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ABSTRACT 

When patient data are shared for studying a specific disease, a privacy disclosure occurs as long 

as an individual is known to be in the shared data. Individuals in such specific disease data are 

thus subject to higher disclosure risk than those in datasets with different diseases. This problem 

has been overlooked in privacy research and practice. In this study, we analyze disclosure risks 

for this problem and identify appropriate risk measures. An efficient algorithm is developed for 

anonymizing the data. An experimental study is conducted to demonstrate the effectiveness of 

the proposed approach. 

INTRODUCTION 

When patient data are shared for medical research and healthcare practice, it is required that 

appropriate measures be taken to protect the privacy of the patients. HIPAA (Health Insurance 

Portability and Accountability Act) delineates two approaches for protecting individually 

identifiable health information (DHHS 2000). The Safe Harbor (SH) rule specifies 18 categories 

of explicitly or potentially identifying attributes, called Protected Health Information (PHI), that 

must be removed or altered before the health data is released to a third party. Most of the 18 PHI 

categories are direct identifiers, such as name, phone number and email address. There are two 

PHI categories that are not direct identifiers: dates (e.g., date of birth) and locations (e.g., zip 

code). The SH rule requires that all date values be curtailed to include the year only and zip code 
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values be truncated to show the first 3 digits only. To reduce information loss caused by the SH-

based de-identification, HIPAA also provides the guidelines for releasing a Limited Data Set 

(LDS), which contains some date and location information more detailed than that specified 

under the SH rule. LDS requires data use agreements between the parties involved. 

 As an alternative to the SH rule, HIPAA also delineates a Statistical Standard approach 

that enables a statistical assessment of disclosure risk to determine if the data is appropriate for 

release. A well-known privacy model along this line of approach is k-anonymity (Sweeney 2002). 

The k-anonymity model focuses on a type of attributes, called quasi-identifier (QI), which 

include the date and location attributes considered in SH, as well as other demographic attributes 

such as age and gender. The values of the QI attributes can often be obtained from public sources, 

which can be used to re-identify individuals in the de-identified data. To reduce re-identification 

risk, k-anonymity generalizes the values of QI attributes such that the values of these attributes 

for any individual match those of at least 𝑘 − 1 other individuals in the same microdata. In this 

way, the individual identities are expected to be better protected. 

 In medical and health research, data are often collected for studying a specific disease. In 

this situation, it is quite likely that all the patients in the entire dataset have the same disease. We 

call such data the same-disease microdata. Even though the microdata may also include 

individuals who do not have the disease (e.g., for comparison purposes), the records with and 

without the disease are typically known when the data are shared for secondary use. The same-

disease microdata is common in medical and health research; examples include cancer registry, 

diabetes cohort studies, and registry of HIV patients. For the same-disease microdata, a privacy 

disclosure occurs as long as an individual is known to be in the microdata (e.g., HIV registry), 

even though the individual cannot be identified. Thus, individuals in the same-disease microdata 

are subject to higher disclosure risk than those with different diseases. In considering disclosure 
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risk, SH and well-known statistical approaches (e.g., k-anonymity) do not differentiate the same-

disease data from those having different diseases. Therefore, it is necessary to establish an 

appropriate method for evaluating disclosure risk for the same-disease microdata. 

 In this study, we perform a disclosure risk analysis for the same-disease microdata and 

develop an effective approach to anonymizing the data adequately. We show that Safe Harbor 

underestimates the disclosure risk for the same-disease microdata and k-anonymity provides 

misinformed risk estimate that can cause the anonymized data to be either under-protected or 

over-protected. We developed an efficient algorithm for anonymizing the same-disease data. 

Using a real patient datasets, we demonstrate the effectiveness of the proposed approach. 

BACKGROUND AND RELATED WORK 

In analyzing privacy disclosure risk, the literature typically recognizes two types of disclosure 

(Duncan and Lambert 1989): (a) identity disclosure or re-identification, which occurs when an 

adversary is able to match a record in a de-identified dataset to an actual individual; and (b) 

attribute disclosure, which occurs when an adversary is able to predict the sensitive value(s) of 

an individual record, with or without knowing the identity of the individual. The k-anonymity 

aims to protect against identity disclosure by ensuring the QI values of any individual to be 

indistinguishable from those of at least 𝑘 − 1 other individuals. However, if these k individuals 

have the same sensitive attribute value (e.g., a disease), then the adversary can achieve attribute 

disclosure, i.e., disclosing the sensitive value of the target individual even though the individual 

is not definitely identified. Similar to k-anonymity, HIPAA also focuses on identity disclosure 

problem and does not provide guidelines on how to protect attribute disclosure. 

 Following HIPAA, data privacy studies in medical and healthcare domains focus mostly 

on identity disclosure. Several studies have considered re-identification risks in the context of 
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population data (Benitez and Malin 2010; Sweeney 2002), while others have examined re-

identification risk in microdata (El Emam et al. 2011). These studies, however, do not consider 

attribute disclosure risk. 

 Attribute disclosure problems have been studied quite extensively in the privacy literature 

outside health privacy domain (Machanavajjhala et al. 2006; Li et al. 2007; Li and Sarkar 2009; 

Li and Sarkar 2014), where it is typically assumed that there are multiple sensitive attribute 

values in microdata. Popular privacy models such as l-diversity (Machanavajjhala et al. 2006) 

and t-closeness (Li et al. 2007) have been developed to handle various attribute disclosure 

problems. These models, however, rely on the multiple-sensitive-value assumption to reduce 

attribute disclosure risk. The main idea is to anonymize data such that sensitive attribute values 

are well-distributed for the individuals having the same QI attribute values. When the sensitive 

attribute has only a single value, as in the same-disease case, none of these approaches is 

applicable. As mentioned earlier, for the same-disease microdata, a privacy disclosure occurs as 

long as an individual is known to be in the microdata. This disclosure is different from identity 

disclosure or multi-valued attribute disclosure described above. To formally study this disclosure 

problem, we call the presence of an individual in a microdata set an instance and the disclosure 

of such a presence an instance disclosure. 

RE-IDENTIFICATION RISKS WITH HIPAA AND K-ANONYMITY 

HIPAA considers identity disclosure based on population data (Benitez and Malin 2010; El 

Emam et al. 2011). To illustrate the idea, consider an example segment of population data in 

Table 1, which is publicly available (e.g., from voter registration lists). The original data contains 

two QI (also PHI) attributes: 5-digit zip code (Zip5) and date of birth (DOB). The last two 

columns show their SH representation: 3-digit zip code (Zip3) and year of birth (YOB). In data 
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privacy literature, the set of all records that share the same values on a set of QI attributes is 

called an equivalence class (EC) (LeFevre et al. 2006). In the original data, for example, the last 

two records, Helen and Irene, form an EC and every other record is an EC individually. With 

Zip3 and YOB representation, there are only two ECs (separated by the dash-line), one including 

the first three records and the other containing the remaining six records. 

Name 
5-Digit Zip Code 

(Zip5) 
Data of Birth 

(DOB) 
 

3-Digit Zip Code 
(Zip3) 

Year of Birth 
(YOB) 

Alice 00101 07/15/1927  001** 1927 

Bob 00101 05/28/1927  001** 1927 

Charlie 00101 10/26/1927  001** 1927 

Dave 00202 01/02/1935  002** 1935 

Emily 00202 02/03/1935  002** 1935 

Frank 00202 10/24/1935  002** 1935 

Grace 00202 05/13/1935  002** 1935 

Helen 00202 09/26/1935  002** 1935 

Irene 00202 09/26/1935  002** 1935 

Table 1.  An Illustrative Example of Population Data 

 Let 𝑁𝑖 be the number of records in the ith EC in population data P. Under Safe Harbor, 

the re-identification risk for each record in the ith EC is 

𝑞𝑖 = 1 𝑁𝑖⁄  

So, with original data, the re-identification risk is 1/2 for Helen and Irene and is one (100%) for 

the other individuals. With Zip3 and YOB representation, the risk is 1/3 for each of the first three 

records and 1/6 for each of the remaining six records. 

 For an individual in a microdata set, the re-identification risk is the chance of correctly 

matching this individual to an individual in the population. This can be calculated based on 𝑞𝑖. 

Table 2 shows a patient microdata set in the same format as that of Table 1 except that the direct 

identifier, Name, is removed and replaced by a system generated non-informative Patient ID. If 

the data are released with Zip5 and DOB, then the first five records can be uniquely re-identified 
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based on the population data – they are Alice, Bob, Charlie, Dave and Grace, respectively. The 

last record has a re-identification risk of 1/2 (either Helen or Irene). If the data is released with 

Zip3 and YOB, then patient #1 can be Alice, Bob or Charlie; so the re-identification risk for the 

patient is 1/3. Similarly, the re-identification risk for patients #2 and #3 is also 1/3, respectively. 

For patient #4 (or #5 or #6), there are 6 matching records in the population. So, the re-

identification risk for patient #4 (or #5 or #6) is 1/6. 

Patient 
ID 

5-Digit Zip Code 
(Zip5) 

Data of Birth 
(DOB) 

 
3-Digit Zip Code 

(Zip3) 
Year of Birth 

(YOB) 

1 00101 07/15/1927  001** 1927 

2 00101 05/28/1927  001** 1927 

3 00101 10/26/1927  001** 1927 

4 00202 01/02/1935  002** 1935 

5 00202 05/13/1935  002** 1935 

6 00202 09/26/1935  002** 1935 

Table 2.  An Illustrative Example of the Same-Disease Microdata 

 The k-anonymity model does not provide a precise estimate of re-identification risk for 

an individual record. Instead, it provides the maximum re-identification risk for any record in a 

dataset, which is 1/𝑘. This maximum occurs when the individuals in an EC in the microdata are 

the same as those in the corresponding EC in the population. When releasing data in Table 2, if 

Zip3 and YOB are used, then the released data satisfy 3-anonymity and the maximum re-

identification risk is 1/3 for any record. This maximum risk is equal to the actual re-identification 

risk for the first three records but much larger than the actual risk (1/6) for the last three records. 

INSTANCE DISCLOSURE RISK FOR THE SAME-DISEASE MICRODATA 

For the same-disease data, disclosure risk should be evaluated differently. To see this, assume all 

records in the above example have the same disease. Suppose the data is released with Zip3 and 

YOB, which satisfies both SH and 3-anonymity requirements. An adversary having an access to 
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the population data will know for certain that the first three records are Alice, Bob and Charlie. If 

his target is Alice (or any of these three people), he will discover that Alice has the disease even 

though he cannot determine which of the three patients is Alice. The actual identification of 

Alice is not important here. Because the number of records in this EC is 3 in both the microdata 

and the population, the chance of the instance that an individual in the population appears in the 

microdata is 3/3 = 1. In terms of the second EC, the number of records is 3 in the microdata and 

6 in the population. Therefore, the chance of the instance is 3/6 = 0.5. 

 Based on the above observation, we now define the instance disclosure risk. Let D be a 

same-disease microdata set where all the direct identifiers are removed. Let P be the population 

segment containing D. In P direct identifiers exists and the QI attributes are represented in the 

same way as in D. So, for each EC in D there is an EC in P with the same QI values. We arrange 

matching ECs in D and P in the same order and label the matching EC in D and P with the same 

index i. Let 𝑛𝑖 and 𝑁𝑖 be the number of records in the ith EC in D and P, respectively. The 

instance disclosure risk for a record in the ith EC is defined by 

𝑟𝑖 = 𝑛𝑖 𝑁𝑖⁄  

Statistically, 𝑟𝑖  is the probability that an individual having the QI values specified in the ith EC 

in population P appears in microdata D.  

 Comparing 𝑟𝑖 with 𝑞𝑖, since 𝑛𝑖 > 1 in general, it is clear that instance disclosure risk is 

generally greater than re-identification risk. Therefore, the widely used re-identification risk 

measure actually underestimates the disclosure risk for the same-disease data. The maximum re-

identification risk suggested by k-anonymity, which is 1/𝑘, may also underestimate the 

disclosure risk for the same-disease data. This is true for the illustrative example in Table 2, 

where instance disclosure risks for the two ECs are 1 and 0.5, both greater than 1/3. It is also 

possible for k-anonymity to overestimate the risk for the same-disease microdata. Suppose there 
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are 15 individuals in the population having Zip3 = ‘002**’ and YOB = 1935. Then the instance 

disclosure risk for a record in the second EC in the microdata is 3/15 = 0.2, which is much 

smaller than 1/3. In short, the maximum re-identification risk suggested by k-anonymity does not 

really provide appropriate information about disclosure risk for the same-disease data. 

 The instance disclosure risk is defined for an individual record. To measure average risk 

with respect to a microdata set, let |𝐷| be the number of records in D and m be the number of 

ECs in D. Then, the average instance disclosure risk for D is defined by 

𝑅 =
1

|𝐷|
∑ 𝑛𝑖𝑟𝑖

𝑚

𝑖=1
 

For the illustrative example in Table 2, the average instance disclosure risk is 

𝑅 = [3(1) + 3(0.5)]/6 = 0.75 

 We can similarly define the average re-identification risk for D as 

𝑄 =
1

|𝐷|
∑ 𝑛𝑖𝑞𝑖

𝑚

𝑖=1
 

For the illustrative example, the average re-identification risk is 

𝑄 =
1

6
[3 (

1

3
) + 3 (

1

6
)] = 0.25 

 To anonymize the data with the same sensitive value (e.g., same disease), we use the 

generalization operation as in k-anonymity (Sweeney 2002), which generalizes or truncates QI 

attribute values to higher-level values gradually. In particular, zip code values are generalized by 

removing a digit gradually from right to left. DOB values are first generalized to YOB values 

and may be further generalized to a range of YOB values (e.g., ‘1935-1940’) if necessary. 

 An algorithm using generalization to reduce the instance disclosure risk should be able to 

consider both microdata and population data. Existing k-anonymity algorithms (e.g., Sweeney 

2002; LeFevre et al. 2006) are not appropriate because they are based on microdata only. On the 
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other hand, approaches based on re-identification risk are also not applicable because they 

consider population data only. We propose an algorithm to reduce the instance disclosure risk 

using both microdata and population data. It divides the data into a number of subsets based on 

the idea of recursive partitioning in decision trees. The QI attribute values in the subsets are then 

generalized to transform each subset to an EC. To avoid unnecessary information loss, the 

generalization is based on the most detailed common QI values within a subset. For example, the 

zip code values for the two subsets in Table 2 will not be generalized to Zip3 format but will 

remain in Zip5 format since all records within the same subset have the same Zip5 value (i.e., 

00101 and 00202 respectively). On the other hand, DOB will be generalized to YOB. 

0. Given: microdata D and underlying population P, which have d common QI attributes. 

1. List the values of each QI attribute in ascending or descending order. With the values 
ordered, trial-splits can be performed linearly between every pair of adjacent values. 

2. For each QI attribute, compute instance disclosure risk for each trial-split using the 
generalized QI values based on the trial split. Denote the trial-split having the smallest 
instance disclosure risk as the “best trail-split” for this QI attribute. 

3. Find the overall best split among the d best trial-splits and partition the current dataset into 

two subsets using the attribute value of the overall best split. 

4. Repeat Steps 2 and 3 for each of the two subsets until a pre-specified stopping criterion is 
met (e.g., the minimum number of records required for a subset). 

5. For each subset, generalize the QI attribute values using their most detailed common value 
within the subset, which transforms the subset into an EC. 

Figure 1.  Algorithm to Generalize Data Based on Instance Disclosure Risk 

 The proposed algorithm is given in Figure 1. It follows from Proposition 3 that the 

maximum instance disclosure risk increases as recursive partitioning of dataset D causes the 

partitioned subsets to be progressively smaller and thus be generalized at more detailed levels. 

So, a minimum subset size, like the k parameter in k-anonymity, can be used to control the 

disclosure risk. The algorithm is computationally analogous to a decision tree algorithm. As such, 

the time complexity of the algorithm is of 𝑂(𝑁log𝑁), where N is the number of records in P. In 
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actual implementation, we can reduce P to include only the segment of the population that is 

relevant to D. As such, P is unlikely to be overly large. So, the algorithm can be quite efficient. 

EXPERIMENTAL EVALUATION 

We conducted experiments on a real patient dataset, which includes 180 records of patients who 

had undergone the same surgical procedure (and thus can be considered as the same-disease 

data). All patients resided in a single northeast state in the US. There are three QI attributes in the 

dataset: gender, date of birth and 5-digit zip code (LDS). The patients were 61% female, had a 

mean age of 65 years, and resided in 84 zip codes. The voter registration lists for that state were 

collected to serve as the primary population data. A commercial data vendor was also used as a 

supplemental source for population data. 

Release Method max 𝑞𝑖 max 𝑟𝑖 Q R 

Safe Harbor 0.0376 0.0473 0.0020 0.0043 

Limited Data Set 1.0000 1.0000 0.5344 0.6633 

Table 3.  Results of Re-identification Risks and Instance Disclosure Risks 

 We first compare the results of re-identification risk with those of instance disclosure risk 

for SH and LDS release. As described earlier, re-identification risk and instance disclosure risk 

vary with different records. So, we report in Table 3 the maximum re-identification risk (max 𝑞𝑖) 

and maximum instance disclosure risk (max 𝑟𝑖), as well as the average risks Q and R. It is clear 

from Table 3 that max 𝑞𝑖 and Q are considerably smaller than max 𝑟𝑖 and R, respectively, in all 

scenarios (except the maximum risks in LDS release). This suggests that traditional re-

identification risk measures seriously underestimate the real risk of disclosure for the same-

disease data. It is also observed that LDS release has much higher risks than SH release for all 

risk measures, which is expected. Both max 𝑞𝑖 and max 𝑟𝑖 with LDS release are one (100%), 

indicating unique re-identification of at least one record in the dataset. 
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 Next, we examine the effectiveness of the proposed algorithm in reducing the instance 

disclosure risk in comparison with the SH approach. We anonymize the original data with the SH 

rule and the proposed algorithm, respectively. In generalizing QI values for a dataset, it is clear 

that the larger the number of ECs (i.e., the smaller the size of an EC), the less degree of 

generalization is required for individual ECs, which means less information loss after 

generalization. To facilitate the comparison, we have thus used our algorithm to partition the data 

such that the number of ECs generalized is no less than the number of ECs with the SH approach, 

which implies that information loss for the data generalized with our algorithm is no more than 

that with the SH approach. 

Release Method Number of ECs max 𝑟𝑖 R 

Safe Harbor 109 0.0256 0.0030 

Proposed Algorithm 115 0.0137 0.0015 

Table 4.  Results from Safe Harbor and Proposed Algorithm on Dataset 1 

 The results from SH and the proposed algorithm are shown in Table 4. The number of 

ECs with the proposed algorithm is slightly larger than that with SH, suggesting slightly smaller 

information loss with our algorithm. The maximum and average instance disclosure risks with 

our algorithm, on the other hand, are only about half of those with SH. Therefore, our algorithm 

is very effective in reducing instance disclosure risk for the same-disease data. 

DISCUSSION 

Sharing of same-disease data is common in medical research and healthcare practice. Individuals 

in the same-disease microdata are subject to higher disclosure risk than those in microdata with 

different diseases. This problem has been largely overlooked in data privacy research and 

practice. In this study, we have shown, both analytically and experimentally, that the widely used 

re-identification risk measure underestimates the actual disclosure risk for the same-disease data. 



Liu et al. / Sharing Patient Disease Data with Privacy Preservation 

Proceedings of the 2015 Workshop on Information Security and Privacy, Fort Worth, TX, December 13, 2015. 12 

With increasing concerns for patient privacy, this finding has significant policy and practical 

implications. 

 This study reveals two limitations of the SH policy. First, SH applies the same standards 

for releasing different microdata, which expectedly causes under-protection for some microdata 

but over-protection for others because disclosure risks in different microdata are different. In the 

same-disease case, SH tends to be under-protective. Second, SH considers only PHI elements, 

based exclusively on identity disclosure concern. Instance disclosure in the same-disease data 

poses a privacy threat not caused by identity disclosure. This suggests that focusing on PHI alone 

without considering disease information may not be adequate for safeguarding patient privacy. 

The same-disease data require tighter privacy protection than data with different diseases. 

 We do not, however, advocate setting up a more restrictive SH standard. A more 

stringent SH policy would cause overly large information loss for many data-sharing applications. 

We recommend that data owner organizations and researchers employ HIPAA’s Statistical 

Standard approach when sharing the same-disease microdata. This work has established a 

theoretical ground for such a statistical approach. As shown in this paper, disclosure risk analysis 

for the same-disease microdata is in a sense simpler than that for data with different diseases 

(such as l-diversity and t-closeness). It is worthwhile to take the effort to pursue the analysis. 

CONCLUSION 

In closing, we should emphasize that privacy implications vary across different diseases. For 

example, an HIV patient dataset is obviously much more sensitive than a flu patient dataset. 

Therefore, even though the flu dataset has higher disclosure risks than the HIV dataset, it is 

expected that the HIV dataset requires a more protective action. This should be very clear to the 

policy makers and data-sharing entities. 
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