 

performance weight on the system since it can happen that every second request made for service 

carries a heavier or lighter weight than the preceding request. This will result in one of the 

servers receiving a massive performance drop and thereby “punishing” other users who are 

currently executing tasks on the machine.  Service provision in lightweight network 

environments remains a very difficult task due to the lightweight nature of the devices involved 

in terms of processing power as well as the available RAM.  When looking at service 

provisioning in lightweight networked environments, arbitrary allocation of services always 

becomes an issue because the devices used are much more subject to performance penalties 

when overburdened with tasks due to their lightweight nature. For these reasons, it makes sense 

to have a service allocation process that acts on input provided by monitoring systems on the 

network. This way services can be allocated to various nodes on the network based on their 

performance values instead of using arbitrary load sharing techniques.  

 

1.2.  Contribution and outline  
 

This paper revisits the issue of service provision in cloud infrastructures by presenting, exploring 

and demonstrating the efficiency of the lightweight resource allocation protocol (LRAP) in 

allocating services in a community cloud infrastructure made of a heterogeneous network 

environment consisting of primarily low power nodes. As illustrated by the community cloud 

architecture in Figure 1, the LRAP protocol is a resource allocation protocol that builds upon a) 

the LNMP performance monitoring to achieve situation recognition in terms of resources 

availability, b) a distributed storage and c) the evldns DNS [9] for service provisioning. The 

LRAP agents use an approximation of the Knapsack algorithm [10] to enable optimal resource 

allocation. This differs from many resource allocation systems in cloud infrastructures which are 

based on a myopic or best-effort static approach discounting system optimality.  

 

The rest of the paper is organized as follows: Section 2 presents the community cloud 

management model by describing its main components and expanding on the LRAP protocol. 

Section 3 follows with discussions on the experimental evaluation while section 4 covers the 

experimental results. Our conclusion and a discussion on directions for future research are 

presented in section 5.  
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Figure 1: Community Cloud Architecture 

 

2. Community Cloud Management Model 
 

 

Figure 1 depicts a community cloud architecture which reveals how its two main components are 

interconnected through distributed cloud storage. The Lightweight Resource Allocation Protocol 

(LRAP) works by using the system performance to find where services should be executed in a 

networked environment. The emphasis is that it should, in its implementation, be suitable for low 

powered environments as well conventional. The performance value can be collected using 

LNMP or any other system monitoring service that is applicable to the prospect network 

environment.  Allocation of services would come as a direct result of services being queried in 

the network. Incoming service requests would access a networked or local global API which 

would either return the location of the host where the request could be executed or forward the 

request to the particular node/service that the user application has requested in case  that the 

requests made are actually successful.  

  

2.1 Lightweight Resource Allocation Protocol  
 

The idea behind the knapsack problem is assign a number of items of finite weight and value to a 

knapsack of finite size in order to achieve the most optimized ratio of value and weight in the 

bag/knapsack. The allocation process behind the LRAP protocol takes inspiration from the 

greedy approximation of the knapsack algorithm. In our case, each host on the network has a 

finite amount of resources available and each node on the networked environment advertises to 

the server its maximum penalty value. This is a predefined value that determines the maximum 

load allowed on the node in question, i.e. the maximum size of the bag. This is typically set to a 

value which expresses the performance threshold for the current machine. The “bag” is also not 

empty to begin with. These nodes are running their operating systems with whatever processes 

they need to be part of the network. Nodes in an LRAP network connect to a central point called 

a grid coordinator which is responsible for the allocation of tasks to nodes. It is at this node 

where the LRAP agent resides. The grid coordinator usually performs additional tasks in addition 

to being responsible for the allocation of services. This however is not part of the scope of this 
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paper. Each service running on the network typically consumes a certain amount of resources, 

such as CPU and memory. For example, loading a web page via Apache2 would place certain 

constraints on the disk, memory and CPU. 

 

 
Figure 2: Service request flow 

 

These can all be measured through LNMP and with it an average usage can be calculated to 

determine a resource consumption profile for the application in use. This profile can be 

translated into a weight that the process would be associated with. This value though should 

typically consist of multiple variables as each process could have different sort of impacts on the 

system. For example, some process might consume more RAM whereas another would be more 

CPU intensive and some might even consume a lot of everything available on system. Working 

with this sort of multidimensionality was too complex for this work. The optimization and 

classification of the weight values was also beyond the scope of this paper. Instead, a broader 

single valued weight was decided upon for each process in the system. In the examples used in 

this paper, we simply applied integer values (which had no upper bound); each value being an 

approximation of the service impact on the system when it runs per user request.  

 

2.2. LRAP Implementation  
 

The resource allocation model described above results in each node of the cloud infrastructure 

offering its own bag or ’execution bin’ where services can run. Compared to the greedy 

approximation of the knapsack algorithm, we are trying to fully optimize one bin and then move 

on to the next, filling all of the bins by selecting the most available bin (read ‘most empty’) at the 

time of service request. That is, if the bin is provisioned to run the service of course. If not the 

next most available bin is selected. This procedure is outlined in the following steps.  

• All the hosts on the network are connected to the grid coordinator. The coordinator ensures 

that it has the latest performance values for all of the connected hosts. Each host on the 

network is identified by a unique universal identifier (UUID).   

• The node connects with the list of all its available services to the grid coordinator and shares 

this list. The services are then added to the connection pool and the list of hosts associated 

with particular services is updated. The nodes that connect have their penalty values adjusted 

using the following formula.   

penalty = (RAM + SWAP + CPU) / 3  (1)   

Where RAM is the ratio of used RAM, SWAP is the ratio of used SWAP space, and CPU is 

the ratio of occupied CPU time.   
• The grid coordinator then arranges these hosts in ascending order by how much absolute 

availability they have. This means that if a host is connected and it has a much higher 
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maximum penalty value than another node on the network, the chances are much more likely 

that the node with the higher maximum penalty will be selected to be on top of the list.   

• When a service is to be selected,  the following checks are made  

• New_penalty = penalty + service_weight (2) 

• If New_ penalty is more than the maximum penalty defined, then the service    

request is rejected. 

• Otherwise, the service requests an IP address from the network manager and  

returns it  on success.   

• Thereafter the currently penalty is readjusted by adding the weight until the next evaluation 

cycle (every 60 seconds) completes and the new penalties are adjusted based on any new 

performance values retrieved from the client nodes.   
penalty = penalty + service_weight (3) 

  

 
Figure 3: Current penalty calculation flow 

 

 

  
Table 1: Hosts used in DNS performance tests 

 

3. Experimental Evaluation  
 

In order to display the efficacy of the solution in its ability to disseminate services in a 

networked environment, a DNS server was considered the perfect application to test the system. 

The DNS server was built using ‘evldns’; a self-described lightweight library to be used in 

constructing light, fast DNS servers. The package uses ‘libevent’ for high speed event handling 

and ‘ldns’ for the DNS packet manipulation. We configured each service to respond to queries 

made to the DNS server by their own custom subdomain names. The DNS server would be 

tasked to interpret these subdomain names and then interpret them as keys for selected services 

on the network. The networked system being tested in this particular paper is a heterogeneous 

network made up primarily of low powered network devices. The emphasis on the allocation 

protocol is to provision services in networks while providing as minimal impact as possible on 
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one particular node in the network. The devices used are Alix system boards and PC machines. A 

complete list of devices used in the network can be referenced in Table 1. 

  

3.1. Stress Evaluation  
 

These tests will be used to detect the state at which the system collapses. The results will be 

compared to that of the results achieved by the creator of ’evldns’. The stress test would consist 

of a network of two nodes. One being a high performance machine, whilst the other an Alix 

board configured with the LRAP agent running as the grid coordinator and a DNS server 

connected to it. The performance machine will then proceed to start slowly spamming the DNS 

server with queries which it has to resolve by first finding available nodes in the network. In this 

case the response is not the primary concern. The number of requests are slowly ramped by a 

value of 20% up every 20 seconds. This is con- ducted for a period of 15 minutes and 20 

seconds. The system statistics will be recorded as before by using ‘vmstat’ to collect the system 

information every second. The solution from Frank Denis, ‘DNS blast’, was taken and modified 

to perform the DNS spamming in our specific network context.  

 

3.2. Performance Evaluation 

  
These tests will just be used to determine the overall operating values of the system within the 

network while the software solution is running and DNS requests are being made. The requests 

will be made at constant time intervals as opposed to the previous test. This is so we can better 

detect changes in the network and operating performance on the host nodes.  

 

 

 
Table 2: Network service and weighting list 

 

 
Figure 4: Hosts used in DNS performance tests 

All performance values will be stored in the network using the existing BigCouch database 

infrastructure that was setup in the previous experiment. The idea here is to make requests in a 
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similar fashion to the stress tests. This however is not a test for the systems’ limits but more to 

demonstrate the effects in a networked environment.  

The experiment can be described as follows:  

• The entire network is connected in its deployed environment with all the nodes are connected 

to each other wirelessly.   
• The BigCouch database instances are running on all the connected nodes in the networks. So 

each instance will store its system data within the BigCouch cloud to allow for the allocation 

agent to monitor and calculate new performance values based on the load information stored 

over the previous minute.   
• The DNS server is started on the dedicated DNS node (alix1.local). This is simply configured 

in the configuration file and the DNS server is started on boot. The correct permissions are 

required as port 53 (DNS listen port) requires privileged access.   

• A polling server is setup with python installed to run the testing script. As before, the sub-

process module is used again as the Popen call that it provides is non-blocking. This will 

allow us to easily send multiple packets to each hosts in the network in quick succession.   

• The polling server is then selected to send payload packets of service requests to each node in 

the network. This will be done with all the nodes being connected in the network. The polling 

server will make a request to resolve the chosen hostname by randomly selecting from a list 

of available services.   

• Load had to be simulated on the servers. To achieve this, Apache web service was installed 

on each machine in the network along with PHP5. The process of sending a payload was 

achieved with running an actual process on each machine. The idea here is to get the DNS 

server respond with the appropriate IP address when the polling server requests a service on 

the network. The polling server will then take the IP address returned by the DNS server and 

in turn query a PHP script via Apache2. Take a look at the example service request displayed 

in Figure 6.   

• The polling server will then access the PHP script. The type value supplied in the URL is in 

reference to the service being accessed on the machine. This is done by creating a 

bash/python script which uses curl to access the resource at the specified IP. We are able to 

retrieve this value with relative ease by using the ‘host’ command. This even allows us to 

specify the DNS server that we wish to query, without having to change the default 

nameserver on the system specified in ‘/etc/resolv.conf’.   

• The PHP script will then proceed to execute a loading process while consuming a portion of 

the CPU time and memory representative of the weight that the process is associated with. 

The aim is to capture the overall system load averages across all systems.   

• The loading process executed is a benchmark stress testing tool called ‘stress-ng’. This 

allows one to specify anything from IO, RAM, SWAP and CPU usage for a specified amount 

of time and at a certain level and simulate the various process weights and impacts on the 

systems.  
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Figure 5: DNS request success rate vs queries per second 

 
Figure 6: CPU usage vs DNS requests per second 

 

 

4. Experimental Results  
 

4.1 Stress Tests  
 

It seemed (from observing the output from ‘top’ and ‘vmstat’ and the DNS server host), that a 

maximum threshold is reached where raising the amount of requests per second on an already 

loaded server seemed to make no difference. This was probably an issue relating to the network 

I/O of the Alix system board as they do not possess separate network and I/O controllers and 

everything is managed by the CPU. It should also be noted that these tests were not being 

conducted over a wireless connection. The results received when spamming the DNS server over 

a wireless connection were far off from even the first attempts before we started using DNS 

blast. This is probably due to greater latency when connecting via wireless. This is confirmed by 

the average result returned from the ping tests (17ms) to various nodes in the network as this 

network latency would be a predefined value in determining our maximum rate at which we 

could expect results to be sent and received. As this was more a test of the maximum load on 

DNS server and not a test involving the DNS server running in the wild, the fact that we tested 

this over a cabled connection is irrelevant. The system performs well initially but as it nears 482 

seconds (136 169 requests per second), it starts to keel over and the reliability falls. There seems 

to be a trend downwards but the spikes only confirm the assertion that the system becomes 

unstable/unreliable as the number of requests increase. The system therefore seems to only be 

able to reliably respond to requests that are coming in every 5 - 7 milliseconds. Everything else 

after that seems to indicate a sharp drop in reliability of the system. These results are confirmed 

when looking at the CPU performance in Figure 6. We can see that the CPU idle (yellow) drops 

around the same time that the accuracy is dropping while the usr (blue) and sys (red) increases. 
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The figure shows an increased amount of time spent in user and kernel space the CPU was 

spending executing code. The increased usage just seems to snowball from here making the 

system unusable.  

 

 
Number of requests  Host  

10  192.168.1.7  

71  192.168.1.2  

103  192.168.1.3  

3  192.168.1.6  

18  192.168.1.8  

16  192.168.1.9  

 
Table 3: Service requests per host 

 

4.2 Performance Tests  
 

The performance tests are performed twice. The first experiment is conducted with a maximum 

penalty that is way too large for one node to handle. A maximum penalty of 160 is given to the 

desktop machines with the rest of the nodes been given a very conservative 60. During the 

second experiment, this value is readjusted much lower (60).  On the first run, we can see from 

Table 3 that the desktop machines are absorbing most of the service requests. This is because of 

the really high maximum penalty values which in turn make the hosts more ‘available’ for 

service requests. It should be noted that the higher the maximum penalty is defined, the harder it 

is to reach maximum since it is based on a ratio of the current performance values. When we 

compare the service requests in the network we can see that the load now appears to be much 

more distributed than before. The desktop machines still absorb considerably more tasks than the 

Alix system boards. It is expected that the desktop machines will be allocated more tasks since 

they have a much lower penalty than the Alix boards. Also, having a much lower maximum 

penalty value means that the device won’t be allocated too many heavy tasks. This assumption is 

confirmed when we look at the CPU performance graphs for the desktop machines displayed in 

Figure 7. The second graph clearly shows that the system spends more time in idle than it does in 

the user and system states. This indicates that the CPU is doing less work for the duration of the 

experiment. This allows it to both complete tasks with relative ease and free itself up for other 

tasks. The Alix system boards in all likelihood were never even hit with a request to load one of 

the more weighty tasks (map, calendar, store).  

 

Number of requests  Host  

27  192.168.1.7  

77  192.168.1.2  

36  192.168.1.3  

12  192.168.1.6  

30  192.168.1.8  

29 192.168.1.9 
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(a) Desktop machine: beige.local 

 

 
 

(b) Desktop machine: cheddarcheese.local 

 

Figure 7: Two performance graphs showing the CPU performance on the first and 

second runs of the solution respectively 

 

4.3 Cloud System Benchmarking  
 

Ray Bellis’ implementation of the ‘evldns’ [9] was able to achieve a query rate of 60 000 queries 

per second. However, Ray was testing on an HP DL385 server which is somewhat considerably 

faster than our Alix board system. Also, it is not entirely apparent how Ray tested this but we can  

consider that a similar technique to ours was applied. Our solution was only able to reach 136 

queries (with 95% accuracy) per second before the great decline in reliability started kicking in. 

Considerably speaking though, the system performs reasonably well. Especially since we will 

most likely not be able to receive data even close to the max value (136-169 DNS queries per 

second) tested in a wireless networked environment. The various controllers on the device are 

simply far too slow to keep up with the amount of network traffic coming and the packets just 

get dropped or lost. The performance tests indicate the system’s ability to distribute the load 

among various nodes in a wirelessly networked environment. Also having high ‘penalty max’ 

values should really be discouraged unless the machine has really high performance. This is 

because the current penalty calculation is done with a relative comparison of performance to the 

‘penalty max’ value. However, the services, when being allocated to hosts in the network are 

adding a fixed not a scaled penalty value. Which is the correct intended behavior? But this means 
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that when the maximum penalty value is decided upon, it must be done in a way which most 

accurately describes the performance state of the machine, especially in relation to the processes 

it must run.  

 

5. Conclusions and future work  
 

The issue of service provisioning in low power environments was addressed in this paper by 

building upon the lightweight resource allocation protocol (LRAP) designed for lightweight 

community cloud infrastructures. The main contribution of this work was to show that with the 

correct resource brokering approach, services can be provisioned on the nodes of a lightweight 

cloud infrastructure in a way which does not cripple individual nodes of the underlying network, 

while ensuring that services are distributed to the nodes where the lowest impact on overall 

performance will be made. This strategy provides an effective way of providing services 

especially in low power environments. However, it shall be noted that in order to better allocate 

services to nodes, the multidimensionality of the service resource requirements and systems 

involved has to be brought to the table as this will only make the allocation algorithm more 

robust. Another dimension which has not been alluded or inferred upon so far in this work, is the 

particular network topology involved with the calculations. All the service operations involved in 

the network require the transmission of data via the network. This data transmission applies its 

own load on the various systems involved in the network and when topology is not considered, 

highly congested nodes could be selected by the LRAP protocol while the least burdened are left 

idle. In a performance sensitive context such as VoIP, this can become a very crucial 

determination step. The weights of processes and the maximum penalty attributed to nodes 

should also be something that is dynamically calculated based on historical data on the nodes. 

Addressing these issues is an avenue for future extensions of the work presented in this paper. 

The management of the communication network underlying the lightweight cloud infrastructure 

is another key parameter that may require redesigning existent network management techniques 

for the efficient engineering of the infrastructure. Multipath routing techniques such as presented 

in [11,12] will be redesigned to support QoS by having different forms of healthcare data 

propagated over different paths form a source to a destination. The cost-based traffic engineering 

techniques proposed in [13,14] will also be redesigned to balance traffic over the communication 

platform to increase throughput and reduce communication delays. Deploying a long distance 

sensor network [15] using flexible gateways as defined in [16] can expand the deployment in the 

rural settings of the developing world. This is another key issue that needs to be addressed as 

future research work.  
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