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ABSTRACT 

Although data visualization is gaining in popularity due to its ease of use and learning, and superiority of presenting data in a 
pleasing manner, healthcare sector has lagged behind other industries in the use of data visualization. In order to understand 
the appropriateness of data visualization technique, especially storytelling, in improving public health, it is necessary to 
empirically investigate whether and how this technique could help general public understand complex healthcare datasets and 
gain insights. In this study, we present a preliminary conceptual framework and our proposed research design to conduct this 
study. Specifically, we employ the stimulus-organism-response (S-O-R) model as a framework, and Tableau storytelling 
features to undertake this investigation. By doing so, we will be able to further our understanding of data visualization with 
storytelling component, and of whether and how data visualization influence common citizens’ understanding about proper 
healthcare behaviors.  
Keywords 
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INTRODUCTION 

An increasing number of organizations are using analytics and Business Intelligence (BI) techniques to gain insights to 
improving decision making (Chaudhuri, Dayal and Narasayya, 2011). Among these techniques, data visualization is gaining 
in popularity because of its ease of use and learning, ability to present data in a pleasing manner, and data interaction 
capability. Although the superiority of data visualization is recognized in communicating data to decision makers in practice, 
empirical evidence to support this, especially with new types of visualization techniques and when users are general public, is 
sparse.	
  	
  
	
  
It was argued that data visualization can serve the needs of policy makers to make informed decision about nationwide health 
care policy (Sopan, Noh, Karol, Rosenfeld, Lee and Shneiderman, 2012). However, it may be more appropriate to target the 
general public, rather than policy makers, in order to obtain the greatest benefits of data visualization techniques in the 
healthcare context. Empirical research has revealed that unhealthy lifestyles increase financial burden on national healthcare 
systems, approximately $34 billion to the expenses (“Research,” 2013). By using data visualization techniques, it could be 
expected that the general public will be better educated about proper health behavior, improving quality of life nationwide, 
and reducing national healthcare spending. Further, scant literature devoted to exploring this issue, and no empirical research 
has ever tested this idea. Therefore, there is a strong need to investigate whether the benefits of data visualization techniques 
could be gained by the general public in the healthcare sector.  
 
The intent of this study is to empirically examine whether or not, and to what extent, if any, data visualization techniques 
improve or diminish learning outcomes for general public.	
  In particular, this study is designed to address the following 
research questions:	
  When the general public is exposed to different types of healthcare data visualization (e.g., traditional 
spreadsheet, static visualization, and interactive data visualization), are there differences in their engagement (i.e., meaningful 
interaction, or active cognitive processing)? Does task complexity influence the relationship between visualizability and 
engagement? To what extent is the general public’s engagement related to learning outcomes? 	
  

THEORETICAL BACKGROUND AND HYPOTHESIS DEVELOPMENT 

Why is data visualization appropriate for citizen healthcare? 
In the big data era, the volume of data grows by 30% to 50% each year across most organizations (Beath, Becerra-Fernandez, 
Ross and Short, 2012). To handle this data explosion, various BI tools have been introduced with goal of dealing with such 
processes as data management, data analysis and data visualization. In this study, data visualization is defined as “the use of 
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computer-supported, interactive, visual representations of abstract data to amplify cognition” (Card et al., 1999, p.7). Due to 
the fact that information visualization and data visualization are frequently used interchangeably, we use the term data 
visualization in this study. Data visualization techniques have been increasingly employed in organizations, including 
banking (“Who,” 2015), medical sector, and government agencies (Heise and Naumann, 2012). Because a lot of healthcare 
information is formatted as huge, multi-level and discrete datasets, use of data visualization by policy and decision makers is 
increasingly seen in practice (Sopan et al., 2012). However, a much larger population, in other words the general public, have 
yet to realize the benefits of healthcare data visualization. Some attempts to inform citizens using data visualization are seen 
in magazines, such as the New York Times, where visual reports are provided. We argue that data visualization’s ability to 
influence the health practices of citizens is an opportunity that needs investigation. Visualization techniques are not new to 
health data analysis, but hitherto the focus has been on developing appropriate presentations for public policy decision 
makers (Afzal et al., 2011) rather than the general public. Unlike public policy decision makers, who can understand results 
of statistical models and quantitative data, the general public is less likely to be skilled in understanding statistical model 
results; hence easy-to-understand methods must be adopted. A possible solution to this situation is delivery of a content via 
the relatively new technique of visual storytelling, which uses the art of imposing narrative patterns to data. Recently, 
Tableau developed a storytelling feature, using deep interactivity with data, which allows viewers to manipulate visualization 
and make sense of the information. Storytelling is comprised of a series of interactive story points, by which viewers can read 
visual presentations about data (Kosara and Mackinlay, 2013). A good story conveys rich information in relatively few words 
in a format that can be easily assimilated by viewers. Besides, “People usually find it easy to understand information 
integrated into stories than information spelled out in serial lists, such as bullet points” (Gershon and Page, 2001). Therefore, 
storytelling opens the door to influencing the behaviors of citizens.  

In order to understand the appropriateness of storytelling in improving public health, it is necessary to conduct a study of 
whether and how this technique could help the general public understand complex healthcare datasets and gain insights. Our 
study focuses primarily on the presentation dimension (i.e., storytelling) of data visualization as opposed to data preparation 
dimension.  

RESEARCH MODEL AND PROPOSITION DEVELOPMENT 

We draw on stimulus-organism-response (S-O-R) model as our holistic framework (Mehrabian and Russel, 1974), because 
prior environment psychology and IS research has successfully documented the S-O-R paradigm to model how stimulus 
influences information receivers’ behaviors (Jiang et al., 2010; Sherman et al., 1997). In this study, visualizability serves as 
stimulus, engagement serves as organism, and learning outcomes serves as response. Visual representation can have a lasting 
impact because it is a way by which the brain easily comprehends information and immerses in the narrative in an interactive 
manner. Interactivity refers to “the extent to which user can participate in modifying the form and content of the mediated 
environment in real time” (Steuer, 1992). Visualizability is defined as “the quality of being visualizable” (“Visualizability,” 
2015), which can be conceptualized as different levels of visually and interactively presenting data (i.e., traditional 
spreadsheet, static visualization, and interactive visualization). We incorporate interactivity as a component in our construct 
visualizability. Static data visualization has limited capacity to change display or data selection, whereas interactive data 
visualization provides information users with “desired presentation format form alternatives provided by an information 
preparer” (Janvrin et al., p.45).  

Storytelling is very interactive and engrossing, because the users can interact and move forward in a sequential manner 
through the story, go backward, and navigate at their own pace. Hence, the level of interactivity is more personalized, 
narrative in form, and meaningful, and thus could potentially enhancing viewers’ engagement with data. According to 
engagement theory, engagement is defined as the meaningful interaction (active cognitive processing) that leads to active 
learning (Kearsley and Schneiderman, 1998). Similar to engagement, involvement can display focused attention as well. 
However, involvement may occur due to task demands or deadlines and thereby might not be enjoyable (Sandelands and 
Buckner, 1989). Engagement, in contrast, involves intrinsic interest. The existing e-learning literature supports that 
engagement serves as the intermediate variable between external intervention and consumer attitude and behaviors 
(Rappaport, 2007; Wang, 2006). In parallel, we conceptualize engagement as mediating variable.  

The outcome variable we aim to investigate is learning outcomes (i.e., the amount of learning), which are comprised of three 
indicators (i.e., understanding, long-term memory, and intentions to change behaviors). Relevant to story-telling, the first 
indicator long-term memory represents “a relatively permanent memory store, from which information is not lost” (Atkinson 
and Shiffrin, 1971, p. 4). Long-term memory is highlighted in this study, because proper health behaviors have to be 
remembered for a long time in order to improve health quality. Empirical research supports the relationship between visual 
representation of a scene and long-term scene memory (Hollingworth, 2005). Thus, it could be expected that the increase in 
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vividness and interactivity of representation would positively relate to long-term memory through the impact of engagement. 
However, whether there is partial or full mediation between the two constructs needs to be examined. The second indicator of 
learning outcomes is understanding, which refers to the degree of people’s understanding of the displayed information. 
Understanding can be accessed by accuracy and time. The better the general public understand the complex healthcare data 
presentation, the more likely that they intend to change their unhealthy behaviors. Understanding, in this regard, reflects the 
degree to which different types of data visualization technique effectively communicate information. The last component of 
learning outcomes is intentions of changing behaviors, which refers to the extent to which participants intend to change their 
behavior after viewing different types of healthcare data presentation. According to Webb and Sheeran (2006), large 
changing behavioral intentions will lead to a small-to-medium behavior change. Accordingly, the overall impact of change in 
behavioral intention matters to whether proper health behavior would ultimately be realized. Therefore, it is incorporated as 
an indicator of learning outcomes.  

Complexity of task derives from “task attributes that increase information load, diversity, or rate of change” (Campbell 1988, 
p. 43). Task complexity reflects the volume of content and number of pages of data presentation, which is a “central feature in 
determining the task performance and consequent information needs” (Vakkari 1991, p.825). It has been found that task 
complexity plays a moderating role in a variety of contexts and at both individual- and team-level research (Liu and Li, 
2012), including software development (Balijepally et al., 2009), web browsing and searching (Adipat et al., 2011), and 
surgical tasks (Vashdi, Bamberger and Erez, 2013). Since much more information is contained in complex tasks than in 
simple tasks, as task complexity increases, presentation viewers’ cognitive load and efforts increase. When facing high task 
complexity, presentation viewers would exert more mental effort and pay more attention to the presentations so as to solve 
problems and make decisions. Human beings, by nature, are cognitive misers, so more cognitive processing load a viewer 
experiences, the more mental stress and less intrinsic enjoyment the viewer would feel. As such, lower-level engagement 
would arise in the presence of high task complexity, and the need for visualizability increases in order to reduce cognitive 
efforts. In contrast, when facing low task complexity, presentation reviewers would experience reduced cognitive load and 
efforts. As task complexity decreases, the benefits of visualizability become more salient. Therefore, we expect that task 
complexity moderates the relationship between visualizability and engagement. 

Based on the aforementioned rationale, the following hypotheses are developed. 

Hypothesis 1: Visualizability is positively related to engagement.   

Hypothesis 2: Task complexity moderates the relationship between visualizability and engagement, such that as task 
complexity decreases, visualizability will have an increasingly positive effect on engagement.  

Hypothesis 3: The relationship between visualizability and learning outcomes is moderated by task complexity through the 
mediating effects of engagement, such that visualizability will have a positive indirect relationship with learning outcomes 
(via high engagement) when task complexity is low, and a negative indirect relationship with learning outcomes (via low 
engagement) when task complexity is high.  

Hypothesis 4: Engagement will be positively related to the learning outcomes (i.e., understanding, long-term memory, and 
intentions of changing behaviors).   

Engagement
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memory

Learning	
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+
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Figure 1. Research Model 
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CONTROLLED EXPERIMENTAL DESIGN 

The expected sample size will involve 240 graduate and undergraduate students at a North American university (80 subjects 
in each group). In order to draw a samples that is representative of the general public, participants have to be strategically 
selected by excluding students majoring in certain majors (e.g., health care and statistics). For instance, students majoring in 
healthcare would not be appropriate for the sample because they have extra expertise and background knowledge in 
answering the questionnaire questions, thereby biasing the results. Each participant will be paid $15 for participation. The 
hypotheses will be tested through a controlled laboratory experiment. Participants will be asked to answer public health 
questions based on the presentations they are shown. Each question will have three different formats of presentations. One 
week later, the same participants will take a test to determine how much information they remember under different settings. 
We choose Tableau to display the visualization representation of healthcare data, because Tableau’s ability-to-execute topped 
Gartner’s (2015) magic quadrant for existing business intelligence and analytics tools. We will control for GPA, age, gender, 
race, and task complexity to ensure the same distribution of each for all three groups. For example, by ensuring all 
participants fall into the same range of GPA, it is reasonable to expect no variations in learning ability between the three 
groups. Then, random assignment of participants (i.e., probability sampling) will be ensured to handle external validity 
before the experiment. 

OPERATIONALIZATION OF VARIABLES 

A closed-ended questionnaire will be used to measure participants’ learning outcomes. Engagement will be measured using a 
modified version of Webster and Ho’s (1997) 7-point Likert scale, where 1 indicates “strongly disagree” and 7 indicates 
“strongly agree.”  The seven-item measure of engagement showed “high reliability and a uni-dimensional factor structure” 
with Cronbach’s α larger than .9 (Webster and Ho, 1997 p. 71). Sample items are: (1) the visual presentation kept me totally 
absorbed in the browsing (navigating); (2) held my attention; (3) was fun. Understanding refers to the degree to which 
information receivers accurately understand the displayed information, which will be operationalized through two measures: 
the accuracy (i.e., percentage of correctly answered questions) (Adipat et al., 2011), and average completion time of each 
question measured (Murray and Häubl, 2011). The average completion time will be automatically recorded through 
JavaScript. Long-term memory will be operationalized as the percentage of correctly answered questions in the delayed test, 
which will also be automatically recorded using JavaScript. Visualizability will be operationalized by three distinct levels of 
interactivity: traditional presentation (text and spreadsheet), static visualization presentation, and interactive visualization 
presentation, with each coded as 0, 1, 2, respectively. Intentions of changing behaviors will be developed using advice from 
an expert panel. A pilot study will be conducted to check the internal consistency and reliability (e.g. using Cronbach’s α). To 
ensure measurement validity, the self-developed instrument will be revised until Cronbach’s α is larger than the widely 
accepted value 0.7 (Nunnaly and Bernstein, 1967).   

DISCUSSION 

To our knowledge, this is the first study that attempts to empirically investigate the impact of visualization techniques on 
citizen engagement with and learning about healthy behaviors. In doing so, we expect such visualizations to provide the 
general public the ability to adopt healthy behaviors. By introducing a conceptual framework that aims to empirically 
examine whether and how data visualization influence common citizens’ understanding about proper healthcare behaviors, 
we will be able to further our understanding of data visualization with storytelling component.  
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