View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by AIS Electronic Library (AlSeL)

Systémes d'Information et Management

Volume 8 | Issue 1 Article 3

2003

Evolution of Open Source Software: A Study on
the Samba Project

Mae Lyn Lee
School of Information Technology, University of Sydney, Australia, mllee2@cs.usyd.edu.au

Joseph Davis
School of Information Technology, University of Sydney, Australia, joseph.davis@sydney.edu.au

Follow this and additional works at: http://aisel.aisnet.org/sim

Recommended Citation

Lee, Mae Lyn and Davis, Joseph (2003) "Evolution of Open Source Software: A Study on the Samba Project,” Systémes d'Information et
Management: Vol. 8 : Iss. 1, Article 3.
Available at: http://aisel.aisnet.org/sim/vol8/iss1/3

This material is brought to you by the Journals at AIS Electronic Library (AISeL). It has been accepted for inclusion in Systémes d'Information et

Management by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

https://core.ac.uk/display/301368314?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org/sim?utm_source=aisel.aisnet.org%2Fsim%2Fvol8%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sim/vol8?utm_source=aisel.aisnet.org%2Fsim%2Fvol8%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sim/vol8/iss1?utm_source=aisel.aisnet.org%2Fsim%2Fvol8%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sim/vol8/iss1/3?utm_source=aisel.aisnet.org%2Fsim%2Fvol8%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sim?utm_source=aisel.aisnet.org%2Fsim%2Fvol8%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sim/vol8/iss1/3?utm_source=aisel.aisnet.org%2Fsim%2Fvol8%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Evolution of Open Source Software: A Study of the Samba Project: I. ...
LEE, Mae Lyn;DAVIS, Joseph

%stzsrnes d'Informgfi Qﬂ&‘ﬁé@ﬂaml&f)%d%eh M{&NEQRM@%@{% on the Samba Project

Evolution of Open Source Software:
A Study of the Samba Project

Mae Lyn LEE and Joseph DAVIS

School of Information Technologies, The University of Sydney, Australia

ABSTRACT

Open Source Software (OSS) development model has attracted considerable attention in
recent years, primavrily because it offers a non-proprietary and socially beneficial model of
software development backed by a dedicated community of developers and users who
share and expand their knowledge and expertise. This research investigates the cvolution
of open source software using a case study of the Samba project. Through the application
of both qualitative and quantitative techniques, Samba’s software development and evo-
lution over a seven-year period are tracked and assessed. This assessment and the findings
of similar, previously reported studies lead us to propose a general framework for the evol-
vabiltity and the key drivers of open source software evolution.

Key-words: Open source, Software development, Software evolution, Open soutrce
community.

RESUME

Le modeéle du développement du logiciel Libre a attiré une attention considérable ces der-
niéres années, principalement car il offre un modéle non-propriétaire et socialement bé-
néfique supporié par une communaulé de développeurs et d'utilisateurs dédiés quii parta-
gent et etendent leurs connaissances et expertise. Cette recherche investigue ['évolution du
logiciel Libre a travers I'étude de cas du projet Samba. Par des techniques quantitatives et
qualitatives, nous décrivons et évaluons 'évolution du développement de ce logiciel. Cette
évaluation conduit a proposer un cadre d'analyse général de I'évolutivité et des facteurs
clés de I'évolution des logiciels libres.

Mots-clés : Logiciel Libre, Développement logiciel, Evolution du logiciel, Communauté
du Libre.

ReprotRlis hitn ph Fersmist i Es HSRE bR Further reproduction prohibited without permissibn.

I. INTRODUCTION

OSS projects offer a viable, alternative

Systémes d'Information et Managemgiydfel $BpoBlaltio413 commercial and

Open source software (OSS) develop-
ment has emerged as a progressive and
successful software development practi-
ce in recent years. Unlike traditional
software development, OSS develop-
ment lacks stringent control over the
development process, relying mainly
on a pool of volunteer developers for
their progress. The open source com-
munity conducts and coordinates its ac-
tivities without strict guidelines and yet
it has had success in developing robust
and efficient software.

There are thousands of active open
source software projects at any time at
various stages of development. The
successes of key OSS projects such as
the Linux operating system and
Apache web server have served to
draw scholarly focus on the OSS deve-
lopment model (Cubranic, 1999). Each
project is undertaken by dozens or
hundreds of developers who are geo-
graphically distributed all over the
world and coordinate their activities
through the internet. They bring a va-
riety of expertise and skills and contri-
bute at varying levels of intensity.
Their primary motivation appears to be
peer recognition and personal satisfac-
tion (Moody, 2001). A number of au-
thors have pointed out that the main
characteristics and modes of functio-
ning of the virtual organisation that is
behind each of these projects (Brow-
ne, 1998; Markus, Manville, and Agres,
2000). The latter studied the virtual or-
ganisations behind the OSS projects
and suggested that the multiple inter-
acting governance mechanisms, rules
and institutions, monitoring and sanc-
tions, and the reputation systems of

other organisations.

The perception of relative success of
OSS has triggered the question of whe-
ther there are aspects of the open
source software development process
that can provide an explanation. More
importantly, how does the OSS deve-
lopment find structure in a seemingly
chaotic and uncoordinated environ-
ment? Consequently, the unorthodox
software development techniques de-
veloped by the open source communi-
ty have attracted interest. There have
been previous studies on open source
evolution with Linux and the Apache,
two of the most popular and success-
ful open source software. We extend
this research through a case study of
the Samba open source project. Samba
software is one of the fastest growing
OSS on the market. Its popularity is at-
tributed to Samba providing unique
services across different platforms.
Samba is a suite of Unix applications
with the ability to mediate between
Unix and Windows systems, using the
Server Message Block (SMB) protocol,
also referred to as CIFS (Common In-
ternet File System) protocol. Samba
has contributed significantly ameliora-
ting the inter-operability problems in
contemporary information systems en-
vironments.

This research examines Samba pro-
ject to assess its growth and evolution
over a seven-year period across five
releases. By employing both quantita-
tive and qualitative measurement tech-
niques, Samba’s development and
growth can be traced and compared
against guidelines of software evolu-
tion proposed by Lehman et al. (2001).

Rept}btaﬁé/&sﬁlli?ﬁsﬁ‘étrﬂ{%@m‘é?wg%E)yright owner. Further reproduction prohibited without permissi%n.

Samba’s development community was

ent than range of open source li-

also studietFtard i Evieion RiipRaAgpree Sl duyRdye fymbadroject

between Samba’s growth and the de-
gree to which the community drives
the evolution process.

I.1. Overview of Open Source
Software

Open Source software is software
that is freely available for public use,
including the source code and its mo-
dification and redistribution. In the
1970s, Richard M. Stallman, of the Mas-
sachusetts Institute of Technology
(MIT) Attificial Intelligence (AD Re-
search Group created the Free Softwa-
re Foundation (FSF) to counteract the
growing sccrecy of software source
codes in the proprietary software
world. Stallman viewed the commer-
cialisation of software as an impedi-
ment to the development of an open
learning environment needed for soft-
ware development. Stallman argued
that free software should provide users
with the following freedoms (Gacek et
al., 2001, Feller and Fitzgerald, 2000):

e The program and the source code
must be freely available to the pu-
blic;

e The software can be reproduced
and must be redistributed, either
gratis or for a fee;

e The software can be studied and
must be modifiable;

e Derivative works of this software
must be permitted and available
for distributions.

These conditions for free software
are reflected in the GNU General Pu-
blic License (GPL) which is more strin-

The success of Open Source softwa-
re has been attributed to many factors
including the following identified by
Schmidt (2001), Wang (2001), and Ya-
mauchi et al. (2000):

e The reduction in software deve-
lopment and acquisition cost;

e Short feedback loops;

e Effective leverage of user commu-
nity expertise and computing re-
source;

e Greater opportunity for analysis
and validation.

Open Source software can maintain
a low software development and ac-
quisition cost base given that it is not
subject to development fees, licensing
fees or distribution costs. OSS projects
utilise low-cost communication media
such as the Internet for the distribution
and development of the software. This
also facilitates convenient access to the
open source project itself, allowing ex-
ternal users and developers to provide
informative feedback and criticisms on
the software structure and potentially
problematic bugs and ecrrors. Eric Ray-
mond attributes the quick discovery of
software defects in OSS to “many eye-
balls looking for problems” (Raymond,
200D).

The ability to draw resources from a
pool of high calibre software profes-
sionals has seemingly contributed to
the quality of OSS products and crea-
ted a community spirit. It has encoura-
ged active information sharing and
promotes innovation in software deve-
lopment. Open source projects are
evaluated not only in terms of program

Repl%‘élﬂ}z:sé‘&%%%@m%‘gf&?gfltWé%ﬁﬁ{aﬁH)\%@r. Further reproduction prohibited without permissioﬁ.

execution; its source code is scrutini-

tance from open access to source

zed by a large an&s@perdjractivécdiianagereesddel aiiepabtbus wWeb access for sha-

munity of professional developers and
users. Traditional hierarchical and clo-
sed software development and quality
assurance processes rarely achieve the
benefits of such extensive communica-
tion and feedback.

Along with the benefits of OSS deve-
lopment, there are important chal-
lenges. Schmidt and Porter (2001) have
outlined some of the major challenges:

¢ OSS is faced with long-term main-
tenance issues, including the cost
of evolution and providing quality
assurance. The cost factor must be
limited to ensure OSS remains pu-
blicly available, including its pro-
“gram and source codes;

e OSS frequently releases beta ver-
sions of the software which can
create problems for end-users who
rely on stable software releases,
and would prefer less frequent re-
leases of patches and bug fixing.
These frequent beta releases result
from short feedback loops in
which bugs and previous errors
are immediately detected and cor-
rected,;

¢ OSS is faced with ensuring cohe-
rence of system-wide properties,
including enforcing standardized
common APIs, consistent seman-
tics and architectural integrity. OSS
developer communities are usually
decentralized and hence project
and community coordination are
required to ensure that the system
components can be integrated to
operate efficiently.

These challenges are currently tack-
led by the OSS community with assis-

ring and feedback of existing and new
software versions, and a growing tech-
nologically-sophisticated, global com-
munity of users and developers alike.

L.2. Open Source Development
Communities

Several authors have argued that hie-
rarchical and relatively closed systems
do not give the developers sufficient
control over their own knowledge and
tend to place barriers between creation
and integration of software. As a result,
innovations tend to take place outside
these systems and they work with in-
formation which is very often chroni-
cally out of date and which reflects an
outsider’s view of work (Brown and
Duguid, 2000, Scacchi, 2001).

0SS communities exhibit certain
common characteristics. Scacchi (2002)
and Nakakoji et al. (2002) describes
two main characteristics as:

e The community members identify
themselves with the development
of the Open Source software. This
identity encourages unity and col-
laboration on information and ex-
pertise. It leads to trust and more
importantly, social reputation and
peer recognition within their com-
munity;

¢ All members have roles within the
community. In order for the com-
munity to function productively
and to maintain its sustainability
over time, diverse member roles
are needed. Nakakoji et al. (2002)
defines eight roles of community
members — passive user, reader,
bug reporter, bug fixer, passive de-

Repllbtaﬁé@&s%ii’ﬁsﬁg’ﬂ{ﬁlgm‘é?lﬁ{g%Byright owner. Further reproduction prohibited without permissién.

veloper, active developer, core

I.3. Laws for Software Evolution

member, aad &apsfedttien dt@pdifesece Software: A Study on the Samba Project

roles, listed in order from minimal
to maximum contribution, have
varying influence on the open
source software’s progress. Howe-
ver, these roles are often not fixed
within the communities and can
change over time.

For open source communities to be
sustainable, diversity in member roles is
necessary for the success and evolution
of open source software. As advocated
by O'Reilly (1999), Cubranic (1999),
Schmidt et al. (2001) and Nakakoji et al.
(2002), a collaborative and open com-
munity can promote remarkable pro-
gress in software development. Good
examples of kind of OSS success inchu-
de the Samba project, Linux, Apache
web server, and OpenBSD.

Lehman et al. (2001) identified eight
rules for software evolution planning
and management. These rules were
derived from studies of FEAST resear-
ch projects and OS/360-70 systems
between 1969 and 1985. These rules
have since been cmpirically resear-
ched by Kemerer and Slaughter (1999),
and later revised by Lehman et al.
(2001) (Cook, 2000, Lehman, 2001).
Table 1 summarises the eight rules.

Lehman classifies software programs
into three categories — E-type, P-type,
and S-type. However, only E-type is in-
cluded here as it has the greatest rele-
vance to this research.

e E-type programs are systems that are

actively in use and are embedded in
the real world domain. It also ad-

No| Year | Name Law

1 | 1974 | Continuing

E-type systems must be continually adapted else they become

Change progressively less satisfactory in use.

2 | 1974 |Increasing As an E-type system is evolved, its complexity increases unless
Complexity work is done to maintain or reduce it.

3 11974 | Self Global E-type system evolution processes are self regulating.
Regulation

4 | 1978 | Conservation
of Organisational
Stability

Unless feedback mechanisms are appropriately adjusted,
average efficient global activity rate in an evolving E-type
system tends to remain constant over product lifetime.

5 | 1978 | Conservation
of Familiarity

In general, the incremental growth and long-term growth rate
of E-type systems tend to decline.

6 | 1991 | Continuing
Growth

time.

The functional capability of E-type systems must be continual-
ly increased to maintain user satisfaction over the system life

7 11996 | Declining
Quality

The quality of E-type systems will appear to be declining
unless they are rigorously adapted, as required, to take into
account changes in the operational environment.

8 | 1996 | Feedback
System

back systems.

Table 1: Software Evolution Laws.

E-type evolution processes are multi-level, multi-agent feed-

Repl%‘élﬂ}&séﬁ%%%@m%@f&?gfltWé%ﬁﬁ{éﬁH)\%@r. Further reproduction prohibited without permissior?.

dresses issues such as quality, beha-

evolutionary development strategy can

viour in exdetititn d iperteata danagemspt fiphdderopteliict Ahid cyclical process

ease of use and changeability.

According to the first law of Conti-
nuing Change, E-type systems must
continually adapt to changes in the en-
vironment, including the systems life-
cycle, and technical and users require-
ments. It assists developers to align the
systems functions with changing requi-
rements. Without systems-user align-
ment, the system serves little purpose
for users.

According to the second law of In-
creasing Complexity, as the system de-
velops and evolves, the system’s com-
plexity increases. This includes
increases in the number of elements, in-
creases in the work required to maintain
compatibility between interface ver-
sions, increases in the potential for error
and omissions. Lehman ct al. (2001) de-
fines five degrees of systems complexi-
ty: application and functional complexi-
ty, specification and requirements
complexity, architectural complexity,
structural complexity. These complexi-
ties create difficulties in design, adapta-
bility and systems validation. Therefore,
it is necessary for developers to main-
tain the system and coordinate its activi-
ties for upgrades in such a way that
these complexities do not reduce sys-
tem’s efficiency or performance.

The third law of Self-Regulation
states that the systems evolution pro-
cesses are self-regulating. The rationa-
le for this is that software processes are
constantly assessed and evaluated
based on their past and present per-
formance. These evaluations are then
used as feedback to modify the system
where necessary, and an appropriate

provides self-regulation to the system
evolution process.

The fourth law of Conservation of Or-
ganisational Stability suggests that ap-
propriate feedback mechanisms are ne-
cessary to ensure continuous success in
the software development process of
the system. This law was first observed
in the 1970s. Since then, further obser-
vations have been made in the FEAST/1
system and the results neither support
nor negate this law. However, Lehman
continues to advocate this law, for soft-
ware evolvability purposes.

According to the fifth law Conserva-
tion of Familiarity, systems growth will
decline over time as the system ages.
The basis for this law is that as a system
ages, the need for repairs increases, in
terms of systems upgrade-ability and
compatibility with its current environ-
ment. As a result, very little investment
is applied to new and innovating pro-
jects. This implies the available re-
sources for systems growth is being di-
verted to maintain and upgrade the
existing software, rather than being
used for systems enhancements and ex-
pansions.

The sixth law of Continuing Growth,
is clearly distinguishable from the first
law of Continuing Change, in that the
latter reflects the need to adapt the
system to the real world domain, in-
cluding its applications and activities
used for change. By comparison, the
sixth law reflects that all software — its
features and functionality can only ex-
pand to the boundaries of its current
domain. This can create bottlenecks or
irritant situations in the current do-

Rep#b%é@&s%i?ﬁsﬁg’ﬂ{ﬁlgm‘é?lﬁ@%Byright owner. Further reproduction prohibited without permissi%n.

main; hence the system requires conti-

Linux as a case example and used the

nuous growfR* RIS THE AENREY Sesree SeaMes th e ibs Wrbaliitde software

expand beyond its existing domain,
such that it can support new situations
and circumstances, if necessary.

The seventh law of Declining Quality,
follows the fifth and sixth Laws, sugges-
ting that functionalities need to be chan-
ged and extended, including the crea-
tion of new interfaces and interactions,
as the operational domain increases.
Operational adaptations are necessary
to counteract declines in performance,
functionality and reliability, increases in
the number of faults, mismatches in
operational domains and growing com-
plexities. The lack of resource invest-
ments into quality assurance can poten-
tially reduce user satisfaction.

The eighth law of Feedback System,
underlies the behaviour of all the other
seven laws. This law states that softwa-
re processes are multi-level, multi-loop,
multi-agent feedback systems. These
systems are constantly modified and ex-
tended for improved functionality
and/or additional components, thereby
meeting the changing needs of the
users. This implies the system provide
feedback to inform the developers, such
that the system continues to evolve. Po-
sitive feedback can encourage functio-
nal extensions, which can lead to grow-
th and adaptations. Negative feedback
has a stabilising influence, whereby in-
ternal systems modifications are made
to provide internal consistency.

II. PREVIOUS STUDIES ON
OPEN SOURCE EVOLUTION

Godfrey et al. (2000) studied Open
Source Software Evolution, using

evolution for Linux:

e Tracking and recording the num-
ber of changes made, as a result of
defects in the source files or mo-
dules;

e Counting the source lines of codes
(SLOC), which will provide a ge-
neral measurement rate of growth
within each module;

e Tracking the number of functions
added and plotted over time;

* All measurements taken were plot-
ted against time, rather than ver-
sion numbers. Plotting against
time will determine the growth
over time, independent of the re-
lease versions;

In addition to implementation
(“*.¢”) files being measured, header
files (“*.h”) were also measured.

The results of their study on Linux
have indicated strong growth in major
sub-systems. The growth patterns in
terms of SLOC, source files, and func-
tions are all similar to one another, and
all are growing at a “super linear rate
over time' (Godfrey et al., 2000). The
earlier releascs grew at a slower rate
than later versions. This can be attri-
buted to new functionalitics being
added rather than code modifications
made to existing functionalitics. The
popularity of Linux in recent years and
the consequent user demands have
also provided further impetus for
Linux to expand its functionalities.

Major growth in sub-systems occur-
red mainly in drivers for complex
hardware devices. When the results
from the number of files and SLOC

ReprotIbg hith HBH RO iSHiE B deHEREbAR%. Further reproduction prohibited without permission.

were cross-referenced, it can be noted

that file size increfaaesidnfprpmaiinee Mgnasge

bug fixes and improvements made to
existing functionalities. Also, newly
created files that were small in size
contain new functionalities added to
the version. Analysis of ten major sub-
systems revealed the greatest and fas-
test growth occurred in sub-systems
that were associated with the network
support for Linux.

Mockus et al. (2002), whilst studying
the evolution process of the Apache
Server and Mouzilla software in 1995-
1999, provided the following guide-
lines for the analysis of Open Source
Software evolution:

e Sorting and analysing the develo-
pers’ email list for information
containing messages, technical dis-
cussions, proposed changes, and
automatic notification messages
about changes in the code and
problem reports;

* Analysing the ‘Problem Reporting
Database’ to measure changes to
the code and documentation and
individual reports on faults;

e Measuring and examining the sour-
ce lines of codes (SLOC), to deter-
mine changeability for each modu-
le, and for the project as a whole.

The results indicate a large commu-
nity of developers (approximately 400
individuals) who were actively contri-
buting code. Of the 400 people, 182
individuals contribute to 695 problem
report changes, while the remaining
249 individuals contributed to 6,092
non-problem reporting changes. Parti-
cipation of the external community has
been greater in bug repairs than in in-
troducing new functionality. All new

functions are mainly implemented and

ment, V

ma’mf’slii%%gloﬁy[sfh{é‘%:%fe team with little
external involvement. The productivity
of the core team is further observed by
increases in SLOC and concurrent ver-
sion system (CVS) commits with
changes to existing code and additions
of new code. The study found that
Apache continued to exhibit strong
community support in terms of active
contributions. The results from the
Apache case study was compared and
contrasted with those from a study of
the Moxzilla project.

Based on the results of this study,
Mockus et al. (2002) derived the follo-
wing conclusions:

* Open source developments will
have a core of developers who
control the code bases;

¢ The core team is not larger than 10
to 15 people and will generate more
than 80% of new functionality;

» The community assists in problem
reporting, and the core team will
respond by repairing faults;

* In open source projects where the
number of external contributions
never exceed the contributions
made by the core team, will result
in more maintenance codes rather
than new functionality codes;

e Successful open source software
developments are generally cha-
racterized by developers who are
also users of the software;

¢ OSS developments exhibit very
rapid responses to customer pro-
blems.

Koch and Schneider studied the
growth and evolution of GNOME open
source project for building a desktop

ReprURiES Gt BEYRTESISH e YdByright owner. Further reproduction prohibited without permission®

environment for users and an applica-

The Samba suite are developed on

tion framewlksrardddexdb:drotitiorPNRPanetource SHpvaps 4iStudf ogviks SeplisPrdiseimons that

work model for software developers.
The main metrics they employed were
lines of code (LOC) and cumulative
LOC, number of persons and time spent
on the project, and number of files wor-
ked on. They reported a high correla-
tion between total LOC and the number
of programmers based on monthly data
(Koch and Schneider, 2002).

III. SAMBA CASE STUDY

Samba is a suite of Unix applications,
communicating over the SMB (Server
Message Block) protocol, with the abi-
lity to mediate between Unix and Win-
dows operating systems. The Samba-
enabled Unix machines have the
capabilities to masquerade as a server
on the Windows network, to provide
the following services:

e Sharing one or more file systems;

¢ Sharing printers installed on both
the server and its clients;

e Assisting clients with Network
Neighbourhood browsing;

» Authenticating clients logging on
to the Windows domain;

e Providing and assisting with WINS
(Windows Internet Name Service)
name server resolution.

Through the provisions of these ser-
vices, Samba has bridged the gap bet-
ween the two popular yet very diffe-
rent, operating systems — Windows
and Unix. Windows users can now ac-
cess file and print services irrespective
of whether these services are offered
by Unix or Windows.

Repl%‘élﬂ}&séﬁ%%%@m%‘gf&?gfltWé%ﬁﬁ{aﬁH)\%@r. Further reproduction prohibited without permissié’:l:

provide resource sharing between
SMB clients (Hertel, 2001, Blair, 1998):
smbd daemon provides file and prin-
ter sharing services on the SMB net-
work with authentication and authori-
sation services. It also provides two
authentication modes — “share mode”
and “user mode”, to protect shared
and private file and print services with
passwords. Samba also provides Do-
main authentication service, handled
by the Domain Controller. The Samba
Domain Controller refines the authen-
tication service further, by allowing
the user to only log in once, in order
to have full access to all of the autho-
rised network services. nmbd daemon
provides name resolution and service
announcement (browsing) services, in
which its role is to advertise the ser-
vices offered by the Samba server.
This daemon has the responsibility of
managing and distributing NETBIOS
names. NETBIOS is a software pro-
gram installed in memory that pro-
vides an interface between the sys-
tems software and the network
hardware.

In addition, Samba also provides va-
rious utilities. The most popular utili-
ties include smbclient with a shell-
based utility similar to the FTP
programs in which the client can
copy, share, transfer files to and from
servers using the SMB network proto-
col. This includes file and print ser-
vers. nmblookup is a NETBIOS name
service client for looking up IP ad-
dresses and querying remote ma-
chines for lists of names, and SWAT is
the Samba web administration tool
(Hertel, 2001).

]

II1.1. Research Method

» Analysing functionality by coun-

Systémes d'Information et Management,thgs [eh@3], suinsés of additional

II1.1.1. Quantitative Measurement

Most of the quantitative data collec-
ted on Samba was from Samba’s offi-
cial website (www.samba.org) and
StatCVS (statcvs.sourceforge.net) that
contain information on current Samba
projects under development, previous
versions of Samba, archival informa-
tion on its previous versions, mailing
lists, and discussion groups. The data
were sorted and analysed. The analysis
techniques used were based on pre-
vious research techniques employed
by researchers in the field of software
evolution. (Lehman et al., 2001, God-
frey et al., 2000, Mockus et al., 2002).
These researchers have devised both
qualitative and quantitative measure-
ments of software evolution, and to va-
rying degrees, concur with one ano-
ther on their measurement techniques.

The five release versions of the
Samba software were evaluated in
terms of technical and operational
evolvability. These releases were se-
lected because they were stable re-
leases, with their dates of release fal-
ling around April every two years. This
provided an adequate sample of relea-
se versions over time, for comparison
and assessments be made on Samba’s
evolution, in the 1995 to 2002 period.
The technique used for data analysis
include:

e Counting the SLOC (source lines of
codes) in each module of the five
versions, using Perl scripting. The
SLOC measurements were graphi-
cally plotted against time, to evalua-
te whether SLOC have increased
with each new release version;

functions within each module and
version, then comparing the re-
sults. The functionality measure-
ments taken are graphically repre-
sented against time;

Analysing the number of bug fixes
and patches in each new released
version. This measurement was
plotted against the version number
to determine whether bug fixes
have increased or decreased with
each new release version. Growth
in the number of bug reports and
repairs sent by the Samba commu-
nity could very well imply that the
code is bug-ridden and of a poor
quality. However, we operate
under the assumption that any
large, complex software code will
have bugs and one of the key
strengths of the open source model
is its ability to discover a good pro-
portion of them through the efforts
of the community. It is in this sense
that we use the increase in bug
fixes and reports as an indication
of the growing effectiveness and
evolution of the community;

Evaluating the size of the Samba
team and their source code contri-
bution. This determined the contri-
butions made by each team mem-
ber and assist in the examination
of the Samba team structure, in re-
lation to their individual contribu-
tion to Samba’s progress;

Analysing mailing lists and discus-
sion groups at the time of the re-
leases of the five different versions
of Samba. The size of the mailing
lists and discussion groups indica-

RepURACES s PEYATESISN e85 dByright owner. Further reproduction prohibited without permissiohf.

te Samba’s popularity and growth,

Samba project success in relation to

and detesmihedis: Whlktle of OhatSourcecofmnitiniudpblalbe satibnproject

exists a complementary relation-
ship between Samba’s growth and
its community involvement.

This analysis helped us track and
scrutinise Samba’s evolution. In order
to further assess Samba’s future softwa-
re evolvability, Lehman et al’s (2001)
rules for software evolvability were tes-
ted against the Samba experience. The
main drivers of Samba evolution were
identified and documented.

IIL.1.2. Qualitative Measurement

In terms of community solidarity and
Samba coordination of its projects, we
interviewed the members of the core
Samba team to analyse and evaluate
the methodology the Samba team used
to coordinate and integrate their pro-
jects. Interviews were conducted with
three of the key developers who were
involved at every stage of the Samba
project. The interview data provided
deep insights into the structure of the
Samba community and to

assess

The combination of qualitative and
quantitative techniques were em-
ployed to ensure that that the assess-
ment of Samba’s growth and evolution
is thorough and comprehensive and
constitutes an improvement over pre-
vious studies. The interview data en-
abled us to fill the gaps in our unders-
tanding of Samba evolution, obtain
clarifications, and to triangulate on the
phenomenon under scrutiny.

II1.2. Results: Quantitative Analysis

Table 2 shows that SLOC measure
showed strong growth in Samba’s re-
lease versions especially during the
periods that coincided with Microsoft
Windows releases. To specifically
mark where the growth has occurred,
each modular component of Samba
was analysed separately to determine
the source of the growth. It was disco-
vered the lib (architecture-indepen-
dent library code), smbd (server code
for authentication and authorization),

Table 2: Quantitative Measure of Samba’s Growth.

Repl%%lﬂ}&sé’&%\}ﬁ%%@m%@mﬁ%#&%ﬂ%&ﬁpo%%. Further reproduction prohibited without permissionl.1

Table 3: Measuring Samba’s Discussion Activity (Technical versus CVS).

and param (parameter definition code)
modules had the greatest and most
consistent growth than all other mo-
dules. In contrast, the printing, utils
and client modules exhibited erratic
growth rates. This can be attributed to
SLOC being transferred from one mo-
dule to the next. Since its creation,
Samba has moved to become more
modular. In order to achieve this, it
was necessary to move code between
modules, where appropriate.

SLOC has been criticised as a flawed
measure in that SLOC can be transfer-
red between modules and good deve-
lopers aim for the minimal amount of
code to produce the best quality code.
In order to supplement the SLOC mea-
surements the number of files measu-
rement is applied to account for SLOC
movement between modules. The re-
sults indicate there has been a pro-
gressive growth in the number of files
in each release version. Even though
the number of files does not, in itself,
provide a complete measure of Sam-
ba’s growth, it does provide indirect
supportive evidence.

In order to better substantiate Sam-
ba’s growth, functionality measure-
ments were adopted for comparisons
between versions and modules. Such
comparisons investigated not only
whether Samba has evolved since its
original release, but to identify the
source of the growth. The results illus-
trate that the functionalities added per
release version were relatively equal
between versions. However, the num-
ber of changes made to the existing
code in the form of bugs and security
patches were quite high and fluctua-
ting. This suggests that improvements
and repairs made to the existing code
had greater priority and were more
time consuming than adding extra
functionality. This can be viewed as a
strength because new functionality
should not be added to a faulty and
unstable working version.

Functionality provides the clearest
measure of Samba’s evolution and
growth. However, additional supple-
mentary results from SLOC and the
number of files provide complementa-
ry evidence of Samba’s evolution.

Repllbta}afé/@asﬁlli?ﬁsﬁ‘étrﬂ{%@m‘é?lﬁ{g%Byright owner. Further reproduction prohibited without permissiéﬁ.

Overall, the results indicate that

sions had begun to decline pointing to

Samba hadeegndwnyis:dmelutiew of Rpen Sirurce SoftwinereSsidgopals Sambobraidstition to the

terms of SLOC, number of files, and in
functionality. However, even though
the data analysis indicates a steady and
gradual growth over the period 1995
to 2002, there were some periods of
the Samba project that have experien-
ced erratic growth. This erratic beha-
viour suggests that Samba’s progress
and evolution to its current stage was
not without obstacles (discussed in
greater detail in section 3.5). In order
to evaluate the evolution process of
Samba and the obstacles encountered,
Samba’s community was studied.

Samba’s community was examined
to determine the amount of active and
passive contribution it has made to
Samba’s evolution. The Samba com-
munity contribution was quantitatively
measured in terms of CVS and techni-
cal discussions (see Table 3) and qua-
litatively validated through interview
sessions with the Samba team mem-
bers. CVS discussions are obtained
from Samba’s global message boards
in which any member of the commu-
nity has the ability to post or respond
to any of the (typically code-related)
messages. In contrast, technical discus-
sion messages are obtained from Sam-
ba’s private message board on which
Samba team members discuss core
technical issues. The quantitative re-
sults highlight both CVS and technical
discussions have been progressively
and gradually increasing since Samba’s
debut. There is also strong evidence of
a pattern of active contribution from
the greater community.

However, the results also indicate that

during the period following December
2001, both CVS and technical discus-

Samba project. This suggests the com-
position of the community has evolved
from that of primarily comprising of ac-
tive developers to one filled with passi-
ve and general users. Despite the com-
munity’s growth, the ratio of active
developers to passive users has declined
in the number of active contributors.

In conclusion, the Samba project has
exhibited growth in every area that has
been measured — both qualitatively
and quantitatively — including SLOC,
number of files, functionality, and the
Samba community via analysis of the
discussions and interview sessions.
Both qualitative and quantitative tech-
niques were adopted with the view
that these measurements will overlap
and validate each other.

II1.3. Qualitative Analysis

Samba’s development process is loo-
sely formed and structured. All pro-
jects within the Samba team are inter-
nally discussed online using IRC chat,
email messages, and the Samba team’s
technical discussion board. A general
consensus is formed by the Samba
team regarding the technical require-
ments and specifications of the project.
All internal Samba projects are subjec-
ted to a “loose” deadline for staged in-
cremental releases. Projects external to
the Samba team do not require appro-
val, however, discussions with the
Samba team would be appreciated and
future assistance from the Samba team
will be given with a greater level of
ease and knowledge.

Projects internal to the Samba team
are undertaken and prioritised based on:

ReprotRlis hitn ph Fersmis i EsHSAE bR Further reproduction prohibited without permissioR.

» The developers’ interest in addres-

check that the version is stable, re-

mes d'Information et Management, Vol. 8 [2003], Iss. 1
€ ,f S tablc

sing particulsﬁlftﬁssu S

e The needs of the mailing lists, in-
cluding compatibility and functio-
nality issues;

e The needs of the corporate spon-
sors, including compatibility and
functionality issues.

Technical conflicts that arise are usual-
ly resolved with the policy of “code
speaks louder than words”. The develo-
per who can first implement the func-
tionality will immediately prove that
such functionality is possible to imple-
ment. Problems are usually discussed
online through electronic means such as
email and discussion boards.

In the early days of Samba, all code
contributions were sent to Andrew Trid-
gell or Jeremy Allison, the only two
members of the Samba team with com-
plete access to all of the Samba source
codes. The coordination and integration
of Samba projects were entirely organi-
sed by them. In recent years, the role of
integration has been relinquished to the
whole Samba team. As a result, the ge-
neral community may contribute code
by electronically sending their code to
any member of the Samba team, and
the team will determine whether the
codes should be integrated with the
new version of Samba.

Every Samba release version has a
release coordinator. The role of the re-
lease coordinator is to ensure the com-
plete integration of all code contribu-
tions and its maintainability as a
whole, and that the Samba version is
stable before release. This implies that
before the version is released to the
general community, Samba will under-
go quality assurance and testing to

ReprOSRiLaisshitis BEY ARSI B Y dByright owner.

Art. i
¢, and thaintainable.

All code contributions sent to Samba
are assessed on the following basis:

e Whether the code contributed is
good code, in terms of structure
and interoperability;

e Whether the code can be easily in-
tegrated and is potentially maintai-
nable. Hence, it helps if the sour-
ce code is modular, and it can be
attached to the existing version as
a module;

e Whether code additions and modi-
fications are possible once the
contributed code has been integra-
ted with the existing module.

However, code contributions made
by the internal Samba members are
deemed reliable, and hence, their code
contributions are more trusted and are
more readily integrated into the exis-
ting Samba version than general contri-
butions,

Once the version is released to the
open source community, the Samba
team progresses to the next project.
The product release also provides feed-
back opportunities from the general
public about the product’s functionality
and operability. The open source com-
munity submits reports on the pro-
duct’s defects and bugs that will enable
the Samba team to make modifications
to the current release where necessary.
The feedback opportunities attract ad-
ditional testers of the software which is
one of the unique and beneficial as-
pects of open source software.

Figure 1 presents a model of Samba’s
development process. It appears to en-

Further reproduction prohibited without permisél‘bn.

capsulate most of the activities under- of software evolvability presented by
taken to IpraddiDevivEvdhtinsof Opesionrce Sofbedrmastely ah ti20dba rrgkcliscussed in
The model is also mapped to the law the section 3.4 below.

Discuss Project Ideas
(Arise from developer's interest,
corporate sponsorship or user's

needs)

< Law of Continuing Growth (L)

Form specifications and
requirements of the project Law of Continuing Change (L)

\ 4

Implement the project
(With the aim of modular design
for easy integration and
mainfenance)

Y

Integrate project with the
working version Law of Increasing Complexity (L)

h 4
Law of Organizational Stability (L)

Testing and maintenance of | | 5y of Conservation of Familiarity (L)
any existing problems <

A4

Release the version to the Feedback Loop for
community for use Bugs and Patches e

Law of Declining Quality {L)

Law of Self-Regulation {L)

Feedback Loop for Law of Feedback Systems (L)
New Functionality

{L) = Laws of Software Evolution [Lehman et al. 2001]

Figure 1: Framework for Samba’s Development Process.

Repr%‘élt}&sé‘c‘?%%%@H‘é@?&‘i‘%ﬁé%ﬁ%&ﬁ%\%ﬁ Further reproduction prohibited without permis]s?on.

IIL.4. Discussion

system for reporting bug problems.

Systémes d'Information et Managemepii¥olotdtoqh) feedisdeR allows the cur-

In this section we evaluate Samba
evolution against the Laws of Software
Evolution as outlined by Lehman et al. -
(200D).

In terms of the Law of Continuing
Change, Samba’s added functionality
(shown in Table 1), Samba’s discussion
— technical versus CVS (shown in
Table 2), and Samba version changes
(shown in Table 2) and the foregoing
discussion in section 3.2 indicate that
adaptations were made to each version
of Samba suggesting that Samba has
adapted to the changing needs of its
user community.

Regarding the Law of Increasing
Complexity, both qualitative and quan-
titative measurements have revealed
Samba has indeed evolved. From the
data obtained from the interview ses-
sions reported above, there is eviden-
ce of Samba moving towards greater
modularity to combat maintenance
complexities as Samba grows.

Concerning the Law of Self-Regula-
tion, Samba is. regulated by its commu-
nity. Samba’s efficiency and operability
depends on the software evaluations
(including performance and faults is-
sues) from the community. These feed-
back mechanisms are used as input for
future modifications and new projects.

In terms of the Law of Conservation
of Organisational Stability and the
Law of Feedback System, Samba’s feed-
back mechanisms involve the Samba
community providing critical evalua-
tions on its current release version, in-
cluding submitting patches and sug-
gesting possible functional extensions.
The Samba team uses the bug tracking

rent version to be improved and pro-
vides greater stability of the current
version.

The Law of Conservation of Familia-
rity assumes that as Samba ages, there
will be a greater need to maintain the
existing code than for introducing ad-
ditional functionality. Evidence of the
validity of this law with respect to the
Samba project is mixed at best. It can
be seen from Table 2 that the number
of changes made exceed the amount
of functionality added. However, to
ensure Samba continues to evolve,
new functionality needed to be conti-
nuously introduced. During our inter-
view, Andrew Tridgell highlighted the
importance of undertaking several po-
tential future projects to enhance the
current version. Samba currently deals
with only a small section of a very
large SMB protocol; hence Samba has
the potential to encapsulate more of
the SMB protocol. As for Lehman et
al’s Law of Continuing Growth, which
states that software must enhance its
functional capability to maintain high
levels of user satisfaction, we have
produced considerable evidence of
Samba continuously adding functiona-
lity to respond to the users’ changing
needs '

The Law of Declining Quality high-
lights that Samba must be continually
maintained and its functionality upgra-
ded in order to counteract the decli-
ning quality in performance, functio-
nality and reliability as Samba ages.
This has certainly been the case with
strong evidence of Samba responding
to expeditiously to new releases of
Windows versions. Overall, Samba

Repllbtaﬁé@&s%ii’ﬁsﬁg’ﬂ{ﬁlgm‘é?lﬁ{g%Byright owner. Further reproduction prohibited without permislsqon.

seems to satisfy all but one of the laws

vided financial support in its contribu-

of softwarkee enddbatiofvolptiopossRetn uprce SafarecA Sawdherishe Sehbei Brejetthese spon-

Lehman et al. (2001).

IIL.5. Drivers of the Samba project

The qualitative and quantitative re-
sults and analysis of Samba have
shown that Samba has progressively
improved in terms of SLOC and func-
tionality. With the assistance and sup-
port from an active community, Samba
has achieved growth. During the per-
iod of 1995 to 2002, Samba had been
continuously and consistently evol-
ving. In this section we draw on the
qualitatitive data gathered to analyse
the key drivers of Samba’s evolution.

Our investigation of Samba has hel-
ped us to identify and explore some of
the key drivers of Samba’s evolution.
The more important ones are:

e Community dedication in provi-
ding support, interest and spon-
sorship of Samba’s development;

e Community or commercial re-
quests for particular functions;

¢ Core team dedication and personal
motivation;

e The new releases of Microsoft
Windows that creates interoperabi-
lity issues;

¢ The low cost effectiveness of Sam-

ba’s operations;

e Samba’s feedback system and fre-
quent beta releases;

e Greater need and demand for the
Samba software.

The Samba community is one of the
drivers of Samba’s evolution. Commu-
nity support and sponsorship has pro-

sorships are usually conditional where-
by the corporate sponsor requests that
particular Samba-related projects be
undertaken, according to the needs of
the corporate sponsor. Hence, spon-
sorship encourages Samba to remain
updated and to meet the demands of
its community.

Samba’s community as of 2002 com-
prises of 10% developers and 90% ge-
neral users. The number of deveclopers
has gradually increased over the last
ten years; however, the user communi-
ty has increased at a faster rate than
the developer community. Community
requests to the Samba team indicates
an increasing popularity and interest in
Samba and this fuels the core team to
adapt Samba to the changing needs of
its users. This includes maintenance
and upgrades of current functions, and
the addition of new functionalities, as
dictated by the community’s demands
and interests. Keen interest in Samba
have also motivated developers to
contribute code, especially those see-
king peer recognition and “Open Sour-
ce fame”, hence, adding to the popu-
larity and friendly “code competitions”
within the community.

The core team’s continuous dedica-
tion and cohesion in Samba’s develop-
ment has driven Samba to be greater co-
ordinated in its tasks. These tasks
include maintenance and testing of exis-
ting code, improving existing functiona-
lities, coordinating new Samba-related
projects, and integration of new features
with the working version of Samba.
Samba has also moved to become more
modular, as Samba’s popularity grew
and the OS community were more acti-

ReprotRIbg hith HBH RS iE BSdeHIREbAR%. Further reproduction prohibited without permissiol,

vely involved with code contributions.

dules occur locally within that module

Hence, Samba’s $ésdustariPiigsosishiirasemepfu ol flraosbfect 4’ other modules.

fied the maintenance process and pro-
moted projects that can be simply atta-
ched to the existing Samba version,
independent of any modifications made
to other sections of the working version,

Microsoft releases of Windows 98,
2000 and NT remains one of the grea-
test driving forces of Samba’s evolution.
From our data analysis, it was observed
that Samba exhibited the greatest grow-
th in SLOC, and number of files in the
versions that coincide with Microsoft
Windows releases. As reported on April
34 2000 by InformationWeek, the Mi-
crosoft release of Windows 2000 has
created interoperability problems for
Samba, whereby Microsoft has made
modifications to its Remote Procedure
Call (RPC) authentication protocol, and
left the Samba client unable to fully in-
teroperate with Windows 2000. This
example of interoperability problems
between Samba and Windows illus-
trates the need for the Samba team to
make necessary adjustments to its sour-
ce codes to fully interoperate with Win-
dows. It is also important that any mo-
difications made have both backward-
and forward-compatibility with pre-
vious version of Windows and Samba.
Thus, Microsoft Windows releases re-
mains to be one of the biggest drivers
of Samba’s evolution.

Cost plays a role in driving Samba’s
evolution. Since Samba relies on a
pool of dedicated volunteer develo-
pers, it is essential that Samba’s pro-
gress and evolution be structured
where code maintenance is kept to a
minimum. This has driven the Samba
team to construct its design to be mo-
dular so that any changes within mo-

ReprOSRiLaisshitis BEY ARSI B Y dByright owner.

This allows Samba to easily expand its
functionality within its current structu-
re and also to expand beyond its cur-
rent domain over time. Another factor
in keeping low costs is by encouraging
all communications and contributions
relating to Samba to be done over the
internet. This provides greater commu-
nity collaboration and provides easy
distribution of Samba code to interes-
ted parties.

The broader feedback system enables
the open source community to compre-
hensively scrutinize Samba’s performan-
ce, reliability, and functionality. The
existence of such a broad and diverse
feedback system has pushed Samba to
evolve through a systematic process of
bug patches and fault repairs.

We conclude that the variety drivers
of Samba’s evolution — ranging from
community requests to feedback sys-
tems — have encouraged growth in
Samba and strengthened the evolutio-
nary processes that are followed by
the Samba team. Figure 2 illustrates the
drivers of Samba’s evolution. These
drivers promote evolutionary pro-
cesses that are used to improve the
current working version of Samba. The
results of applying these evolutionary
processes have contributed to in-
creases in SLOC, community discus-
sions, functionalities and number of
files thereby facilitating successful evo-
lution of Samba software.

IV. CONCLUSION

We studied the dynamics and evolu-
tion of open source software using
Samba as a case study employing re-

Further reproduction prohibited without permissiloﬁ”l.

Drivers of Seamﬁ’?)aws EVOlutEvo
Evolu ion

Community Interest
and Requests

add new
functionalities

Sponsorshlp and

rojects
Task allocation and

Cohesion

Microsoft Windows

Cost Factor

Feedback System

Figure 2: Samba’s evolution.

search methods previously used by
other researchers in the field. Both
qualitative and quantitative data were
analysed to develop a comprehensive
understanding of the patterns of evo-
lution of Samba. These patterns were
evaluated against the laws of software
evolvability proposed by Lehman et al.
(2001) and found to be generally
consistent with them. The key in-
fluences on and drivers of Samba soft-
ware growth and evolution and OSS
were identified and analysed.

The combination of quantitative data
analysis with insights gained from the
interview data gathered from the core
Samba team enables us to document
and model the Samba evolution with
greater specificity than was possible in
previous studies. The latter also helped
us to explore the wide range of inter-
nal and external influences on a typi-

" New Samba-related

10rboy6lc% abrc){lrce Software: A Study on the Samba Rigjeelome

Increase in
SLOC

Increase in
Community
Discussions,

Increase in
Functionality

Increase in
Number of Files

cal OSS project and how they drive the
evolution of the software.

V. REFERENCES

Blair, J. (1998), “Introducing Samba”, the
Linux jJournal Review, July 1998,
http://www linuxgazette.com/issue36/blair.
html

Browne, C. (1998), Linux and Decentra-
lised Development, First Monday, 3(3),
Available at http:/firstmonday.dk/issues/
issue3_3/browne/index.html.

Brown, J.S. & Duguid, P. (2000), “The So-
cial Life of Information”, Harvard Business
School Press, Boston USA.

Cook, S., Ji, H. & Harrison, R. (2000),
“Software Evolution and Software Evolva-
bility”, bttp://www.personal vdg.ac.uk/sis
99scc/papers/Herrison_00a.pdf

Cubranic, D. (1999), “Coordinating Open
Source Software Development”, Procee-

Rep%‘&a}&%ﬁ‘%\)%%@rﬁh%%?&%f%é%pﬁﬁiéﬁ%%%% Further reproduction prohibited without permiégion.

dings on the 7* Workshop on Coordinating

workshop on_principles of software evolu-

Distributed SoftwavePies b TR dfanegemanty obilkeqad Motidi® 3002.

Library, 1999.

Feller, J. and Fitzgerald, B. (2000), “A
Framework Analysis of the Open Source
Software Development Paradigm”, Procee-
dings of the 21" Annual International
Conference on Information Systems, Bris-
bane, Australia, December 2000.

Gacek, C. Lawrie, T. & Arief, B. (2001),
“The Many Meanings of Open Source”, Ci-
teseer Digital Library, http://citeseer.nj.nec.
com/485228.html.

Godfrey, M., and Tu, Q. (2000), “Evolu-
tion in Open source Software: A Case
Study”, Proceedings of the International
Conference on Software Maintenance, San
Hose California.

Hertel, C. (2001), “Samba: An Introduc-
tion”, http://www.samba.org

Koch, S. and Schneider, G. (2002), “Ff-
fort, Cooperation, and Coordination in an
Opne Source Software Project: GNOME”,
Information Systems Journal, 12, p. 27-42.

Lehman, M.M. & Ramil, J. (2001), “Rules
and Tools for Software Evolution Planning
and Management”, special issue on Soft-
ware Management, volume 11, Annals of
Software Engineering, Autumn 2001.

Markus, M.L., Manville, B., and Agres,
E.C. (2000), What makes the virtual organi-
sation work? Sloan Management Review,
Vol. 42, n°1, p. 13-26.

Mockus, A., Fielding, R.T. & Herbsleb, J.
(2002), “Two Case Studies of Open Source
Software Development: Apache and Mo-
zilla”, ACM Transactions on Software Engi-
neering and Methodology, Vol. 11, n°3, p.
109-346.

Moody, G. (2001, Rebel code — Inside
Linux and the Open Source Movement,
Cambridge, MA: Perseus Publishing.

Nakakoji, K., Yamamoto, Y., Nishinaka,
Y., Kishida, K. & Ye, Y. (2002), “Evolution
Patterns of Open Source Software Systems
and Communities”, Proceedings of the

ReprUtRACES et pERTESISY e HEYdByright owner.

O'Reilly, T. (1999), “Lessons from Open
Source Software Development”, Commiu-
nications of ACM, Vol. 42, n°4, April 1999.

Raymond, E.S. (2001), The Cathedral
and the Bazaar: Musings on Open Source
and Linux by an Accidental Revolutionary,
Sebastopol, CA: O'Reilly.

Scacchi, W. (2001), “Software Develop-
ment Practices in Open Software Develop-
ment Communities”, ¥ Workshop on Open
Source Software Engineering, Toronto, On-
tario, May 2001.

Scacchi, W. (2002), “Understanding Re-
quirements for Developing Open Source
Software Systems”, IEEE Proceedings on
Software, 2002.

Schmidt, D.C. & Porter, A. (2001), “Leve-
raging Open-Source Processes to Improve
the Quality and Performance of Open-
Source Software”, I Workshop on Open
Source Software Engineering, ICSE 23, To-
ronto, Canada, May 15, 2001

Swovyer, S. (2000), “Windows 2000 com-
plicates interoperability for Samba”, Issue
780, April 39, 2000, Information Week, Pro-
quest Computing.

StatCVS (2002), Sourceforge Project at
http://statcvs.sourceforge.net/

Wang, H. & Wang, C. (2001), “Open
Source Software Adoption: A Status Re-
port”, IEEE Software, Vol. 18, n°2, p. 90-95,
March 2001.

Wenger, E. (1998), “Communities of
Practice Learning as a Social System”, Pu-
blished in the “Systems Thinkey’, June
1998, http://www.co-i-l.com/coil/know-
ledge-garden/cop/lss.shtml

Yamauchi, Y., Yokozawa, M., Shinohara,
T. & Ishida, T. (2000), “Collaboration with
Lean Media: How Open Source Software
Succeeds”, Proceeding of the ACM Confe-
rence on Computer Supported Cooperative
Work, Philadelphia USA, p. 329-338.

Further reproduction prohibited without permissﬁ?n.

	Systèmes d'Information et Management
	2003

	Evolution of Open Source Software: A Study on the Samba Project
	Mae Lyn Lee
	Joseph Davis
	Recommended Citation

	tmp.1461066847.pdf.7mCLQ

