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Abstract 

No current single filtering algorithm used to identify spam can provide for an error rate of zero. 

Different filtering approaches vary in technical and algorithmic aspects resulting in different 

error rates and costs to accomplish the classification goal. Therefore it is common practice in 

larger organizations to implement a spam-classifying process consisting of different single filters. 

We suggest a general model that aggregates cost and profit parameters of each filter step to an 

output, which represents the goodness of the whole classifying process. Optimizing this non-linear 

function leads to a problem which can be addressed by a heuristic approach. 

Keywords: Algorithms, Spam, Email, Decision Models, Information Management, IT Security 
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Introduction 

A problem nearly every internet user is confronted with is unsolicited (commercial) emails: emails the recipient does 
not want – better known as spam. The deletion of a single spam-email takes merely a couple of seconds for the user, 
therefore spam was considered as a personal annoyance for years. In the meantime this phenomenon causes costs 
amounting to more than $50 billion (Van Alstyne 2007). The impact becomes clear when one considers the ratio of 
spam to total emails in the internet, which has according to many sources grown from circa 30% in the beginning of 
2003 (Lueg 2003) to mostly above 80% since 2005 (Lueg et al. 2007; MessageLabs 2010).  

Due to the absence of a precise technical definition of spam, developing anti-spam measures is technically 
challenging. The problem is that by definition the nature of spam depends on the recipient’s attitude towards 
receiving respective messages (Lueg et al. 2007; Lueg 2005). This is the major reason why a lot of varying 
approaches have been used and proposed against spam recently. These approaches include origin-based filters using 
whitelists, blacklists or realtime-blackhole-lists (Bager 2003) as well as greylists (González-Talaván 2006) and 
content-based filters using pattern matching (Lueg 2003), Bayesian probability (Androutsopoulos et al. 2000; 
Graham 2004), case-based-techniques (Delany et al. 2004) or a neural-network (Cao et al. 2004). These filtering 
methods differ in a lot of aspects, which can be summarized as costs per filtered email, rate of falsely classified 
spam (false negatives) and rate of falsely classified solicited emails (false positives). Spam handling in a corporate 
environment therefore requires adopting an optimal cost-benefit filter strategy including decisions about number, 
types and intensity of the filter mechanisms. While there are a lot of contributions that suggest specific filtering 
strategies (e.g. Androutsopoulos et al. 2000; Bager 2003; Cao et al. 2003; Carpinter and Hunt 2006; Delany et al. 
2004; Fdez-Riverola et al. 2007; González-Talaván 2006; Graham 2004; Macmillan and Creelman 2005 and 
references therein), a lack of recommendations for the CIO how to decide about the application of these methods – 
stand-alone or in combination – can be identified in the literature.  

This is somewhat surprising since it has been suggested in several contributions that combinations of different 
methods are needed. For example (Cranor and LaMacchia 1998) broadly concluded with respect to the rising spam 
problem more than 10 years ago: “[…] we recommend that user-friendly email software be developed that supports 
a multi-pronged technical solution […].” Likewise (Leiba and Borenstein 2004) emphasize: “While a single 
classification mechanism can provide a reasonable barrier to spam, any one algorithm is more easily defeated. 
Instead, an amalgamation of techniques may be used, giving multiple levels of classification and providing a better, 
more attack-proof shield to spam.” And recently in the adjacent research area of Internet abuse, Chou et al. find that 
the performance of Internet filters and web page classifiers built using six text-mining algorithms differ 
substantially. Underpinning the demand for integrated solutions, the authors state: “Another interesting future 
direction would be to design methods for combining multiple (source-based and content-based) techniques to further 
improve performance.” (Chou et al. 2010). 

In this contribution, a model for a global spam-classifying process is suggested that is capable of integrating an 
arbitrary number of filter levels and associated filtering strategies. We focus on direct effects of spam on 
organizations. Secondary effects of anti-spam measures, like disproportionately affecting the legitimate emails of 
certain disempowered groups (also denoted as “digital redlining”), although important as discussed in (Lueg et al. 
2007), will not be the issue here. Moreover, we focus our interest on the combination of technical means an 
organization can undertake to deal with spam. Thereby we abstract from regulatory means (as discussed e.g. in 
(Cranor and LaMacchia 1998)) as well as from suggested economic means (Van Alstyne 2007; Loder et al. 2006) to 
deal with spam. 

We apply a combination of an evolutionary strategy with the quasi-Newton method known as the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method to improve local best solutions faster to a nearby local optimum. 
Recommendations for the optimal intensity of each filter within a given architecture of sequential filters can be 
derived with our model. The applicability of the proposed model is visualized using an example with three 
sequential filters. The paper is organized as follows: In section 2 the model is presented. Section 3 proposes a 
solution for the model, which is clarified with an example in section 4. Finally, the main findings as well as 
prospects for further research are summarized in section 5. 



 Burkart et al. / A Sequential Model for Global Spam-Classifying Processes 

  

 Thirty First International Conference on Information Systems, St. Louis 2010 3 

Model 

The following terms are used in this contribution: real positives for non-spam emails that are correctly classified, 
real negatives for spam email that are correctly classified, false positives for non-spam emails incorrectly classified 
as spam and false negatives for spam email incorrectly classified as non-spam email. Note that in signal-detection 
theory, spam emails would be classified as true positives or real positives (Green et al. 1966; Macmillan and 
Creelman 2005), since spam emails belong to the targeted population. We follow the notation of the specific spam 
literature (Cao et al. 2004; Graham 2004; Lueg 2003) here that considers spam (real negatives) to be associated with 
something negative, which is consistent with the general intuition when talking about spam. 

As all common mail filter types are intended to work in a certain order, a sequential model seems to be an 
appropriate form of describing the flow of emails passing an institution's or a company's intranet. Figure 1 illustrates 
the emails’ way coming from the internet until reaching the individual recipient. Each node in this sequence is 
characterized by its individual filter type in combination with a parameter describing the amount or the intensity 
within which this specific filter is used. This parameter ranges from 0% to 100% and represents the impact the filter 
has on the passing email resulting in success rates and failure rates, respectively. In consequence, each filter node 
results in certain costs caused by classifying the incoming emails, which can be for example computational costs, 
costs resulting from administrative effort put into this type of filter or licensing expenditures.  

For instance, the intensity for a blacklist filter can be varied by the ordered subscription. To name just the extremes, 
there are free blacklists available on the one hand and hourly updated blacklists subject to a substantial subscription 
charge on the other hand. Moreover, the number of blacklist databases that are searched when applying a specific 
blacklist filter may be used to determine the level of intensity. The filter itself works in the same way in both cases; 
however, the success rates as well as the associated costs will differ. 

Analogously, a Bayesian filter might be configured to e.g. either just analyze the subject line, the first 50 characters, 
the first 100 characters or the whole message body. This will also translate into different levels of intensity (e.g. 
10%, 30%, 50% and 100%) and different associated costs (e.g. in terms of consumed CPU time for the analysis). 

 

Figure 1.  Schema of a filtering process 

 
The success and cost rates for each filter i subject to its filter intensity ai ∈ [0,1] lead to a rate of falsely classified 

spam N
if , a rate of falsely classified solicited emails P

if , absolute costs per filter fix
iC  and relative costs per 

filtered email rel
ic (with Ci as total costs of filter i). Apparently the configuration of such a multi-level spam filtering 

system requires the help of an experienced system administrator, since it is not only the separate filters that have to 
be calibrated but the system architecture as a whole. Even different positions of the same two filters in the sequence 
can and often will change the input and output structure of the average spam distribution of each component.

 
This 

should be considered when estimating the rates N
if  and P

if  for the calibration of the overall system. These 

interdependencies of the filter rates subject to the position with the overall filtering system make the optimization 
task quite complex and are beyond the scope of this contribution. For the sake of simplification and for the formal 
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treatment of the problem, we assume in the following that the filter rates can be determined independently from the 
position in the overall system.  

 

Figure 2.  Schema of one specific filter node 

 
In this model, the recipient of the remaining emails that passed through the preceding filters is regarded as the last 
filter in the sequence having its own cost and classification rates. Figure 2 shows an illustration of one filter node 
with respect to the number of filtered emails and the resulting total costs Ci of filter i. 

The general model of one filter node is described as follows: All emails at the node input have been classified as 

wanted by the preceding nodes. That includes the absolute number of real positives P
iR 1−  together with mails that 

have been falsely rated as wanted counted by N
iF 1− . Inside filter i the incoming emails are filtered depending on the 

intensity parameter ai. This is modeled by filter-specific intensity-dependent functions resulting in the rate of the 

falsely classified unwanted emails as with ]1,0[]1,0[: →N
if  and the rate of the falsely classified wanted emails 

through ]1,0[]1,0[: →P
if . The relative filter rates N

if  are limited to monotonic decreasing functions with 

( ) 10 =N
if , which represent the behavior of a filter completely switched off and therefore “classifying” all incoming 

unsolicited emails as wanted. The rate functions of the falsely classified wanted emails P
if  are restricted to 

monotonic increasing functions with ( ) 00 =P
if  and ( ) P

i
P

i ff max1 =  with a considerable low maximum rate P
if max . 

The number of emails classified as wanted by node i represented by the output of node i going to the next filter 
summarizes therefore to an absolute number 

 ( )( ) ( ) N
ii

N
i

P
ii

P
i

N
i

P
i FafRafFR 111 −− ⋅+⋅−=+  (1) 

of emails classified as solicited. Emails that are considered as unsolicited by node i and therefore are sorted out 

summarize to the absolute number N
iR  of real negatives and the amount P

iF  of solicited mails falsely sorted out, 

leading to the total of 

 ( )( ) ( ) P
ii

P
i

N
ii

N
i

P
i

N
i RafFafFR 111 −− ⋅+⋅−=+ . (2) 

The complete costs Ci resulting from node i consist of fixed costs as with IRC fix
i →]1,0[:  and costs per filtered 

email IRcrel
i →]1,0[:  both restricted to monotonic increasing functions leading to total filter costs of node i of 

 ( ) ( ) ( )N
i

P
ii

rel
ii

fix
ii FRacaCC 11 −− +⋅+= . (3) 

The model leads to an optimization task which should both minimize the complete costs caused by all filters as 

∑ =
=

n

i
iCC

1

~
 and minimize the rate of false positives ∑

=

=
n

i

P
iP

P
F

R
f
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1~
. 
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Note that when formulating the utility function to be optimized, we distinguish between the costs to filter the emails 
on the one hand and the rate of false positives on the other hand. Based on past experience, it is comparatively easy 
to evaluate the damage that spam emails are causing an organization when left unfiltered. Major components of 
these costs include the time of the users that is needed to identify spam and delete it and potential viruses that may 
affect an organization’s IT. The case of false positives is much more complicated. Depending on the industry – e.g. 
take a law firm as opposed to a used-book reseller – false positives might incur substantially different costs. 
Moreover, a single false positive might cause substantial damage in an organization, but many others might not 
cause any damage at all. Thus, we expect the relationship between the number of false positives and the caused 
damage to follow some power law distribution that can hardly be quantified. That is why we use a punishment factor 
in our suggested utility function in the following instead of a monetary quantification of the average expected costs 
false positives will cause. 

This leads to a function ( ) IRaaF
T

n →,,: 1 K  representing an aggregated utility function – or “fitness” function – of 

the form 

 ( ) ( ) ( )bn

i

P
iP

n

i

i
P

F
R

CfPCaF
−

−

=

−

=













−














=⋅= ∑∑

1ln

100ln

10

1

1

1
1

~~
 (4) 

with ( )Tnaaa ,,1 K=  as the vector of intensity levels, ]1,0[]1,0[: →P  as a strictly monotonic decreasing function 

with P(0) = 1 punishing small values of Pf
~

 already strongly, and b ∈ (0,1) as the complete rate of falsely classified 

wanted emails causing the punishment factor to be ( ) 01.0=bP . Take for example b = 0.001 and a rate of false 

positives of 002.0
~

=Pf . These values would already result in a strong punishment of the utility in the fitness 

function of ( ) 42
1011001 −⋅= . Since the “fitness” function contains the reciprocal of the costs, we believe that the 

constant b can be used as a suitable and economically still meaningful control parameter for false positives. To 

minimize C
~

 and P the “fitness”-function F(a) has to be maximized.  

It is assumed in our model that based on historical observations and the experience of the system administrator, the 
average stream of incoming emails, the average number of spam emails among the incoming emails and the average 
structure of the stream of incoming emails in terms of different types of spam emails are all known. But even with 
this information in hand, the solution of the filtering approach is not trivial, as we will see in the following section. 

Solution 

F(a) is in general highly non-linear and not globally concave due to its construction, and the relatively weak 

restrictions regarding the functions N
if , P

if , iC  and rel
ic . (Gill et al. 1982) state that gradient based local hill-

climbing techniques are frequently used to maximize functions like F(a), which span a broad range of function 
classes with a high risk of not finding a global maximum but ending in a local maximum. Thus, automatically finding 
a global maximum as a built-in feature of an adequate decision support tool constitutes a challenge. Since we feel 
that such a decision support tool ought to provide for a solution “at the touch of a button”, we suggest a heuristic 
approach using an evolutionary strategy to provide as good a solution as possible for the wide range of possible 
occurrences of F(a). Evolutionary strategies are based on biologically motivated reproduction and selection 
strategies and have proven to be useful for solving a large range of problems which occur with optimization 
algorithms as described by (Nissen 1997). Evolutionary strategies use a collection of heuristic rules to modify a 
population of trial solutions in such a way that each generation of trial values tends to be on average better than its 
predecessor.  

A pure evolutionary strategy as e.g. in (Rechenberg 1973) or an improved approach using self-adapting mutation 
parameters such as the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm of (Hansen and 
Ostermeier 2001) do not utilize the potential differentiability of the objective function. However, our objective (or 
fitness) function is differentiable. Thus, a combination of an evolutionary strategy with the quasi-Newton method 
(gradient-based approach) may substantially accelerate the solution procedure.  
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Following the suggested approach in (Sekhon and Mebane 1998), we chose the Broyden-Fletcher-Goldfarb-Shanno 
(BFGS) method (Broyden 1970; Fletcher 1970; Goldfarb 1970; Shanno 1970) to solve our problem at hand. The 
BFGS method is a very prominent representative in the class of optimization algorithms that combines these two 
aspects. It is used to improve local best solutions faster to a nearby local optimum. The BFGS method uses finite 
differences based on optimal intervals to calculate estimators of local gradients as described in (Gill et al. 1982). 
Further descriptions of this method can be found in (Avriel 2003; Bonnans et al. 2006; Fletscher 1986; Luenberger 
and Ye 2008; Nocedal and Whright 2006), while it is applied e.g. in (Csurös and Miklós 2009; Kawai et al. 1993; 
Richardson et al. 2007). 

To optimize F(a) a set of s ∈ IN vectors a(i) ∈ [0,1]n of randomly generated intensity vectors with a(i) = (a(i)1, …, 

a(i)n)
T build a start population P

0 = {a(1), a(2), …, a(s)}. One iteration step t ∈ IN of the algorithm is called a 
generation. Each generation t passes the following steps: 

1) Calculation of the fitness F(a(i)) of each individual of population Pt 

2) Random selection of the mating pool and the parents: 

a) Save the individual with the best fitness into the mating pool 

b) Add randomly s - 1 (with INs ∈
2

) individuals out of P
t into a mating pool ( ) ( ){ }saaM t ~,1~

K= with 

selection probabilities  

( )( ) ( )( ) ( )( )iaFiaFiap

s

i

⋅













=

−

=
∑

1

1

 

c) Divide mating pool in randomly selected pairs of parents px and py:  

( ) ( ) ( ) ( ){ }
py

s

px

s
pypx

t aaaaM
22

,,,1,1 K=  

3) Application of a set of operators to the mating pool Mt leads to the transformed mating pool t
M
~

. These 
operators can be categorized in two classes: 

a) Crossover operators exchange component-wise information between two corresponding parent 
individuals. In this study one out of the non-uniform, the multiple point and the local-minimum 
crossover operators as described in (Sekhone and Mebane 1998) is chosen with equal probability for 
each parent pair and each generation. 

b) Mutation operators change randomly one or more components of one or more individuals. The 
uniform, the boundary and the non-uniform mutation operators as described in (Michalewicz 1993) are 
integrated in this study’s algorithm.  

t
M
~

 builds the next generation’s population by tt
MP
~1 =+ . The next generation step starts over at 1 using the 

individuals of population 1+t
P . The algorithm ends by meeting the termination criterion 

 
( )

( )( )

( )
( )( ) ε<−

∈

+

∈ ++

iaF

iaF

t

Pia

t

Pia

t

tt

1

11

max

max

1

1

. (5) 

Example 
In this section, the model will be illustrated by a very simple, though realistic example. Figure 3 shows the scheme 
of a filtering sequence with three filters, which will be described below. According to a couple of system 
administrators of our respective universities, the chosen filters as well as their sequence are a typical architectural 
setup. 

Filter 1 represents a server-based blacklist. This filter tries to match the sender-address or sender-server of each 
incoming email with a central table of sender addresses known to send (exclusively) spam. In case of a positive 
match the email is classified as spam. The computational costs per filter process for this type of filter are relatively 
small. Fixed costs to be taken into account for this filter include administrational expenditures for hard- and software 
and maintenance costs for the blacklist table. Within this example the blacklist filter is parameterized as follows: 
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• Fixed Costs ( )fixC1 : The number of administrator-man-days times costs per man-day multiplied by a weakly 

concave function (here, we use the square root), that grows with the filtering-intensity a1. The function is 
modeled as weakly concave due to the relatively high initial costs for setting up the filter, 

• Relative Costs ( )relc1 : All incoming emails ( )NP FR 00 +  times processing time per email times costs per server 

times intensity a1, 

• False Positives ( )PF1 : All incoming solicited emails ( )PR0  multiplied by the rate of false positives 

( )( )1
5

11 101 aaf P ⋅⋅= −  as a very small fraction of the intensity a1, 

• False Negatives ( )NF1 : All incoming spam emails ( )NF0  multiplied by the rate of false negatives 

( )( )111 2.01 aaf N ⋅−=  as a weakly concave falling function. 

 

Figure 3.  Example as a three-filter-sequence 

 

Filter 2 is implemented as a client-based Bayesian filter as described by (Robinson 2003). Based on conditional 
probabilities this filter is capable of imitating the individual spam-classifying behavior of each user to set up a 
database and a set of rules to classify emails as spam or wanted. The processing time for each email is comparatively 
high for this type of filter and there are initial training costs for every employee. The costs as well as the success 
rates and failure rates, respectively, of this filter are modeled as follows: 

• Fixed Costs ( )fixC2 : Training-costs per employee times number of employees times a strongly concave function 

growing with the intensity a2 (here we use 10
1

2a ). The function accounts for initial filter training by the 

employees, 

• Relative Costs ( )relc2 : The number of emails ( )NP FR 11 +  passing the first filter times processing time per email 

times costs per server times a strongly concave function of the intensity a2 (here we use 4
1

2a ), 

• False Positives ( )PF2 : The number of wanted mails passing the blacklist ( )PR1  multiplied by the rate of false 

positives ( )( )2
2

22 10 aaf P ⋅= −  as a weakly linear growing function of a2, 

• False Negatives ( )NF2 : The number of spam mails passing the blacklist ( )NF1  multiplied by the rate of the false 

negatives ( )( )22
22 10 aN af

⋅−=  as a convex falling function of a2. Based on our experience, this function can reach 

a relatively high filtering rate. 
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Filter 3 represents the user which is modeled as the last instance of the filtering sequence. There are no fixed costs 
connected to this “filter”. We felt that nowadays using emails is very widespread and nearly all email users have 
already had some experiences with spam emails. Thus, an upfront training is not necessary. Still, fixed costs could 
easily be included in this example and in the calculation. Costs are caused by the time the employee needs to read, 
recognize and delete an unwanted email. It is assumed that the employee always works with an intensity of 1 (since 
a3 =1, it is omitted in Figure 3), thus he does not delete real positives on purpose. Still, a small percentage of wanted 
emails are deleted by the employee by mistake. Note that we are aware that a human “filter” will not “work” with 
the same consistency as the other filters will (Hammond 1996). For the sake of simplification, we abstract from this 
notion here. Moreover, if the organization reaches sufficient size, averaged values can be used for the calculation. 
This results in the following parameterization of this filter: 

• Relative Costs ( )relc3 : The number of not correctly filtered spam coming from filter 2 ( )NF2  to arrive at the user 

times costs per employee times deletion time per email, 

• False Positives ( )PF3 : The number of real positives ( )PR2  from the Bayesian filter multiplied by a very low fixed 

rate of false positives ( )5
3 101 −⋅=Pf , which stands for an average percentage of wanted emails deleted by 

mistake. 

Combining this parameterization, a global sequential model can be set up resulting in a fitness function F(a1, a2) 
which has to be optimized by the heuristic approach described in section 3 (“Solution”). The results lead to 
recommendations for each filter’s intensity. 

The values used in this example are summarized in Table 1 and were cross-checked with a system administrator: 

 

Table 1. Parameters and Values used in Example 

Parameters Values and calculation Used in  

Costs per man day (both administrator and employee) 50,000 euros / 200 working days = 
250 euros/working day 

fixC1 , fixC2 , relc3  

Server costs 10,000 euros relc1 , relc2  

Incoming mails per year 20 * Employees * 360 (since spam 
also arrives on the weekend) 

relc1  

Spam rate (before any filter is applied) 0.7 NF0  

Time (in years) to process one mail via blacklist filter 1*10-11 relc1  

Maximum number of administrator-man-days per year 
for the blacklist filter 

10 fixC1  

Maximum number of man-days per employee per year 
for installation. Training of employee, training of filter 

0.4 fixC2  

Time (in years) to process one mail via Bayesian filter  1*10-8 relc2  

Average time to manually delete a spam message 12 seconds relc3  

Average working hours per day 8 hours relc3  

 
For the case of 110 employees the optimum is reached with the parameters amax = (1; 0.306)T and a fit value of 
1.964 · 10-6 in generation 19 of the algorithm described in section 3 (“Solution”). Given the model parameters, 
further analysis reveals that the effect of changes of the blacklist intensity on F(a) is not as high as changes to the 
Bayesian filter. In the optimum a fully-featured blacklist filter is suggested (a1 = 1), whereas the Bayesian filter is 
supposed just to analyze a small part of an email. The optimal intensity of about 0.3 translates into the analysis of 
e.g. the first 50 characters of the email text. 

Further analyses demonstrate the sensitivity of the filters 1 and 2 with regard to the number of employees. As can be 
seen from Figure 4 a Bayesian filter is already cost-effective starting with one employee in our example. 
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Furthermore, the model suggests switching a portion of the anti-spam expenditures from the Bayesian filter to set up 
the fully-featured central blacklist when the critical number of around 100 employees is reached.  

 

 

Figure 4.  Sensitivity of optimal filter intensities against number of employees 

Conclusion 

Spam is undoubtedly a serious problem which causes employees to be distracted and to use valuable time to delete 
spam. As technical methods against this problem exist, institutions and companies have to decide which 
combination of filters they plan to integrate into their anti-spam strategy. In this paper it has been shown that 
describing spam filters as nodes in a sequential model may lead to useful recommendations. As a novel approach, 
we apply a combination of an evolutionary strategy with the quasi-Newton method known as the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method. The BFGS method is used to improve local best solutions faster to a nearby local 
optimum. In our example we find that the optimal intensity of – and thus the costs associated with – specific filters 
may depend crucially on the number of employees (here: blacklist filter) due to the regressive effects of fixed costs 
while others do not (here: Bayesian filter). With the proposed approach it is possible for the first time to evaluate 
and optimize an overall system of sequential spam filters. Furthermore, the model might be used as a basis for future 
applications in order to compare different spam filtering architectures. 

We are aware that abstracting from interdependencies between different filters in our model and just using the 
number of spam and solicited emails as input and output of a specific filter node constitute a strong assumption. 
Therefore the further development of the model is an important object for further research. We are currently 
working on the integration of a feedback parameter into the model that calibrates the rate of falsely classified spam 
and the rate of falsely classified solicited emails of specific filter nodes subject to all filter nodes that have been 
already passed by the stream of emails. Still, based on our discussions with system administrators, the typical order 
in a filtering architecture is, first, one or several origin-based filters, second, one or several content-based filters and 
finally the human as the last filter. So it is more the interdependencies between filters caused by changing filter 
intensities that we want to focus on in the future as opposed to interdependencies resulting from different orders of 
the filters.  

In addition, there are numerous other directions for further research. First, real data should be applied to validate the 
model. Second, further studies could introduce an implementation of a dynamical change of the filter order, 
statistical models of the single filter nodes instead of rate-based models and a graphical user interface for the 
decision maker, that facilitates setting up each filter’s parameter. Finally, the determination of the optimal point in 
time to re-calibrate the proposed model due to changes in the absolute amount and the types of spam emails 
resulting in changing filter success rates as well as changing cost structures are also subjects of further research. 
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