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Abstract 

Existing predictive modeling in sports analytics often hinges on atheoretical assumptions winnowed from 
a large and diverse pool of game metrics. Feature subset selection by way of a genetic algorithm to identify 
and assess the combinatorial advantage for a group of metrics is a viable option to otherwise arbitrary 
model construction. However, this approach concedes similar arbitrariness as there is no general strategy 
or common practice design among the tightly coupled nucleus of genetic operators. The resulting dizzying 
ecosystem of choice is especially difficult to overcome and leaves a residual uncertainty regarding true 
strength of output, specifically for practical implementations. This study transposes ideas from extreme 
environmental change into a quasi-deterministic extension of standard GA functionality that seeks to 
punctuate converged populations with individuals from auxiliary metas. This strategy has the effect of 
challenging what might otherwise be considered shallow fitness, thereby promoting greater trust in 
output against innumerable alternatives.   
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Introduction 

The sparse and fragmented nature of the academic sports analytics domain has as a consequence 
athoeretical assumptions during model development.  Stated differently, without existing theory from 
which to guide and justify model construction, assumptions are at best capricious and at worst tightly 
coupled with researcher bias.  Yet, professional sporting franchises are increasingly seeking to establish 
clear quantitative demonstrations of the value for a data asset (Davenport, 2014).  Said asset is typically of 
non-trivial dimensionality, containing numerous and disparate measures of athletic performance, game-
day measurements, etc.  However, without the benefit of theory, assumptions must be made that limit 
inclusion of noisy variables when developing inductive techniques in order to improve overall model 
accuracy.  From a strategic perspective, reliance on conclusory assumptions as a consequence of a theory-
thin landscape is problematic.  Nevertheless, this standard does not intrinsically diminish the potential 
for knowledge discovery in sports analytics research. 

Sports are big business, with an estimated total market value of hundreds of billions of dollars in the 
United States and ranking as one of the top-10 business markets globally (Fry and Ohlmann, 2012).  An 
increasing number of sports organizations are implementing analytical approaches to decision-making, 
although its wholesale adoption remains remote (Davenport, 2014).  Nevertheless, coupled with a recent 
surge in the level of scholarly interest, sports analytics offer a fertile research environment, however 
fragmented, as highlighted by lack of academic programs devoted to sports analytics (SA) with few and far 
between research forays into sports  (Coleman, 2012).   

According to Davenport (2014), who conducted a series of interviews with 25 sports teams and vendors in 
the US and Europe, analytical initiatives in the domain of professional sports boast impressive growth and 
activity, including increasing output channels for analytics, multiple analytical domains of interest, annual 
growth for one of its major conferences (Sloan Sports Analytics), etc.  Among Davenport’s conclusions is a 
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need to move toward predictive and prescriptive analytics as current activities in professional sports 
continue to be mostly descriptive.   

To that end, the research described herein applies iterative design science to develop and test a predictive 
model whose purpose is to improve athletic game-day performance forecasts for a skill position of a 
specific sport.  Principles of feature subset selection are combined with a tailored genetic algorithm (GA), 
a flexible optimization heuristic based on population genetics.  According to Yang and Honavar (1998) 
feature subset selection (FSS) refers to the task of identifying and selecting a useful subset of attributes to 
be used to represent patterns from a larger set of attributes.  The pairing of FSS and GA is not often 
experimented with in academic sports analytics research, yet retains the advantage of minimizing the 
aforementioned assumption-making difficulties.   

Literature Review 

Sports Analytics 

Academic sports analytics research remains fragmented and incoherent, comprising a mélange of 
techniques providing no consensus on general approaches.  This fog is attributable to the competitive and 
secretive nature of professional sports (i.e., analytic results and methods are kept internal) in addition to 
the lack of continued pursuit by those authors that do engage the domain (Coleman, 2012).  Historically, 
the research emphasis has focused on the efficiency of sports betting markets (Stekler, Sendor, and 
Verlander, 2010).  

A cursory examination of machine learning (i.e., how computers can learn or improve their performance 
based on data, Han, Kamber, and Pei, 2011, p.24) and sports analytics literature highlights this 
fragmented nature.  Neural networks application dates back decades, from NCAA college football 
objective ranking (Wilson, 1995), javelin flight prediction (Maier, Wank, and Bartonietz, 2000), NFL 
winner prediction as compared with media broadcasters (Purucker, 1996; Kahn, 2003), cricket 
performance prediction (Iyer and Sharda, 2009), etc.   

Genetic algorithms are less popular, but still appear in a variety of applications, including optimal 
Formula One car performance (Wloch and Bentley, 2004), scheduling (Trick and Yildiz, 2012), NCAA 
college football ranking methodology (Cassady, Maillart, and Salman, 2005), cricket team composition 
(Ahmed, Deb, and Jindal, 2013), etc.   

Ultimately, one could read every published article even tangentially related to sports analytics from the 
last 30 years and make no progress towards appropriate feature inclusion within their models.  Song, 
Boulier, and Stekler (2007) happened upon this difficulty when they conducted an investigative survey 
comparing 70 expert forecasts vs. 31 statistical models predicting the outcome of American football 
games.  While detailing their data collection method for the statistical models, they passingly mention 
“the variables that are used to construct the models differ widely” (p. 407), almost as if it were a given 
consequence of model construction. 

Feature Subset Selection 

Verleysen (2003) explains how the individual variable count in a vector describes its dimensionality, a 
characteristic that has important consequences in data mining.  Further, he states that higher 
dimensionality datasets are more difficult to understand, both cognitively and from the perspective of 
extracting information to draw meaningful conclusions. 

Real-world datasets can be characterized by high dimensionality with low sample sizes.  Observations are 
made up of many variables, either due to the nature of the domain or simply because the lack of 
understanding begets collecting as much information about the data as possible prior to analysis.  In 
either case, it stands to reason that the full complement of variables within the feature vector is not 
necessary to achieve successful data mining.  Features may be irrelevant, redundant, or altogether noisy.  
In an effort to improve classification accuracy, an algorithm should only focus on the most relevant subset 
of data.   
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Feature subset selection is a domain-agnostic method.  This field is of particular interest as its data deals 
with familiar problems of high dimensionality and limited sample size.  Of the three FSS variants (filter, 
wrapper, embedded), the wrapper technique is tightly coupled to a chosen induction algorithm.  Various 
feature subsets are selected and input into the learning algorithm.  Said subsets are processed through an 
accuracy evaluation metric and ranked accordingly.  In this way, the wrapper technique represents a more 
holistic approach to subset selection. 

Genetic Algorithms 

Genetic algorithms (GA) belong to the optimization class of machine learning algorithms and are loosely 
based on the concepts of population genetics.  The technique first appeared in Holland (1975).  The 
principles of evolution, natural selection, and survival of the fittest coalesce into a robust searching 
heuristic capable of identifying near-optimal solutions to a wide range of real-world problems, often 
characterized by large problem spaces (Beasley, Bull, and Martin, 1993).   

In natural selection, individuals from a population compete with one another for survival.  Fit individuals 
endure, mate, and pass on their genetic characteristics to their offspring.  Successive generations are 
increasingly composed of good characteristics such that the species as a whole evolves relative to its 
environment.  Genetic algorithms mimic these processes in data provided two prerequisites are met.  
First, the target problem must be suitably represented (e.g., binary encoding or bit string, also referred to 
as a chromosome).  Second, encoded solutions require an appropriate fitness function to quantitatively 
measure their strength (i.e., a user-defined function returning a single figure of merit for any given 
solution).  Genetic operators including selection, recombination (crossover), mutation, and replacement 
work together towards solution convergence.   

Parameter setting research in the evolutionary computing domain has received substantial attention.  All 
aspects of said domain are considered from theoretical and practical perspectives among deterministic, 
adaptive, and self-adaptive approaches.  Karafotias, Hoogendoorn, and Eiben (2014) provide a 
comprehensive survey of 234 research articles covering parameter control techniques for core 
components including population, crossover, mutation, selection, fitness function, and more advanced 
approaches of parallel EAs that manage multiple subpopulations while governing their interactions.  

A particularly interesting corollary of this fog is the equally broad research into premature convergence 
over the last two decades.  Premature convergence is the general condition whereby population diversity 
is degraded before the fitness landscape is properly explored, resulting in redundant individuals 
concentrated around local optima (Friedrich, Oliveto, Sudholt, and Witt, 2009).  Pandey, Chaudhary, and 
Mehrotra (2014) provide a comprehensive surveyed review of approaches to prevent premature 
convergence in GA between 1993 and 2013.  All told, 168 articles are compiled producing 24 distinctive 
approaches, ranging from simple chromosome representation adjustment to heavily involved hybrid 
techniques implementing multiple crossover and mutation strategies. 

Problem Definition 

Evidently, parameter setting and premature convergence literature are symptomatic of the same chaotic 
environment that projects a plethora of tactics applied on many different kinds of problems.  Likewise, 
Karafodias et al. note that “…no parameter control method or strategy has been widely adopted by the 
community or has become part of the common practice toolkit of evolutionary computing” (p.15).  In 
effect, evolutionary computing—and by extension genetic algorithms—function as a supposed unity of 
parts awkwardly devoid of a unifying canon.  Thus, the design of a heuristic artifact capable of outputting 
the ultimate correct solution is an illusion.  It cannot be arrived at mathematically nor can it occur by 
process of elimination—there are too many design alternatives with respect to predictive modeling.  
Further, the secretive nature of professional sports, wherein statistical/predictive methods are internal 
and not published (Coleman, 2012), as well as the void of academic literature regarding evaluation of 
individual performance, makes for an unobvious status quo against which to compare a practitioner’s 
model.    

Sports analytics is a wicked organizational problem distinguished by pervasive uncertainty.  This 
uncertainty lies beneath the surface of the algorithmic landscape, irrigating core problems of 1) 
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identifying a satisfactory status-quo against which future techniques can be measured, 2) assuring future 
comparisons are fair, and 3) having confidence in the lasting quality of the output against an untold 
number of alternatives.  Ultimately, from a practical perspective, the goal of maximal output yields to a 
sense of trust in output. 

Remedial feature subset selection, by way of a genetic algorithm, exploits combinatorial advantages for a 
given observation.  However, such an evolutionary strategy cannot escape a genetic infrastructure of 
tightly coupled operators whose joint effects are poorly understood; the resulting suboptimal mix further 
obstructs potential artifact effectiveness.  An ecosystem with a multitude of choices undercuts ambitions 
for competitive testing among tailored algorithms in literature—to say nothing of commercial applications 
likely reinforced by concealed proprietary methods.  Thus, the focus to find a solution shifts to productive 
investigation of performance elements responsible for algorithm effectiveness. 

Solution 

In the proposed implementation, problem representation is straightforward; binary cardinality suffices.  
Thus, a chromosome having length ℓ number of genes encapsulates a solution over the alphabet {0, 1} 
where a 0 excludes the feature from the vector to be trained by an induction algorithm.  The standard 
genetic algorithm (SGA) randomly initializes a population of individuals.  Assuming individual athletic 
performance is a function of 83 independent features of interest from a trusted data source (this will be 
shown later), then the expected value of activated features—allele frequency—at population initialization 
per chromosome will be 41.5 with a variance of 20.75 and standard deviation of 4.55 (see Figure 1). 

 

Figure 1. Discrete Distribution Population Allele Frequency 

Basic probability theory straightforwardly handicaps the starting population of the standard genetic 
algorithm from the outset.  Left to its own devices, this initial population will not be expected to include 
all allele frequencies, irrespective of the preset number of solutions.  Worse yet, the probability that a 
vector will contain activated genes  is effectively zero.  There is neither logical 
premise nor foundation in literature for believing that the correct combination of features for predicting 
athletic performance is within the probabilistic range of Figure 1.  From the perspective of the building 
block hypothesis, a converged SGA run whose evaluated chromosome set across all generations having 
allele frequencies mimicking the distribution of Figure 1 begs an obvious question: what guarantee is 
there that the solution was appropriately exposed to good building blocks?  Stated differently, the genetic 
algorithm will not have access to the entire search space thereby reducing confidence its output is the true 
global optimum.  

Extreme Environmental Change 

An elementary understanding of organic evolution is typified as a process of slow and gradual change 
leading to improved form.  Irrespective of said improvement, the hostility of natural environments 
continually threatens evolved organisms (e.g., volcanic eruptions, floods, etc.).  Hoffmann and Parsons 
(1997) evaluate the ways environmental fluctuations influence.  They describe how tropical species 
accustomed to warm temperatures died following short spells of 5°C (p. 3).  Similarly, an El Niño event in 
the early 1980s causing elevated water temperatures and subsequent drop in nutrient availability resulted 
in high death rates among surrounding groups of organisms (p. 4). 
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Eldredge and Gould (1972) published a landmark paper proposing an alternate theory for the 
macroevolution of species known as punctuated equilibrium.  At the time, the prevailing model of 
evolution accepted Darwinian principles of slow and gradual divergence.  However, Eldredge and Gould 
found little empirical evidence in fossil records, and later concluded that once formed species will remain 
in a prolonged stasis that is episodically “punctuated” by a major shift leading to evolutionary change. 

The consequences of rare stresses on organisms as characterized by Hoffmann and Parsons suggest that 
an evolved group may only be fit relative to a familiar environmental category defined by its underlying 
properties, hereafter referred to as its meta.  If a meta undergoes dramatic shift, the organisms are 
necessarily faced with unfamiliar conditions for which they have not adapted to and can subsequently die 
from.  Recalling the tropic species example, their evolution occurred according to an environmental meta 
characterized by warm temperatures but could not tolerate a meta-shift towards relatively cold 
temperatures.  From this perspective, evolution as a whole was shallow; fitness did not extend beyond a 
strict category. 

The proposed GA heuristic will metaphorically adopt the consequences of an environmental meta-shift 
together with ideas borrowed from punctuated equilibrium theory (see Figure 2).  Upon GA convergence, 
the environment composed of supposed evolved solutions is considered in stasis; the average fitness of 
the population can no longer improve, or the best known solution is not beaten.  Thereafter, a subroutine 
will initiate a meta-shift scheme that specifically punctuates said environment by introducing new 
solutions within a range of explicit allele frequency, thereby forcibly increasing variability in the gene 
pool.  This altered population re-engages the evolutionary workflow undergoing selection, crossover, and 
mutation procedures.  The iterative cycle continues until a user defined limit on meta-shifts is exceeded 
(e.g., number of shift without best solution improvement).   

 

 

Figure 2. Meta-Shift Subroutine 

Given properties of binomial random variables and discrete distributions, the new solutions will not be 
random but rather compensate for otherwise ignored pockets of the search space demarcated by intervals 
of standard deviation.  Thus, the goal is to challenge the true fitness of the converged solution that might 
otherwise only be fit relative to a specific meta.  The subsequent “biotic” interactions are anticipated to be 
intense with the resulting competition enhancing solution quality and robustness in concert with 
crossover and mutation schemes.   
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Data and Application 

Relevant data was acquired by using web scrapping to collect multiple summary game statistics of a 
targeted sport (the National Football League) from a reputable sports media conglomerate (ESPN).  Total 
individual rushing yardage production for a single game is the observation of interest.   Altogether, season 
2014 featuring 256 games over 17 weeks (playoff contests are excluded) was obtained.   For over a century 
individual games have been summarized in a box score, a tabulated result containing statistics of various 
team and individual player performance.  Roughly seventy of these descriptive statistics, for both the 
home and away team, were targeted for scraping and stored locally for processing.  The primary groupings 
include passing, receiving, defense, punting, kicking, and team production.  In short, all aspects of a single 
game are considered; none are arbitrarily discarded a priori.  The data is retrieved and exported into a 
format suitable for consumption within the R statistical package.    

To create a feature vector, the following rules are adhered to. A list of unique running back names is 
generated.  For every name in said list, that player is searched throughout the season database document 
during the given week.  The following repeats every week in the season, 1-17: once identified, obtain the 
running back’s total yardage production for the game (dependent variable); for every week prior to the 
projected week, search the player’s performance; for every game identified in which the player 
participated, gather box score statistics; separate the player’s rushing production from the rest of his 
team, but retain both (i.e., a vector will include individual rushing performance and the remainder of the 
team total rushing performance); identify the projected week opponent and gather its defensive 
production for every week prior; combine the information from previous steps; compute the mean of the 
statistics, rounding to clean numbers; eliminate any vector with average total rushing carries below five; 
categorize the dependent variable (e.g., lowest, low, medium, high, highest), incremented by a fixed 
number of yards (25). 

Accordingly, if player  has rushing production in week 8, the corresponding vector contains 83 
independent variables representing the mean of player and game statistics said player participated in 
between weeks 1-7, together with the projected week opponent’s average defensive production to that 
point in the season.  In this way, the feature vector considers the player and the forthcoming opponent, 
which is generally how match-ups are conceptualized.  A player may be effective at a position, but he is 
rarely discussed in a void; rather, analysis occurs in context relative to opponent capabilities. 

The total number of independent variables (83) is arrived at as follows: team stats (21), team defensive 
(7), opposing defensive (7), team passing (10), team receiving (6), individual rushing (5), team rushing 
(5), team kick return (5), team punt return (5), team kick scoring (7), team punting (6), and next week 
opposing defensive (7), bringing the total number of features to 91.  However, among them there are 
redundancies which are removed during data pre-processing.  For instance, among team stats (21) there 
are several measurements which are repeated in team passing and team defensive, including total passing 
yards, completed passes, yards per pass, interceptions, etc.  Altogether, 83 is the final number.  

Evaluation 

Encoded solutions require an appropriate fitness function to quantitatively measure their strength.  This 
research incorporates a decision tree learning algorithm (C5.0); however, there are many alternatives to 
choose from (e.g., support vector machines, neural networks, etc.).  In this implementation (wrapper FSS) 
the induction algorithm has no autonomy in the process of identifying candidate subsets, thus winnowing 
capabilities are disabled.   

Observing the fitness of chromosomes guides the GA through the solution space.  While critical to the 
evolutionary process, it nonetheless remains an intra evaluation with respect to the greater perspective 
that would emphasize overall artifact construction and evaluation.  Although fit chromosomes may evolve 
and estimate accurately on resampled data, the artifact’s overall utility remains unproven.  Therefore, this 
research reinforce the intra C5.0 evaluation of solution candidates during cross-validated model training 
with an outer C5.0 evaluation procedure on the best evolved chromosome upon GA termination.   

Accordingly, prediction of running back performance for the 12th week of an NFL season would first occur 
by deploying a genetic algorithm run against weeks 1-10.  Vectors are evaluated using k-fold cross-
validation.  Upon convergence, the GA outputs a single feature subset with the greatest fitness.  This 
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subset is used to train a final and independent C5.0 model on week 11 data whose classification of player 
performance category is compared with actual week 12 production giving a final determination of overall 
artifact accuracy. 

However, overall accuracy alone and presented without context is difficult to assess.  In order to provide 
perspective, accuracy metrics from six sources are included.  Having 83 independent variables in a binary 
encoded genetic algorithm assumes a guided search across a solution space in the septillions 
( ).  Enumeration is not possible.  Thus, the only reasonable single solution to 
consistently include is one in which all 83 features are activated—a chromosome with 83 trailing 1s.  This 
evaluated solution has the added benefit of answering a basic question as to whether or not feature 
subsets are even required for enhanced accuracy.  Either way, a standard genetic algorithm run is the 
second source for evaluation.  Additionally, this research presents an extension of core SGA functionality 
based on a metaphor of extreme environmental change.  Thus, a third source of evaluation is an executed 
meta-shift GA.  The fourth source attempts to contextualize the research against some understanding of 
an industry standard.  The same data source used to retrieve box score data (ESPN) also provides fantasy 
rushing projections for the 2014 season (note: the ESPN numeric projection must be categorized to align 
with research methodology).  The fifth source further contextualizes the research against an alternate 
feature subset selection method.  In an independent test using all activated features, the winnowing 
option of a decision tree is activated.  In this way, the induction algorithm stands alone.  It assumes 
complete responsibility for picking and choosing among the predictors used to construct and evaluate a 
subsequent tree.  All five sources exist against the backdrop of the fifth and most basic requiring no model 
whatsoever, the no information rate (NIR).   

Artifact performance is observed in stepwise fashion for the 2014 season, or week-to-week beginning with 
the 4th and ending with the 10th.  Evaluation for a single week provides meager testing samples (even more 
so given the constraint of average carry limitation), therefore this perspective is at once a more 
challenging task but nevertheless more interesting as it closely approximates a real-life use case (e.g. 
fantasy sports industry).  It is not uncommon for a single week to hover around 50 vectors—the minority 
class may have less than 10 instances.   

Findings 

The results of the various experiments, NIR included, appear in Table 1.  Boosting was disabled for the 
first four of the seven-week batch (4 through 10).  GA mutation rates are fixed at 0.1, crossover is of the 
single-point variant, and tournament selection is used.  In this way, the meta-shift subroutine 
performance is compared against a canonical GA, the basis for theoretical GA research (Affenzeller, 
Wagner, Winkler, and Beham, 2009).  Shaded meta-shift cells are due to inaccurate recordings for the 
particular experiment. 

 

 Pop Stasis Meta Shifts K-CV Total Solutions Test Accuracy 

Week 4 (NIR = 0.3878) 

ESPN      0.3469 
All      0.4286 

All W      0.4286 
GA 15   5 1069 0.3673 

GA MS 15 8  5 1562 0.5510 
Week 5 (NIR = 0.3636) 

ESPN      0.3636 
All      0.2909 

All W      0.2909 
GA 15   5 576 0.4000 

GA MS 10 8  3 1914 0.3818 
Week 6 (NIR = 0.3529) 

ESPN      0.3922 
All      0.4118 
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All W      0.3725 
GA 26   3 451 0.4510 

GA MS 15 8 23 3 2772 0.4706 
Week 7 (NIR = 0.3654) 

ESPN      0.3462 
All      0.1731 

All W      0.3462 
GA 26   3 578 0.3269 

GA MS 50 8  3 13020 0.3654 
Week 8 (NIR = 0.3191) 

ESPN      0.3404 
All      0.2979 

All W      0.4255 
GA 26   3 960 0.4043 

GA MS 26 7 20 3 1998 0.4468 
Week 9 (NIR = 0.3953) 

ESPN      0.3023 
All      0.3488 

All W      0.2791 
GA 26   3 783 0.2791 

GA MS 20 6 28 3 3395 0.3953 
Week 10 (NIR = 0.4717) 

ESPN      0.3396 
All      0.4340 

All W      0.3962 
GA 26   3 432 0.4340 

GA MS 20 6 22 3 2657 0.4906 

Table 1. Results 

Key: Pop=Population Size, Stasis=counter delineating number of generations without 
improvement to best solution before population is considered converged, Meta 

Shifts=number of times subroutine is called during the entirety of the run, K-CV=cross-
validation partitions, “All” represents the vector with all 83 genes having bit value 1, “All 

W” executes a decision tree with its winnowing parameter activated  

The meta-shift GA outperforms all other output (with the exception of week 5) while consistently 
overcoming the NIR where others cannot, notably in week 10 in which it was particularly elevated 
(0.4717).  The MS GA individual performance gains range from 4.3% (week 6) to 28.5% (week 4) with an 
average of 9.3% over nearest competition from any of the remaining outputs across all seven weeks.  
Comparatively, the meta-shift approach improves on ESPN projections by an average of 28%, against SGA 
by 16%, on output that considers all features by 30%, and against an alternate feature subset selection 
method by 23%.  The most interesting singularity occurs in the 4th week with testing accuracy of 0.551 (or 
55%), encroaching on gambling market efficiency which is perhaps the objective gold standard of any 
predictive modeling technique in the domain of sports.  

A bloated number of total solutions tested for the meta-shift approach is a natural consequence of re-
engaging the search multiple times during the course of a single run.  It is also a function of luck.  If the 
first few shifts randomly settled upon weaker subsectors of space that nonetheless contained stronger 
individuals than the initially evolved population, then the resulting punctuating solutions would 
necessarily be defeated in time thereby resetting the MS convergence counter while accumulating an 
increased number of evaluated solutions.  Conversely, if the first shifts happened upon the strongest 
pockets of the search space, ensuing shifts would fail to produce superior alternatives; thus, convergence 
criteria would be met much sooner and execution time would hasten.  Of course, it is difficult to anticipate 
the appropriate search trajectory when operating against an unknown fitness landscape a priori.    

An example of meta-shift allele frequency distribution is given in Figure 3 for the 10th week.  
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Figure 3. Allele Frequency Distribution Week 10 

Its distribution is markedly different than the probabilistic confinement of random population 
initialization visualized in Figure 1.  Cursory observation of Figure 3 reveals the search signature: 
primitively focused in the mid-tier and overcome by lower frequencies (settling on 15-20).  Additionally, 
there appears to have been some temporary interest in the 70-75 range.  Ultimately, the meta-shifted 
genetic algorithm output is reinforced by a certain robustness that cannot be attributed to its SGA sibling.  
Although a mere 2657 among a septillions of solutions were tested for week 10, characteristics of the 
search across the solution space reinforce latent concerns of trust in output as the final solution was 
necessarily exposed to and survived the genetically dissimilar makeup of the members with which the 
originating population of an SGA has little chance to interact. 

Limitations 

A principal limitation concerns the burden on computational resources of evaluating dozens/hundreds of 
solutions, over many generations, undergoing k-fold cross-validation, C5.0 boosting, etc.  This research 
was not conducted on a data mining quality research computer; RAM is restricted to 12GB with an Intel 
Core i7-3770 CPU @ 3.40 GHz.  These conditions do alleviate a few difficulties inherent to GA and 
evaluation parametrization; population size, cross-validation folds, and boosting trials have to remain 
low.  Although there is no formal rule for the correct number of subsamples, it is understood that a lower 
number results in greater bias (Kuhn and Johnson, 2013).     

Conclusion 

Design science research favors pragmatic research to solve real-world problems (Hevner and Chatterjee, 
2010).  The latter materializes within an academic sports domain lacking guiding theory for determinant 
factors of athletic performance thereby muddling identification of an objectively correct approach towards 
the construction of a knowledge discovery artifact.   The practical consequences of these circumstances 
implicitly limit enthusiasm for narrowly focused objectives of maximal output given whatever predictive 
apparatus may be constructed. 

This research develops an artifact extending standard genetic algorithm functionality.  Principles in 
nature of extreme environmental change and the macro evolutionary theory of punctuated equilibrium 
crossover and are transposed to challenge a population of solutions evolving in a singular meta that 
becomes stale over time.  Shifting to alternate pockets of the search space and exposing the converged 
population to disparate solutions creates a more robust final output, ameliorating thematic concerns of 
trust. 

The subroutine is not limited in application to sports.  In an era of data science, where organizations 
(including government) increasingly seek quantitative demonstrations of the value for a data asset, 
coupled with increasing and more sophisticated measurement tools for said asset, feature subset selection 
is a natural fit.  As such, genetic algorithms are always at least among available remedial options, carrying 
with it problems of sub-optimal parameter settings/control.  Further, practitioners must always remain 
mindful of premature convergence; the meta-shift subroutine is a straightforward counter to this problem 
that rebuilds trust in output. 



 Sports Analytics: Predicting Athletic Performance with a Genetic Algorithm 
 
  

 Twenty-second Americas Conference on Information Systems, San Diego, 2016 10 

REFERENCES 

Affenzeller, M., Wagner, S., Winkler, S., & Beham, A. (2009). Genetic algorithms and genetic 
programming: modern concepts and practical applications. Crc Press. 

Ahmed, F., Deb, K., & Jindal, A. (2013). Multi-objective optimization and decision making approaches to 
cricket team selection. Applied Soft Computing,13(1), 402-414. 

Cassady, C. R., Maillart, L. M., & Salman, S. (2005). Ranking sports teams: A customizable quadratic 
assignment approach. Interfaces, 35(6), 497-510. 

Coleman, B. J. (2012). Identifying the “players” in sports analytics research. Interfaces, 42(2), 109-118. 
Davenport, T. (2014). Analytics in Sports: The New Science of Winning. Retrieved June 1, 2015, from SAS 

Institute: http://www.sas.com/en_ca/whitepapers/iia-analytics-in-sports-106993.html 
Friedrich, T., Oliveto, P. S., Sudholt, D., & Witt, C. (2009). Analysis of diversity-preserving mechanisms 

for global exploration*. Evolutionary Computation, 17(4), 455-476. 
Fry, M. J., & Ohlmann, J. W. (2012). Introduction to the special issue on analytics in sports, Part I: 

General sports applications. Interfaces, 42(2), 105-108. 
Gould, N. E. S. J. (1972). Punctuated equilibria: an alternative to phyletic gradualism. 
Han, J., Kamber, M., & Pei, J. (2011). Data mining: concepts and techniques. Elsevier. 
Hevner, A., & Chatterjee, S. (2010). Design research in information systems: theory and practice (Vol. 22). 

Springer Science & Business Media. 
Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory analysis with 

applications to biology, control, and artificial intelligence. U Michigan Press. 
Iyer, S. R., & Sharda, R. (2009). Prediction of athletes performance using neural networks: An application 

in cricket team selection. Expert Systems with Applications, 36(3), 5510-5522. 
Kahn, J. (2003). Neural network prediction of NFL football games. World Wide Web electronic 

publication, 9-15. 
Karafotias, G., Hoogendoorn, M., & Eiben, A. E. (2014). Parameter control in evolutionary algorithms: 

Trends and challenges. IEEE Transactions on Evolutionary Computation, to appear. 
Kuhn, M., & Johnson, K. (2013). Applied predictive modeling (pp. 61-92). New York: Springer. 
Maier, K. D., Wank, V., Bartonietz, K., & Blickhan, R. (2000). Neural network based models of javelin 

flight: prediction of flight distances and optimal release parameters. Sports Engineering, 3(1), 57-63. 
Pandey, H. M., Chaudhary, A., & Mehrotra, D. (2014). A comparative review of approaches to prevent 

premature convergence in GA. Applied Soft Computing, 24, 1047-1077. 
Parsons, P. A. (1997). Extreme environmental change and evolution. Cambridge University Press. 
Purucker, M. C. (1996). Neural network quarterbacking. Potentials, IEEE, 15(3), 9-15. 
Song, C., Boulier, B. L., & Stekler, H. O. (2007). The comparative accuracy of judgmental and model 

forecasts of American football games. International Journal of Forecasting, 23(3), 405-413. 
Stekler, H. O., Sendor, D., & Verlander, R. (2010). Issues in sports forecasting. International Journal of 

Forecasting, 26(3), 606-621. 
Trick, M. A., & Yildiz, H. (2012). Locally optimized crossover for the traveling umpire problem. European 

Journal of Operational Research, 216(2), 286-292. 
Verleysen, Michel. "Learning high-dimensional data." Nato Science Series Sub Series III Computer And 

Systems Sciences 186 (2003): 141-162. 
Wilson, R. L. (1995). Ranking college football teams: A neural network approach. Interfaces, 25(4), 44-59. 
Wloch, K., & Bentley, P. J. (2004, January). Optimising the performance of a formula one car using a 

genetic algorithm. In Parallel Problem Solving from Nature-PPSN VIII (pp. 702-711). Springer Berlin 
Heidelberg. 

Yang, J., & Honavar, V. (1998). Feature subset selection using a genetic algorithm. In Feature extraction, 
construction and selection (pp. 117-136). Springer US. 


