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Abstract 

When patient data are shared for studying a specific disease, a privacy disclosure occurs as long as an 
individual is known to be in the shared data. Individuals in such specific disease data are thus subject to 
higher disclosure risk than those in datasets with different diseases. This problem has been overlooked in 
privacy research and practice. In this study, we analyze disclosure risks for this problem and identify 
appropriate risk measures. An efficient algorithm is developed for anonymizing the data. An experimental 
study is conducted to demonstrate the effectiveness of the proposed approach. 
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Introduction 

When patient data are shared for medical research and healthcare practice, it is required that appropriate 
measures be taken to protect the privacy of the patients. HIPAA (Health Insurance Portability and 
Accountability Act) delineates two approaches for protecting individually identifiable health information 
(DHHS 2000). The Safe Harbor (SH) rule specifies 18 categories of explicitly or potentially identifying 
attributes, called Protected Health Information (PHI), that must be removed or altered before the health 
data is released to a third party. Most of the 18 PHI categories are direct identifiers, such as name, phone 
number and email address. There are two PHI categories that are not direct identifiers: dates (e.g., date of 
birth) and locations (e.g., zip code). The SH rule requires that all date values be curtailed to include the 
year only and zip code values be truncated to show the first 3 digits only. To reduce information loss 
caused by the SH-based de-identification, HIPAA also provides the guidelines for releasing a Limited Data 
Set (LDS), which contains some date and location information more detailed than that specified under the 
SH rule. LDS requires data use agreements between the parties involved. 

 As an alternative to the SH rule, HIPAA also delineates a Statistical Standard approach that 
enables a statistical assessment of disclosure risk to determine if the data is appropriate for release. A 
well-known privacy model along this line of approach is k-anonymity (Sweeney 2002). The k-anonymity 
model focuses on a type of attributes, called quasi-identifier (QI), which include the date and location 
attributes considered in SH, as well as other demographic attributes such as age and gender. The values of 
the QI attributes can often be obtained from public sources, which can be used to re-identify individuals 
in the de-identified data. To reduce re-identification risk, k-anonymity generalizes the values of QI 
attributes such that the values of these attributes for any individual match those of at least 𝑘 − 1 other 
individuals in the same microdata. In this way, the individual identities are expected to be better 
protected. 

 In medical and health research, data are often collected for studying a specific disease. In this 
situation, it is quite likely that all the patients in the entire dataset have the same disease. We call such 
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data the same-disease microdata. Even though the microdata may also include individuals who do not 
have the disease (e.g., for comparison purposes), the records with and without the disease are typically 
known when the data are shared for secondary use. The same-disease microdata is common in medical 
and health research; examples include cancer registry, diabetes cohort studies, and registry of HIV 
patients. For the same-disease microdata, a privacy disclosure occurs as long as an individual is known to 
be in the microdata (e.g., HIV registry), even though the individual cannot be identified. Thus, individuals 
in the same-disease microdata are subject to higher disclosure risk than those with different diseases. In 
considering disclosure risk, SH and well-known statistical approaches (e.g., k-anonymity) do not 
differentiate the same-disease data from those having different diseases. Therefore, it is necessary to 
establish an appropriate method for evaluating disclosure risk for the same-disease microdata. 

 In this study, we perform a disclosure risk analysis for the same-disease microdata and develop 
an effective approach to anonymizing the data adequately. We show that Safe Harbor underestimates the 
disclosure risk for the same-disease microdata and k-anonymity provides misinformed risk estimate that 
can cause the anonymized data to be either under-protected or over-protected. We developed an efficient 
algorithm for anonymizing the same-disease data. Using a real patient datasets, we demonstrate the 
effectiveness of the proposed approach. 

Background and Related Work 

In analyzing privacy disclosure risk, the literature typically recognizes two types of disclosure (Duncan 
and Lambert 1989): (a) identity disclosure or re-identification, which occurs when an adversary is able to 
match a record in a de-identified dataset to an actual individual; and (b) attribute disclosure, which 
occurs when an adversary is able to predict the sensitive value(s) of an individual record, with or without 
knowing the identity of the individual. The k-anonymity aims to protect against identity disclosure by 
ensuring the QI values of any individual to be indistinguishable from those of at least 𝑘 − 1  other 
individuals. However, if these k individuals have the same sensitive attribute value (e.g., a disease), then 
the adversary can achieve attribute disclosure, i.e., disclosing the sensitive value of the target individual 
even though the individual is not definitely identified. Similar to k-anonymity, HIPAA also focuses on 
identity disclosure problem and does not provide guidelines on how to protect attribute disclosure. 

 Following HIPAA, data privacy studies in medical and healthcare domains focus mostly on 
identity disclosure. Several studies have considered re-identification risks in the context of population 
data (Benitez and Malin 2010; Sweeney 2002), while others have examined re-identification risk in 
microdata (El Emam et al. 2011). These studies, however, do not consider attribute disclosure risk. 

 Attribute disclosure problems have been studied quite extensively in the privacy literature outside 
health privacy domain (Machanavajjhala et al. 2006; Li et al. 2007), where it is typically assumed that 
there are multiple sensitive attribute values in microdata. Popular privacy models such as l-diversity 
(Machanavajjhala et al. 2006) and t-closeness (Li et al. 2007) have been developed to handle various 
attribute disclosure problems. These models, however, rely on the multiple-sensitive-value assumption to 
reduce attribute disclosure risk. The main idea is to anonymize data such that sensitive attribute values 
are well-distributed for the individuals having the same QI attribute values. When the sensitive attribute 
has only a single value, as in the same-disease case, none of these approaches is applicable. As mentioned 
earlier, for the same-disease microdata, a privacy disclosure occurs as long as an individual is known to be 
in the microdata. This disclosure is different from identity disclosure or multi-valued attribute disclosure 
described above. To formally study this disclosure problem, we call the presence of an individual in a 
microdata set an instance and the disclosure of such a presence an instance disclosure. 

Re-identification Risks with HIPAA and k-Anonymity 

HIPAA considers identity disclosure based on population data (Benitez and Malin 2010; El Emam et al. 
2011). To illustrate the idea, consider an example segment of population data in Table 1, which is publicly 
available (e.g., from voter registration lists). The original data contains two QI (also PHI) attributes: 5-
digit zip code (Zip5) and date of birth (DOB). The last two columns show their SH representation: 3-digit 
zip code (Zip3) and year of birth (YOB). In data privacy literature, the set of all records that share the 
same values on a set of QI attributes is called an equivalence class (EC) (LeFevre et al. 2006). In the 
original data, for example, the last two records, Helen and Irene, form an EC and every other record is an 
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EC individually. With Zip3 and YOB representation, there are only two ECs (separated by the dash-line), 
one including the first three records and the other containing the remaining six records. 

 Let 𝑁𝑖 be the number of records in the ith EC in population data P. Under Safe Harbor, the re-
identification risk for each record in the ith EC is 

𝑞𝑖 = 1 𝑁𝑖⁄  

So, with original data, the re-identification risk is 1/2 for Helen and Irene and is one (100%) for the other 
individuals. With Zip3 and YOB representation, the risk is 1/3 for each of the first three records and 1/6 
for each of the remaining six records. 

 For an individual in a microdata set, the re-identification risk is the chance of correctly matching 
this individual to an individual in the population. This can be calculated based on 𝑞𝑖 . Table 2 shows a 
patient microdata set in the same format as that of Table 1 except that the direct identifier, Name, is 
removed and replaced by a system generated non-informative Patient ID. If the data are released with 
Zip5 and DOB, then the first five records can be uniquely re-identified based on the population data – 
they are Alice, Bob, Charlie, Dave and Grace, respectively. The last record has a re-identification risk of 
1/2 (either Helen or Irene). If the data is released with Zip3 and YOB, then patient #1 can be Alice, Bob or 
Charlie; so the re-identification risk for the patient is 1/3. Similarly, the re-identification risk for patients 
#2 and #3 is also 1/3, respectively. For patient #4 (or #5 or #6), there are 6 matching records in the 
population. So, the re-identification risk for patient #4 (or #5 or #6) is 1/6. 

Name 5-Digit Zip Code (Zip5) 
Data of Birth 
(DOB) 

 
3-Digit Zip Code 
(Zip3) 

Year of Birth 
(YOB) 

Alice 00101 07/15/1927  001** 1927 

Bob 00101 05/28/1927  001** 1927 

Charlie 00101 10/26/1927  001** 1927 

Dave 00202 01/02/1935  002** 1935 

Emily 00202 02/03/1935  002** 1935 

Frank 00202 10/24/1935  002** 1935 

Grace 00202 05/13/1935  002** 1935 

Helen 00202 09/26/1935  002** 1935 

Irene 00202 09/26/1935  002** 1935 

Table 1.  An Illustrative Example of Population Data 

 

Patient 
ID 

5-Digit Zip Code 
(Zip5) 

Data of Birth 
(DOB) 

 
3-Digit Zip Code 
(Zip3) 

Year of Birth 
(YOB) 

1 00101 07/15/1927  001** 1927 

2 00101 05/28/1927  001** 1927 

3 00101 10/26/1927  001** 1927 

4 00202 01/02/1935  002** 1935 

5 00202 05/13/1935  002** 1935 

6 00202 09/26/1935  002** 1935 

Table 2.  An Illustrative Example of the Same-Disease Microdata 

 The k-anonymity model does not provide a precise estimate of re-identification risk for an 
individual record. Instead, it provides the maximum re-identification risk for any record in a dataset, 
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which is 1/𝑘. This maximum occurs when the individuals in an EC in the microdata are the same as those 
in the corresponding EC in the population. When releasing data in Table 2, if Zip3 and YOB are used, then 
the released data satisfy 3-anonymity and the maximum re-identification risk is 1/3 for any record. This 
maximum risk is equal to the actual re-identification risk for the first three records but much larger than 
the actual risk (1/6) for the last three records. 

Instance Disclosure Risk for the Same-Disease Microdata 

For the same-disease data, disclosure risk should be evaluated differently. To see this, assume all records 
in the above example have the same disease. Suppose the data is released with Zip3 and YOB, which 
satisfies both SH and 3-anonymity requirements. An adversary having an access to the population data 
will know for certain that the first three records are Alice, Bob and Charlie. If his target is Alice (or any of 
these three people), he will discover that Alice has the disease even though he cannot determine which of 
the three patients is Alice. The actual identification of Alice is not important here. Because the number of 
records in this EC is 3 in both the microdata and the population, the chance of the instance that an 
individual in the population appears in the microdata is 3/3 = 1. In terms of the second EC, the number 
of records is 3 in the microdata and 6 in the population. Therefore, the chance of the instance is 3/6 = 0.5. 

 Based on the above observation, we now define the instance disclosure risk. Let D be a same-
disease microdata set where all the direct identifiers are removed. Let P be the population segment 
containing D. In P direct identifiers exists and the QI attributes are represented in the same way as in D. 
So, for each EC in D there is an EC in P with the same QI values. We arrange matching ECs in D and P in 
the same order and label the matching EC in D and P with the same index i. Let 𝑛𝑖  and 𝑁𝑖 be the number 
of records in the ith EC in D and P, respectively. The instance disclosure risk for a record in the ith EC is 
defined by 

𝑟𝑖 = 𝑛𝑖 𝑁𝑖⁄  

Statistically, 𝑟𝑖   is the probability that an individual having the QI values specified in the ith EC in 
population P appears in microdata D. Comparing 𝑟𝑖  with 𝑞𝑖 , since 𝑛𝑖 > 1 in general, it is clear that instance 
disclosure risk is generally greater than re-identification risk. Therefore, the widely used re-identification 
risk measure actually underestimates the disclosure risk for the same-disease data. The maximum re-
identification risk suggested by k-anonymity, which is 1/𝑘, may also underestimate the disclosure risk for 
the same-disease data. This is true for the illustrative example in Table 2, where instance disclosure risks 
for the two ECs are 1 and 0.5, both greater than 1/3. It is also possible for k-anonymity to overestimate the 
risk for the same-disease microdata. Suppose there are 15 individuals in the population having Zip3 = 
‘002**’ and YOB = 1935. Then the instance disclosure risk for a record in the second EC in the microdata 
is 3/15 = 0.2, which is much smaller than 1/3. In short, the maximum re-identification risk suggested by 
k-anonymity does not really provide appropriate information about disclosure risk for the same-disease 
data. 

 The instance disclosure risk is defined for an individual record. To measure average risk with 
respect to a microdata set, let |𝐷| be the number of records in D and m be the number of ECs in D. Then, 
the average instance disclosure risk for D is defined by 

𝑅 =
1

|𝐷|
∑ 𝑛𝑖𝑟𝑖

𝑚

𝑖=1
 

For the illustrative example in Table 2, the average instance disclosure risk is 

𝑅 = [3(1) + 3(0.5)]/6 = 0.75 

 We can similarly define the average re-identification risk for D as 

𝑄 =
1

|𝐷|
∑ 𝑛𝑖𝑞𝑖

𝑚

𝑖=1
 

For the illustrative example, the average re-identification risk is 

𝑄 =
1

6
[3 (

1

3
) + 3 (

1

6
)] = 0.25 



 Privacy Preservation in Releasing Patient Data 
  

 Twenty-second Americas Conference on Information Systems, San Diego, 2016 5 

 To anonymize the data with the same sensitive value (e.g., same disease), we use the 
generalization operation as in k-anonymity (Sweeney 2002), which generalizes or truncates QI attribute 
values to higher-level values gradually. In particular, zip code values are generalized by removing a digit 
gradually from right to left. DOB values are first generalized to YOB values and may be further generalized 
to a range of YOB values (e.g., ‘1935-1940’) if necessary. 

 An algorithm using generalization to reduce the instance disclosure risk should be able to 
consider both microdata and population data. Existing k-anonymity algorithms (e.g., Sweeney 2002; 
LeFevre et al. 2006) are not appropriate because they are based on microdata only. On the other hand, 
approaches based on re-identification risk are also not applicable because they consider population data 
only. We propose an algorithm to reduce the instance disclosure risk using both microdata and population 
data. It divides the data into a number of subsets based on the idea of recursive partitioning in decision 
trees. The QI attribute values in the subsets are then generalized to transform each subset to an EC. To 
avoid unnecessary information loss, the generalization is based on the most detailed common QI values 
within a subset. For example, the zip code values for the two subsets in Table 2 will not be generalized to 
Zip3 format but will remain in Zip5 format since all records within the same subset have the same Zip5 
value (i.e., 00101 and 00202 respectively). On the other hand, DOB will be generalized to YOB. 

In the recursive partitioning process, there are many ways to split the data by using different QI attribute 
values, causing different instance disclosure risks and different data qualities when the QI values of the 
partitioned subsets are generalized. We have discussed how to measure instance disclosure risk. In terms 
of data quality, it is clear that an attribute having a larger variance in its values will have more information 
loss if the values of the attribute are generalized. Such attribute should have a higher priority to be 
selected for partition to reduce the variance after partition. Let 𝑣𝑗  be the variance of attribute j in a 

(partitioned) dataset. Let 𝑅𝑗(𝑠)  be the average instance disclosure risk when splitting the subset at value s 

of attribute j. Then, the ratio 𝑅𝑗(𝑠)/𝑣𝑗 captures both the disclosure risk and data quality aspects. Because a 

small disclosure risk and a large variance are preferred, the split having the minimum 𝑅𝑗(𝑠)/𝑣𝑗 should be 

selected for partitioning the current set. Our proposed algorithm uses this criterion at each iteration. Note 
that in computing variance, we first transform categorical QI values into numeric or ordered values based 
on coding methods suggested in LeFevre et al. [2006], and then normalize all original or transformed 
numeric values to unit scale. 

 

0. Given: microdata D and underlying population P, which have d common QI attributes. 

1. List the values of each QI attribute in ascending or descending order. With the values 
ordered, trial-splits can be performed linearly between every pair of adjacent values. 

2. For each QI attribute j, compute 𝑅𝑗(𝑠)/𝑣𝑗 for each trial-split s. Call the trial-split having 

the minimum 𝑅𝑗(𝑠)/𝑣𝑗 as the “best trail-split” for QI attribute j. 

3. Find the overall best split among the d best trial-splits and partition the current dataset 
into two subsets using the attribute value of the overall best split. 

4. Repeat Steps 2 and 3 for each of the two subsets until a pre-specified stopping criterion 

is met (e.g., the minimum number of records required for a subset). 

5. For each subset, generalize the QI attribute values using their most detailed common 

value within the subset, which transforms the subset into an EC. 

Fig. 1  Algorithm to generalize data based on instance disclosure risk 

 

The proposed algorithm is given in Figure 1. It follows from Proposition 3 that the maximum instance 
disclosure risk increases as recursive partitioning of dataset D causes the partitioned subsets to be 
progressively smaller and thus be generalized at more detailed levels. So, a minimum subset size, like the 
k parameter in k-anonymity, can be used to control the disclosure risk. The algorithm is computationally 
analogous to a decision tree algorithm. As such, the time complexity of the algorithm is of 𝑂(𝑁log𝑁), 
where N is the number of records in P. In actual implementation, we can reduce P to include only the 
segment of the population that is relevant to D. As such, P is unlikely to be overly large. So, the algorithm 
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can be quite efficient. The algorithm assumes that the QI attribute values can be ordered. Otherwise, local 
recoding as suggested in LeFevre et al. [2006] should be applied to convert the data to orderable values. 

 

Experimental Evaluation 

We conducted experiments on a real patient dataset, which includes 180 records of patients who had 
undergone the same surgical procedure (and thus can be considered as the same-disease data). All 
patients resided in a single northeast state in the US. There are three QI attributes in the dataset: gender, 
date of birth and 5-digit zip code (LDS). The patients were 61% female, had a mean age of 65 years, and 
resided in 84 zip codes. The voter registration lists for that state were collected to serve as the primary 
population data. A commercial data vendor was also used as a supplemental source for population data. 

Release Method max 𝑞𝑖 max 𝑟𝑖 Q R 

Safe Harbor 0.0376 0.0473 0.0020 0.0043 

Limited Data Set 1.0000 1.0000 0.5344 0.6633 

Table 3.  Results of Re-identification Risks and Instance Disclosure Risks 

 We first compare the results of re-identification risk with those of instance disclosure risk for SH 
and LDS release. As described earlier, re-identification risk and instance disclosure risk vary with 
different records. So, we report in Table 3 the maximum re-identification risk (max 𝑞𝑖) and maximum 
instance disclosure risk (max 𝑟𝑖), as well as the average risks Q and R. It is clear from Table 3 that max 𝑞𝑖  
and Q are considerably smaller than max 𝑟𝑖  and R, respectively, in all scenarios (except the maximum risks 
in LDS release). This suggests that traditional re-identification risk measures seriously underestimate the 
real risk of disclosure for the same-disease data. It is also observed that LDS release has much higher risks 
than SH release for all risk measures, which is expected. Both max 𝑞𝑖  and max 𝑟𝑖  with LDS release are one 
(100%), indicating unique re-identification of at least one record in the dataset. 

 Next, we examine the effectiveness of the proposed algorithm in reducing the instance disclosure 
risk in comparison with the SH approach. We anonymize the original data with the SH rule and the 
proposed algorithm, respectively. In generalizing QI values for a dataset, it is clear that the larger the 
number of ECs (i.e., the smaller the size of an EC), the less degree of generalization is required for 
individual ECs, which means less information loss after generalization. To facilitate the comparison, we 
have thus used our algorithm to partition the data such that the number of ECs generalized is no less than 
the number of ECs with the SH approach, which implies that information loss for the data generalized 
with our algorithm is no more than that with the SH approach. 

Release Method Number of ECs max 𝑟𝑖 R 

Safe Harbor 109 0.0256 0.0030 

Proposed Algorithm 115 0.0137 0.0015 

Table 4.  Results from Safe Harbor and Proposed Algorithm on Dataset 1 

 

 The results from SH and the proposed algorithm are shown in Table 4. The number of ECs with 
the proposed algorithm is slightly larger than that with SH, suggesting slightly smaller information loss 
with our algorithm. The maximum and average instance disclosure risks with our algorithm, on the other 
hand, are only about half of those with SH. Therefore, our algorithm is very effective in reducing instance 
disclosure risk for the same-disease data. 
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Discussion 

Sharing of same-disease data is common in medical research and healthcare practice. Individuals in the 
same-disease microdata are subject to higher disclosure risk than those in microdata with different 
diseases. This problem has been largely overlooked in data privacy research and practice. In this study, we 
have shown, both analytically and experimentally, that the widely used re-identification risk measure 
underestimates the actual disclosure risk for the same-disease data. With increasing concerns for patient 
privacy, this finding has significant policy and practical implications. 

 This study reveals two limitations of the SH policy. First, SH applies the same standards for 
releasing different microdata, which expectedly causes under-protection for some microdata but over-
protection for others because disclosure risks in different microdata are different. In the same-disease 
case, SH tends to be under-protective. Second, SH considers only PHI elements, based exclusively on 
identity disclosure concern. Instance disclosure in the same-disease data poses a privacy threat not caused 
by identity disclosure. This suggests that focusing on PHI alone without considering disease information 
may not be adequate for safeguarding patient privacy. The same-disease data require tighter privacy 
protection than data with different diseases. 

 We do not, however, advocate setting up a more restrictive SH standard. A more stringent SH 
policy would cause overly large information loss for many data-sharing applications. We recommend that 
data owner organizations and researchers employ HIPAA’s Statistical Standard approach when sharing 
the same-disease microdata. This work has established a theoretical ground for such a statistical 
approach. As shown in this paper, disclosure risk analysis for the same-disease microdata is in a sense 
simpler than that for data with different diseases (such as l-diversity and t-closeness). It is worthwhile to 
take the effort to pursue the analysis. 

Conclusion 

In closing, we should emphasize that privacy implications vary across different diseases. For example, an 
HIV patient dataset is obviously much more sensitive than a flu patient dataset. Therefore, even though 
the flu dataset has higher disclosure risks than the HIV dataset, it is expected that the HIV dataset 
requires a more protective action. This should be very clear to the policy makers and data-sharing entities. 
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