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Abstract 
Healthcare delivery system can immensely benefit from the use of HIT (Healthcare Information 

Technology). Clinical and administrative automation in hospitals can improve clinical quality through 

reduced mortality. Previous literature has failed to identify the impact of security technology usage and 

socio-economic factors on clinical quality improvement. Our paper addresses this gap through the security-

HIT interaction and socio-economic impact on overall clinical quality. We used OLS based regression 

technique to validate our model. We combined survey data of U.S. hospitals from Dorenfest Institute and 

Centers for Medicare & Medicaid Services from 2011 to 2013. Results from our study will guide healthcare 

professionals to understand the interaction effect of security, effective technology integration in clinical and 

administrative automation systems. We also strong evidence of socio-economic impact on mortality rate 

reduction. 
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Introduction 
The expected growth rate of the prime Healthcare IT (HIT) markets of USA and Europe is 11.80%, between 

2014 to 202o. Asia-Pacific, Latin America, and the Middle East are also catching up rapidly in HIT (Digital 

Journal 2016).  In the third quarter of 2015, forty-nine companies raised a capital of $689 million for HIT 

projects globally (MobiHealth, 2015).  

HIT adoption will facilitate a proper healthcare delivery system. It comprises of players such as 

patient, physician, nurses, administrators, insurers and regulators (Fichman et al. 2011). HIT applications 

improve patient outcomes, prevent unwarranted surgical procedures, reduce medical errors and cost 

reductions for the hospitals as well as the patients (Bowens et al. 2010). Use of uniform standard procedures 

and data entry techniques help in good quality health information retrieval (Morahan-Martin et al. 2004). 

However, improper HIT adoption may lead to fatal consequences (Classen et al. 1997, Verhoeven et al. 

2010). HIT adoption is dependent on people-process-technology and external environment (Agarwal et al. 

2010). Security and privacy concerns are the prime causes for slow adoption of HIT (Chaudhry et al. 2007). 

Use of HIT, enhances the chances of patient health information (PHI) being breached and 

confidentiality-integrity-authenticity (CIA) might get compromised. In 2014, a cross-site scripting flaw in 

the myGov website in Australia had the potential to expose any myGov user’s account information (The 

Sydney Morning Herald, 2014). Data security threat is a primary deterrent against the digital progress of 

National Health Service (The Guardian, 2014). The fear of data breach by insurers and employers from 

employee’s wearable devices resulted in sparse adoption and usage of such devices (The Guardian, 2015).  

In this paper, we model the impact of HIT on healthcare delivery system, using Mortality Rate 

(heart attack, heart failure, pneumonia) as the key performance indicator. Mortality rate is a proxy for 

clinical quality (CQual). HIT for this study includes both clinical and administrative processes. We also 
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study the impact of security, as a moderating variable, and socio-economic factors (such as literacy, per 

capita income and income disparity), on CQual. 

Literature Review 
Existing literature on HIT have been categorized into HIT adoption and HIT impact by Agarwal et al. 

(2010).  HIT design and implementation, quantifying the payoff in terms of quality and cost, workflow 

integration are the other areas of research.  Black et al. (2011) identified that there is a large gap between 

the postulated and the empirical outcomes. Chaudhry et al. (2006) also explained the reduction of the effect 

of clinical automation systems (CAS) in case of large-scale analysis of hospitals. All these challenges towards 

measuring the impact of automation on CQual made it necessary to understand and explore more factors 

affecting CQual measurements. In this paper, we tried to quantify the impact of HIT on CQual while 

accounting for socio-economic factors and security as part of HIT success. 

Several authors dedicated much of their effort to understand the adoption of information systems 

in healthcare. Technology Acceptance Models (TAM, TAM2) and Unified Theory of Acceptance and Use of 

Technology (UTAUT) have been used extensively to understand the adoption of electronic medical records, 

and other clinical automation (Liu & Ma 2006; Holden & Karsh 2010). However, the need for extraneous 

variables for better understanding of the model restricted such studies (Holden & Karsh 2010). Connel & 

Young (2007) designed a framework that suggested a move from administrative (admin) to clinical 

automation for marked improvement. Further, there were frameworks and models related to security and 

privacy concerns of sensitive patient information within the internal workflow. For example, role-based 

delegation framework (Zhang et al. 2002) or creating conflict sets for multi-task assignment (Bai et al. 

2014), both of which discussed access control and user authentication as a part of security measures. Parks 

et al. (2011) mentioned prior notice to the patient about any information disclosure are ways forward 

towards fair information practices. One important factor that we have included in our paper is security 

which is an essential inclusion in our HIT impact model owing to the concerns related to data access control. 

On the other hand, Devraj and Kohli (2003) found that HIT usage helps in improving hospital 

revenue and quality (measured using mortality rates) while using the age of hospital, patient income, 

outpatients and number of employees as controls. However, there has been literature that discussed the 

limited impact of HIT on clinical quality and expenses (Agarwal et al. 2010; Black et al. 2011; Himmeslstein 

et al. 2010). However, Bardhan and Thouin (2013) did a statistical study of HIT impact on process care 

quality as well as operating expenses. They used Dorenfest and CMS databases where they explained that 

clinical and scheduling systems do result in higher “Total Quality.”  

In this paper we used clinical and admin automation systems (CAS and AAS) as shown in Bardhan 

and Thouin 2013, for understanding the level of automation in a hospital. However, we strengthened our 

model by including clinical and admin application categories instead of individual applications to obtain a 

complete view of the level of automation. We also included security measures and socio-economic factors 

to understand their impact on overall CQual. 

Theory Foundation  
Research related to resource-based view theory explains competitive advantage lies in the valuable tangible 

and intangible assets of the firm (Wernerfelt et al. 1984). Even if a resource can be useful in supporting a 

“resource position barrier”, it is not a sufficient reason for a firm to be interested in it. Hence, it directs us 

to measure the impact of HIT through operational efficiency that has effect on the overall CQual. However 

to optimize the effect of IT, available tangible resources like bed count, physician count and security, and 

intangible resources like socio-economic factors and hospital type, play a vital role. Low IT productivity in 

healthcare led us to look into the theory of IT productivity paradox (Brynjolfsson 1993) which is a result of 

mismeasurement of input and output, lags due to learning and adjustment, mismanagement of IT and 

redistribution of profits. Our study tries to reduce the gap of mismeasurement in input and measures the 

output in terms of operational efficiency that is reflected by CQual. 
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Model and Hypothesis Formation 
In this section we formulate three linear equations to determine negative mortality rates for each medical 

condition, that is, heart attack (HA), heart failure (HF) and pneumonia (PN) in equations (1), (2) and (3) as 

shown below. The factors shown in Figure 1 are used in the equations. 

(HeartAttack_MortalityRate) = α0 + α1 * NofBeds (Hospital Size) + α2 * Physician_Total +  

α3 * AntiVirus_Count + α4 * IDS_Count + α5 * UA_Count +  

α6 * Government + α7 * Voluntary + α8 * Proprietary + α9 * Academic + α10 

* Critical_Special + α11 * General + α12 * Literacy + α13 * IncDis + α14 * PCI 

+ α15 * Clinical_Proportion + α16 * Admin_Proportion + α17 * Moderator_1 

+ α18 *  Moderator_2 + α19 * Moderator_3 + α20 * Moderator_4 + α21 * 

Moderator_5 + α22 * Moderator_6 -------------(1) 

 

(HeartFailure_MortalityRate) = β0 + β1 * NofBeds (Hospital Size) + β2 * Physician_Total +  

β3 * AntiVirus_Count + β4 * IDS_Count + β5 * UA_Count +  

β6 * Government + β7 * Voluntary + β8 * Proprietary + β9 * Academic +  

β10 * Critical_Special + β11 * General + β12 * Literacy + β13 * IncDis +  

β14 * PCI + β15 * Clinical_Proportion + β16 * Admin_Proportion +  

β17 * Moderator_1 + β18 * Moderator_2 + β19 * Moderator_3 +  

β20 * Moderator_4 + β21 * Moderator_5 + β22 * Moderator_6 -----------(2) 

 

(Pneumonia_MortalityRate) = ϒ0 + ϒ1 * NofBeds (Hospital Size) + ϒ2 * Physician_Total +  

ϒ3 * AntiVirus_Count + ϒ4 * IDS_Count + ϒ5 * UA_Count +  

ϒ6 * Government + ϒ7 * Voluntary + ϒ8 * Proprietary + ϒ9 * Academic +  

ϒ10 * Critical_Special + ϒ11 * General + ϒ12 * Literacy + ϒ13 * IncDis + ϒ14 * 

PCI + ϒ15 * Clinical_Proportion + ϒ16 * Admin_Proportion +  

ϒ17 * Moderator_1 + ϒ18 * Moderator_2 + ϒ19 * Moderator_3 +  

ϒ20 * Moderator_4 + ϒ21 * Moderator_5 + ϒ22 * Moderator_6 -----------(3) 

where    Moderator_1 = AntiVirus_Count * Clinical_Proportion 

Moderator_2 = AntiVirus_Count * Admin_Proportion 

Moderator_3 = IDS_Count * Clinical_Proportion 

Moderator_4 = IDS_Count * Admin_Proportion 

Moderator_5 = UA_Count * Clinical_Proportion 

Moderator_6 = UA_Count * Admin_Proportion 

HIT Applications 
Improving healthcare delivery system using CAS and AAS in healthcare improves CQual (Bowens et al. 

2010). Health information systems (HIS) improves healthcare delivery system and results in patient 

satisfaction (Nahm et al. 1999; Kazley et al. 2012). Table 1 shows the different HIS used in our analysis.   

Clinical IT systems categories Admin IT systems categories 

 Cardiology & PACS 

 ED/Operating Room/Respiratory/ 
Clinical Systems 

 Electronic Medical Record 

 Laboratory 

 Nursing 

 Pharmacy 

 Radiology & PACS 

 Human Resources 

 Document/Forms Management 

 Financial Decision Support 

 General Financials 

 Health Information Management (HIM) 

 Revenue Cycle Management 

 Supply Chain Management 

 Transcription 

Table 1: HIT Application categories for medical and non-medical automation in hospitals 



Can HIT Work Alone? 

                                                        Twenty-second Americas Conference on Information Systems, San Diego, 2016 4 
 

Hypothesis 1 (H1): Clinical information system has a negative effect on mortality rates. 
Hypothesis 2 (H2): Admin information system has a negative effect on mortality rates. 
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Figure 1: Model to demonstrate Mortality Rate Factors 

 

Physician Count 
The number of physicians has a positive effect on patient satisfaction (Gok et al. 2013). Patient satisfaction 

is the outcome of high-quality care provided by healthcare providers (Beattie et al. 2002; Laschinger et al. 

2005). Thus, increase in the number of physicians results in high care quality and reduced mortality rates. 

Hypothesis 3 (H3): Physician count negatively affects mortality rates. 

Hospital Size 
Hospital size is measured by the number of beds. Hospital size affects framing of regulatory compliance (D' 

Aunno et al. 2000) and hospital performance (Shohet et al. 2004, Palvia et al 2012, Bardhan and Thouin 

2013). However, workflow automation through EHR system does not provide many benefits when the size 

of the hospital increases (Thakkar et al. 2006).  

Hypothesis 4 (H4): Number of beds in a hospital has a negative effect on mortality rates. 

Security Software: 
Privacy and security breach causes harassment and discrimination for the patient and an economic loss to 

the providers and employers (Ohno-Machado et al. 2004; Neubauer et al. 2011). It includes unwanted 

modification or deletion of existing health records, causing deterioration in the CQual of the hospital. 

Hypothesis 5 (H5): Security has a negative effect on mortality rates. 

Security as a Moderator 
Apart from the effect of security on mortality rates, we are also interested in understanding the effect of 

security installation for HIT applications on mortality rates. For this purpose, we included moderator 

variables that capture the interaction between standardized values of security measures with CAS and AAS 

applications. 

Hypothesis 6 (H6): Security, as a moderator for information systems, moderates and enhances its 

negative effect on mortality rates. 

H6a: Anti-virus (AV) moderates and enhances the negative effect of CAS on mortality rates. 
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H6b: Anti-virus (AV) moderates and enhances the negative effect of AAS on mortality rates. 

H6c: Intrusion detection system (IDS) moderates and enhances negative effect of CAS on mortality rates. 

H6d: Intrusion detection system (IDS moderates and enhances negative effect of AAS on mortality rates. 

H6e: User Authentication (UA), moderates and enhances the negative effect of CAS on mortality rates. 

H6f: User Authentication (UA), moderates and enhances the negative effect of AAS on mortality rates. 

Hospital Type 
Hospital type is important because the physicians at public hospitals have higher self-efficacy, that is, belief 

in their capability to safeguard and protect patient‟s information privacy, compared to their counterparts 

in private healthcare facilities (Warkentin et al. 2006). On an average, administrative staff exhibit higher 

self-efficacy than medical staff across both public and private hospitals. (Appari et al. 2009). Thus, 

organizational culture and hospital type are important in influencing the quality of care of hospital (Palvia 

et al. 2012). Bardhan and Thouin (2013) also observed that the non-profit voluntary and the non-teaching 

hospitals are much more compliant to process quality than profit-making or teaching hospitals. 

Hypothesis 7 (H7): Hospital type, especially, voluntary and non-academic hospitals, have a negative 

effect on mortality rates. 

Social-Economic Factors 
We have also considered socio-economic factors such as literacy, causing digital divide (Bodie and Dutta 

2008), per capita income affecting technology diffusion (Slade et al. 2001), and income disparity (Blendon 

et al. 2002) to account for successful implementation and adoption of HIT. However, supporting technology 

diffusion and adoption does not ensure interaction of socio-economic factors. Hence, we directly measured 

the impact of social factors as a source of the improvement in care quality. 

Hypothesis 8 (H8): Socio-economic factors have a negative effect on mortality rates. 

Data  
We obtained the research data from three different data sources on U.S. hospital such as Dorenfest 

Institute for Health Information (HIMSS) (HIMSS 2004), Hospital Compare Website maintained by the 

Centers for Medicare & Medicaid Services (CMS) and America’s Health Rankings (AHR) published by 

United Health Foundation. Table 2 explains the details about each of the variables and the databases 

affiliations. We matched the provider number of CMS data with the Medicare number of Dorenfest data 

and thus tried to match the hospital data of CMS and Dorenfest. The HAEntityId is different for the different 

branches of the same hospital while the Medicare number remains the same. Further, we filtered the data 

to take up only those hospitals for which we had data for all the three years from 2011 – 2013 and the 

compact dataset consists of 966 hospitals. Our data consists of mortality rates for heart attack (HA) and 

heart failure (HF) as heart diseases account for 25% of total deaths in United States. We need to keep in 

mind that HF is more critical than HA in terms of mortality. Moreover, we also looked into pneumonia 

mortality rates (2.3% of total death) which has low to moderate death rate (Heron 2012). Thus we believe 

that our study is valid for overall healthcare delivery system.  

We observe that each security count has strong correlation with CAS and AAS but limited 

significance with mortality rates. Hereafter, we will be using the abbreviations of each variables (as shown 

in Table 2) in the results and discussion section. 

Methodology 
We checked the variables in the hypothesis empirically using hospital level data; first, checking for the 

correlation table, and then we use stepwise Ordinary Least Squares (OLS) Regression analysis to identify 

the final set of variables that affect the respective mortality rates. The different steps that we performed in 

the process of obtaining the results are summarized below in five simple steps. 

Step 1: Merging of Data from Dorenfest, CMS and AHR for the years 2011 to 2013. 

Step 2: Data Transformation: 

i) Transforming Security, Hospital Type into binary dummy variables.  



Can HIT Work Alone? 

                                                        Twenty-second Americas Conference on Information Systems, San Diego, 2016 6 
 

ii) Transforming State to obtain Literacy rate, Per Capita Income and Income Similarity rate. 

Iii) Calculation of CAS and AAS scores are as follows: 

CAS=
Number of Automated Clinical Systems

Total Number of Clinical Systems
 X 100       

AAS =
Number of Financial,Scheduling,and HR Systems

Total Number of  Financial,Scheduling,and HR Systems
  X 100 

Step 3: Run bivariate correlation for the variables in Table 2. 

Step 4: Moderator Formation:  

i) We further used standardized values for all the three security measures, CAS, and AAS.  

ii) Multiply each security measure with CAS and AAS to obtain six moderators. 

Step 5: Run stepwise OLS regression for each HA, HF, and PN mortality rates separately including 

the moderators obtained in Step 5. For each regression, use only those variables from that 

show correlation for each of the Y variables. 

 

Abbreviation Variables Mean Std. Dev. N Description Data 
Source 

X1 NofBeds 259.39 211.677 2898 Number of beds HIMSS 

X2 Physician_Total 447.87 434.063 1706 Physician Count HIMSS 

X3 AntiVirus_Count .69 .461 2898 AV Count HIMSS 

X4 IDS_Count .90 .296 2898 IDS Count HIMSS 

X5 UA_Count .53 .499 2898 UA Count HIMSS 

X6 Government .17 .378 2898 
Government 

hospitals 
CMS 

X7 Voluntary .69 .464 2898 
Voluntary 
hospitals 

CMS 

X8 Proprietary 0.00 0.00 2898 
Profit making 

hospitals 
CMS 

X9 Academic .07 .250 2898 
Academic 
hospitals 

HIMSS 

X10 Critical_Special .09 .283 2898 Critical hospitals HIMSS 

X11 General .85 .362 2898 
General 

hospitals 
HIMSS 

X12 Literacy 76.80 6.41 2898 Literacy Rate AHR 

X13 IncDis .46 .018 2898 
Income 

Similarity Rate 
AHR 

X14 PCI 41.36 5.86 2898 
Per Capita 

Income 
AHR 

X15 Clinical_Proportion 54.05 21.312 2898 CAS HIMSS 

X16 Admin_Proportion 77.03 16.17 2898 AAS HIMSS 

Y1 HeartAttack_MortalityRate 15.21 1.50 2378 HA Mortality CMS 

Y2 HeartFailure_MortalityRate 11.70 1.61 2776 HF Mortality CMS 

Y3 Pneumonia_MortalityRate 11.87 1.79 2847 PN Mortality CMS 

Table 2: Descriptive statistics of the variables used in the final dataset. 

Results and Analysis 
Table 3 shows the correlation between the variables used in Equations (1), (2) and (3). We further analyze 
the results for each of the mortality rates for a better understanding of the predictive model. 

Heart Attack Mortality Rate 
As shown in Table 3, H3 and H4 are confirmed. AV (X3) and UA (X5) shows negative correlation 

(H5 has 66.66% conformance), implying that access control (Bai et al. 2014, Zhang et al. 2002) and securing 

of applications by anti-virus improve care quality. Voluntary non-profit (X7), academic (X9) and critical-

care hospitals (X10) have reduced HA mortality rate (Y1) than general (X11) or government (X6) hospitals, 
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unlike what has been observed by Bardhan and Thouin (2013) for 2004-2006 data. This improvement 

might be due to proactive and efficient adoption of HIT and improved collaboration among academic and 

voluntary hospitals through telemedicine and EHR. Correlation results of literacy (X12), per capita income 

(X14), clinical applications (X15) and admin applications (X16) conform to the given hypothesis. 

In Table 4, we observe positive coefficient for X10, which means that there is some marginal effect 

of other factors. For example X7, which has a significant negative coefficient to mortality, is also negatively 

correlated with X10. The low positive coefficient for moderator_5 reiterates the fact that adapting new 

technology and security in practice, might be difficult (Chaudhry et al. 2006). This is caused by general lag 

in training and awareness (Brynjolfsson 1993), rudimentary security measures and viewing security as a 

cost for doing business. 

 

 

Table 3: Correlation table of Variables 

  

HA 

Sig. 

HF 

Sig. 

PN 

Sig. α β ϒ 

(Constant)   .000   .000   .000 

X1 -.118 .001 -.144 .000 - - 
X2 -.196 .000 -.098 .004 -.211 .000 

X4 - - .054 .026 - - 
X7 -.122 .000 - - -.054 .028 

X9 .074 .009 .075 .045     
X10 - - - - .083 .001 

X11 - - .072 .038 - - 
X12 -.051 .064 - - -.068 .009 

X13 - - -.075 .003 - - 
X14 -.074 .007 -.073 .004 -.043 .098 

X16 - - - - -.055 .025 

moderator_1 - - .056 .022 - - 
moderator_3 - - .086 .000 - - 
moderator_5 .067 .007 - - .092 .000 

Adjusted R2 0.111 0.069 0.0898 

Table 4: Regression Analysis of Mortality Rates 

X1 X2 X3 X4 X5 X6 X7 X9 X1 0 X1 1 X1 2 X1 3 X1 4 X1 5 X1 6 Y1 Y2 Y3

X1 1

X2 .3 1 8 ** 1

X3 .1 2 8 ** .2 3 1 ** 1

X4 .03 4 .03 3 -.1 8 3 ** 1

X5 .1 6 1 ** .2 6 0 ** .6 3 3 ** -.02 2 1

X6 .01 5 -.007 .06 2 ** -.04 4 * .05 4 ** 1

X7 .05 4 ** .1 6 2 ** .04 8 ** -.01 3 .007 -.6 7 8 ** 1

X9 .3 9 5 ** .1 3 5 ** .06 7 ** .03 2 .06 0 ** .1 04 ** -.06 4 ** 1

X1 0 -.3 2 3 ** -.2 1 1 ** -.001 -.1 04 ** -.04 1 * .04 9 ** .03 0 -.08 3 ** 1

X1 1 -.01 9 .07 2 ** -.04 4 * .05 9 ** -.008 -.1 1 0 ** .02 0 -.6 2 6 ** -.7 2 4 ** 1

X1 2 -.04 5 * .1 8 4 ** .04 4 * -.07 3 ** .05 3 ** -.1 6 5 ** .2 1 6 ** .06 2 ** .1 3 5 ** -.1 4 8 ** 1

X1 3 .1 4 9 ** -.002 .07 0 ** .01 8 .07 1 ** .07 1 ** -.1 3 2 ** .01 5 -.1 9 9 ** .1 4 5 ** -.4 7 7 ** 1

X1 4 .09 3 ** .1 7 4 ** .07 4 ** -.02 8 .08 0 ** -.1 3 1 ** .1 6 1 ** .05 1 ** -.08 1 ** .02 8 .3 5 7 ** .3 1 5 ** 1

X1 5 .3 3 2 ** .9 9 5 ** .2 3 9 ** .03 4 .2 6 6 ** -.007 .1 7 0 ** .1 4 1 ** -.2 2 0 ** .07 5 ** .1 7 3 ** -.02 1 .1 5 1 ** 1

X1 6 .2 4 9 ** .5 9 9 ** .2 2 9 ** .05 3 ** .2 9 4 ** -.05 0 ** .1 5 6 ** .1 2 1 ** -.1 4 6 ** .03 1 .02 6 -.03 0 .02 5 .6 3 1 ** 1

Y1 -.2 07 ** -.1 3 8 ** -.04 4 * .01 6 -.05 1 * .1 01 ** -.1 4 7 ** -.09 0 ** -.02 7 .09 5 ** -.07 3 ** .005 -.1 1 2 ** -.1 3 6 ** -.09 9 ** 1

Y2 -.1 8 6 ** -.001 -.01 6 .05 1 ** -.01 3 .01 4 .000 -.09 6 ** .005 .06 7 ** -.006 -.1 2 9 ** -.1 3 1 ** -.006 -.03 9 * .2 4 8 ** 1

Y3 -.1 6 6 ** -.1 05 ** -.07 8 ** .01 2 -.07 0 ** .08 9 ** -.1 1 3 ** -.08 0 ** .07 9 ** -.005 -.06 7 ** -.01 4 -.1 1 9 ** -.1 07 ** -.1 4 3 ** .3 2 3 ** .4 1 5 ** 1

**.  Cor r ela t ion  is sig n ifica n t  a t  th e 0.01  lev el (2 -ta iled).

*.  Cor r ela t ion  is sig n ifica n t  a t  th e 0.05  lev el (2 -ta iled).
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Heart Failure Mortality Rate 
In Table 3, IDS (X4) shows positive correlation with Y2 (HF mortality) which reiterates the lack of 

training and awareness. Income similarity rate (X13) negatively impacts Y2 and CQual. Insignificant 

correlation of CAS and AAS can be due to the criticality of HF condition. The correlation between Y2 and  

X1, X2, X9, X14 and X16 are similar to Y1. 

Regression results in Table 4 show that moderator_1 (Anti-Virus X Clinical Application) and 

moderator_3 (IDS X Clinical Application) have low positive coefficients indicating insignificant effect on 

HF mortality (Chaudhry et al. 2006, Brynjolfsson 1993). X4 and X13 plays a role in the Y2 model in 

increasing and decreasing the mortality rate respectively. Other contributors to the Y2 regression model are 

X1, X2, X9, X11 and X14 of which X9 and X11 negatively affects CQual and hence increases HF mortality. 

Pneumonia Mortality Rate 
From the table, we observe Y3 has correlation results similar to that of Y1. The variables X1, X2, 

X3, X5, X12, X14, X15 and X16 have significant negative correlations with Y3. Based on hospital type 

variables, X6 and X10 has significant positive correlation with Y3 which shows that pneumonia treatment 

quality is much better in voluntary or academic hospitals.  

Table 4 illustrates negative significance for physician number, voluntary hospitals, literacy, per 

capita income and moderator_5 has similar coefficient polarity as observed in HA mortality rate regression 

model. X16 contributes to this model unlike any of the previous models, which reiterates the positive effect 

of HIT applications on care quality (Black et al. 2011; Himmeslstein et al. 2010). 

 

 

Table 5: Summarization of hypothesis acceptance and model acceptance 

Conclusion and Road Ahead 
Table 5 explains the overall success of the hypothesis formation. Acceptance (Y) is for (100 percent) 

conformance with the hypothesis while rejection (N) is for 0 percent conformance. Partly accepted (P) 

refers to 66 percent conformance while partly rejected (NP) refers to 33 percent conformance to hypotheses.  

The regression result is contrary to some of our hypotheses regarding the enhancing effect of 

security in the performance of HIT to affect clinical quality. Moreover, the high positive correlation of the 

security measures with HIT shows that hospitals are keen to provide security while providing HIT. Thus, 

we can argue that the success of such effort depends on whether it is a proactive or a reactive one (Kwon et 

al. 2014). Excess time consumption by security efforts or difficulty in adaptation cannot help faster and 

efficient treatment. We also obtained expected the result of the negative impact of literacy rate, per capita 

income and income similarity rate on each of the mortality rates. Hence, we learnt that under present 

situation, HIT and security alone cannot improve quality unless it is well-integrated with the workflow. The 

managerial contribution includes the understanding of the effect of socio-economic factors, security in 

mortality prediction. Theoretically our research encourages us to learn the interaction between HIT and 

other significant factors like socio-economic issues or financial constraint. The inclusion of legal aspect of 

HA HF PN HA HF PN

H1 Y N Y N N N

H2 Y Y Y N N Y

H3 Y Y Y Y Y Y

H4 Y Y Y Y Y N

H5 P NP P N N N

H6a - - - N N N

H6b - - - N N N

H6c - - - N N N

H6d - - - N N N

H6e - - - N N N

H6f - - - N N N

H7 NP NP NP Y P P

H8 P P P P  P P

Hy pothesis Correlation Model Significance
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EHR (Appari et al. 2009) can be an important factor towards ensuring compliance, and can gain importance 

in future studies. In future, use of fixed time effects can improve the prediction model. 
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