
Association for Information Systems
AIS Electronic Library (AISeL)

Wirtschaftsinformatik Proceedings 2013 Wirtschaftsinformatik

2013

Using a Generic Model Query Approach to Allow
for Process Model Compliance Checking – An
Algorithmic Perspective
Sebastian Bräuer
University of Münster, ERCIS, Leonardo Campus 3, 48149 Münster, Germany, braeuer@ercis.uni-muenster.de

Patrick Delfmann
University of Münster, ERCIS, Leonardo Campus 3, 48149 Münster, Germany, delfmann@ercis.de

Hanns-Alexander Dietrich
University of Münster, ERCIS, Leonardo Campus 3, 48149 Münster, Germany, dietrich@ercis.uni-muenster.de

Matthias Steinhorst
University of Münster, ERCIS, Leonardo Campus 3, 48149 Münster, Germany, steinhorst@ercis.uni-muenster.de

Follow this and additional works at: http://aisel.aisnet.org/wi2013

This material is brought to you by the Wirtschaftsinformatik at AIS Electronic Library (AISeL). It has been accepted for inclusion in
Wirtschaftsinformatik Proceedings 2013 by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Bräuer, Sebastian; Delfmann, Patrick; Dietrich, Hanns-Alexander; and Steinhorst, Matthias, "Using a Generic Model Query Approach
to Allow for Process Model Compliance Checking – An Algorithmic Perspective" (2013). Wirtschaftsinformatik Proceedings 2013. 78.
http://aisel.aisnet.org/wi2013/78

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fwi2013%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2013?utm_source=aisel.aisnet.org%2Fwi2013%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi?utm_source=aisel.aisnet.org%2Fwi2013%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2013?utm_source=aisel.aisnet.org%2Fwi2013%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2013/78?utm_source=aisel.aisnet.org%2Fwi2013%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

1245

11th International Conference on Wirtschaftsinformatik,
27th February – 01st March 2013, Leipzig, Germany

Using a Generic Model Query Approach
to Allow for Process Model Compliance Checking –

 An Algorithmic Perspective

Sebastian Bräuer, Patrick Delfmann, Hanns-Alexander Dietrich,
and Matthias Steinhorst

University of Münster, ERCIS, Leonardo Campus 3, 48149 Münster, Germany
{braeuer,delfmann,dietrich,steinhorst}@ercis.uni-muenster.de

Abstract. Increased regulation forces financial companies to assure their busi-
ness processes’ compliance with legal and company-internal rules. In this pa-
per, we introduce a model-driven business process compliance checking ap-
proach. It allows for defining compliance rules and identifying their occur-
rences in process models based on a graph theory-based approach. We outline
the challenges to be met in the conceptualization of the approach and especially
its implementation through suitable algorithms. Furthermore, we present an ac-
cording modeling tool and evaluate the approach against related work.

Keywords: Business Process Management, Process Model Compliance Check-
ing, Pattern Matching, GMQL

1 Introduction

In the wake of recent financial and economic crises, financial institutions are faced
with a steady increase in regulations [1]. Against this backdrop, compliance checking
has become of major interest in both Business Process Management research [2] and
practice [3]. Compliance checking means determining if all business processes of a
company comply with existing internal and external regulations [4]. It impacts pro-
cess modeling, because regulations need to be represented in the process models of a
company. This is commonly referred to as design time compliance checking [3].

In this context, a regulation can be understood as a restriction on the control flow
of a process model. This restriction can be represented as a subsection or pattern of
the overall model graph. For example, a simple, yet commonly occurring compliance
rule states that a particular activity A must be preceded by an activity B. To apply for
a loan, for instance, a customer’s financial background first needs to be investigated.
For a process model to comply with this rule, every instance of A (apply for loan)
must consequently have a predecessor B (investigate financial background). To check
whether a given set of process models does indeed comply with this rule, all corre-
sponding pattern instances need to be found. A respective pattern can thereby either
represent a compliance violation where A is not preceded by B or a compliant model

1246

subsection where A is indeed preceded by B. Design time compliance checking thus
corresponds to pattern matching in process models.

As many companies develop and maintain large repositories of process models [6],
a manual pattern search is unfeasible. Implementing an automated solution, however,
proves challenging for three reasons:

 First, a company may use different modeling languages to document its business
processes. A compliance checking approach therefore should to support different
graph-based modeling languages.

 Second, as design time compliance checking equals the problem of graph pattern
matching, a compliance checking approach must be able to identify arbitrarily
complex structures within the overall model graph. In particular, compliance regu-
lations often translate to (cyclic) paths of elements, which need to be found.

 Third, attribute values of model objects need to be compared to one another in the
matching process. An attribute of a model object can for instance be its label or ad-
ditional information about the object that need to be captured in the model. Con-
sider the example of the 4-eye-principle which dictates that two particularly critical
business activities need to be executed by two different employees or organiza-
tional units. Fig. 1 contains a violation of this rule in a BPMN-like process model,
because activities “Check loan application” (A) and “Verify loan application” (B)
are executed by the same organizational unit. In terms of a pattern query, this vio-
lation refers to a path from activity A to activity B such that the label attributes of
the organizational units directly related to these activities carry the same value.

Fig. 1. Violation of the 4-eye-principle

To meet these challenges, a generic model query language (GMQL) has recently been
proposed [7] and applied in the context of design-time compliance checking [8]. As
our previous work focusses on conceptually specifying GMQL, the purpose of this
paper is to provide an algorithmic specification of the matching process. We explain
how GMQL is able to interpret variables and variable conditions. The paper also pre-
sents a working implementation of the algorithmic specification. As some of the com-
pliance checking approaches have not been implemented, the paper contributes to the
proliferation of applicable compliance checking approaches in research and practice.

As the development of a model query language falls into the realm of design sci-
ence research, the remainder of this paper is structured according to the phases of a
design science research process as outlined by PEFFERS ET AL. [9]. To define the ob-
jectives of our solution, we briefly introduce the concept of GMQL (Section 2). We

1247

design and develop the solution by proposing an algorithmic specification of GMQL
in Section 3. This specification is implemented and applied in the context of design
time compliance checking in Section 4. This section also provides a discussion of the
prerequisites and limitations of GMQL. We evaluate GMQL against the backdrop of
existing literature in Section 5. The paper closes with a summary of its main findings
and an outlook to future research in Section 6. Figure 2 contains a description of the
research process. The figure lists each phase, the research method used to complete
the phase, and the section of the paper at hand containing the respective findings.

R
e
s
e

a
rc

h

P
h

a
s
e

R
e
s
e
a

rc
h

M

e
th

o
d

Fig. 2. Research methodology and structure of paper

2 Objectives of the Solution

GMQL recognizes any conceptual model as two basic sets. These are the set O of its
objects and the set R of its relationships. The set E of elements is defined as the union
of O and R. GMQL provides set-modifying functions and operators that perform op-
erations on these basic sets. To be able to specify pattern queries, we define four clas-
ses of such functions. First, we have to be able to recognize elements of a particular
type of the language and elements having attributes (of a particular type or value):

 ElementsOfType(X,a) returns all elements of the input set X E that belong to a
particular type a. The respective elements are put into a single output set.

 ElementsWithTypeAttributeOfValue(X,a,b) returns a set containing all elements of
the input set of elements X E that have an associated type attribute of name a
with the attribute value b. A type attribute is assigned to all instances of a given ob-
ject type. An example of a type attribute is the label of a BPMN activity. As all ac-
tivities have a label the according attribute is assigned to the type specification.

 InstanceAttributesOfValue(Y,a,b) returns a set containing all instance attributes of
the input object set Y O whose attribute is of name a and whose values are equal
to b. An instance attribute is assigned to an object instances. An example of an in-
stance attribute is a clause of a particular law that needs to be adhered to in order to
compliantly execute a process activity.

 ElementsWithTypeAttributeOfDataType(X,a) returns a set containing all elements
of the set of elements X E that are assigned type attributes of a particular data
type. The data type of a type attribute can be STRING, INT, DOUBLE, BOOL,
and ENUM. In case the second parameter is set to INT the functions will therefore
return all elements that have type attributes of type INT. In case of a process activ-

1248

ity, respective type attributes can for instance be execution time, costs, or number
of employees involved to execute the activity.

 InstanceAttributesOfDataType(Y,a) returns a set containing all instance attributes
of the object set Y O whose data types equal the parameter a. Again, the above-
mentioned data types are supported.

Furthermore, to examine neighborhood relationships, we need to identify all elements
having (a particular number of) ingoing or outgoing relations (of a particular type):

 ElementsWith{In|Out}Relations(X,Z) return all elements of X E and their {ingo-
ing | outgoing} relationships defined in Z R. These functions each return a set of
sets. Each inner set contains an element of X and all its relationships of Z.

 ElementsWith{In|Out}RelationsOfType(X,Z,c) return all elements of X E and
their {ingoing | outgoing} relationships of Z R that are of type c. Again, these
functions return a set of sets with each inner set containing one element of X as
well as its {ingoing | outgoing} relationships of Z that belong to type c.

 ElementsWithNumberOf{In|Out}Relations(X,Z,n) return all elements of X E that
have a predefined number n of relationships of Z R. These functions return a set
of sets with each inner set containing one element and its n relationships.

 ElementsWithNumberOf{In|Out}RelationsOfType(X,Z,n,c) are a combination of the
two latter groups of functions. They return elements having a predefined number n
of relationships of Z R that are of type c. These functions return a set of sets.

In addition, we want to be able to find particular elements, their immediate neighbors,
and the relationship(s) between them:

 ElementsDirectlyRelated(X1,X2) and DirectSuccessors (X1,X2) return all elements
of X1 E, their neighboring elements of X2 E, as well as the relationships be-
tween the respective elements. ElementsDirectlyRelated (X1,X2) only works on
undirected graph sections whereas DirectSuccessors (X1,X2) only works on di-
rected graph sections.

Lastly, to be able to find structures representing element paths of arbitrary length, we
included the following functions in the pattern matching mechanism:

 {Directed}Paths(X1,Xn) return all {directed} paths between all elements of X1 E
and all elements of Xn E. One inner set of the resulting set of sets contains one
path from one element of X1 to one element of Xn.

 {Directed}Paths{Not}ContainingElements(X1,Xn,Xc) return all paths from elements
of X1 E to all elements of Xn E that contain at least one or no element of Xc.

For all paths-functions GMQL offers versions that determine only the shortest or
longest paths as well as loops. As its theoretical basis is set theory, GMQL further-
more incorporates the set operators Union, Intersect, and Complement that perform
the standard set operations on two sets of elements. Analogously to the Intersect- and
Complement-Operators, the approach offers versions working on sets of sets (Inner-
Intersect and InnerComplement). The Join-operator unifies two inner input sets if

1249

they have at least one element in common. The SelfUnion operator turns a set of sets
into a single set, whereas a SelfIntersect operator performs an intersection on all inner
sets resulting in one single set that holds all elements contained in every inner set.

These set-modifying functions and operators allow for constructing arbitrary pat-
tern queries recursively, as the result set of one particular function/operator call serves
as input for another function/operator (cf. Section 4.1).

In the context of design time compliance checking not only the graph structure
needs to be analyzed but also information that is stored in object variables. Consider,
again, the 4-eye-principle illustrated in Fig. 1. This rule requires the query language to
treat values of particular attributes (in this case the labels of two organizational units)
as variables that are to be compared to one another. Variables act as wildcards in the
matching process and are of a predefined type. Available variable types are Ele-
mentType, RelationshipType, Integer, AttributeDataType, AttributeName, and At-
tributeValue. This implies that all functions that take instances of these data types as
input can also take a variable of the respective type as input. The ElementsOfType
function, for instance, is called with a set of elements and an element type specifica-
tion. Instead of this type specification the function alternatively can be fed a variable
of type ElementType. To define variable conditions only those variables can be used
that have the same type. In other words, only variables of the same type can be com-
pared to one another. Possible condition types are equal (=), unequal (≠), smaller-than
(<), greater-than (>), smaller-than-or-equal (≤), and greater-than-or-equal (≥).

3 Design and Development

A pattern query is represented in a tree structure. The matching algorithm is imple-
mented using the visitor design pattern known from software engineering [10]. The
visitor walks through the query expression in a bottom-up fashion calculating the leaf
nodes first. In the following, this tree structure and the visitor calculating the node
results will be referred to as the standard pattern compiler.

If a pattern query is run on a model, the matching algorithm distinguishes three
cases. First, the query does not contain any variables or conditions. Second, the query
contains variables but no conditions. Third, the query contains both variables and
conditions. In case the query does not contain either variables or conditions, the
standard pattern compiler is executed. If, however, the query contains either a variable
and/or a condition a pre-compiler is executed that replaces the variable with the con-
crete values that can be found in the model the query is executed on. Each variable
instantiation is then used to create a standard pattern query (without variables or con-
ditions) that is fed to the standard pattern compiler. As this increases runtimes by the
number of created pattern queries, a caching mechanism was implemented that allows
for caching previously calculated (fragments of) pattern queries. The caching mecha-
nism is implemented as a hash table allowing access to intermediary matching results
in constant time.

For evaluating an arbitrary query q against a model m the function CompilePat-
ternQuery (cf. Figure 3) can be used. As an output a set of sets Sr is calculated that

1250

contains all pattern matches. As a first step, the query is analyzed and all occurring
variables are stored in a set Sv. A variable thereby at least consists of a type and a
label. In case that no variables are discovered within the query, no pre-compiling is
necessary and the query is included in the set Sq that is directly handed over to the
actual compiler for evaluating the query against the model.

Fig. 3. Pseudo-code of the function CompilePatternQuery

In case that the query includes at least one variable (Sv) the compiler analyses
whether the query also includes any conditions. If this is the case, the set Sc is created,
which contains all conditions that are included in q. A condition thereby consists of a
left and right value, as well as an operator that is used for comparing the included
values. With the query q, the model m, the set of variables Sv and the set of conditions
Sc as parameters, the function PrecompilePatternQueryWithConditions is called (cf.
Figure 4). The goal of this call is the creation of one or several queries that do not
contain any variables or conditions but only those concrete value occurrences for
which the conditions are fulfilled. In analogy to the conventional approach, these
queries are then finally handed over to the standard pattern compiler as the set of sets
Sq.

For generating the set of queries the algorithm requires the creation of an auxiliary
empty set Sa. After that we use a loop over the set of variables Sv to determine the set
of value occurrence Svo per variable sv and store Svo in Sa. These execution steps are
exemplarily depicted in Figure 5. a-c for variables of type Integer. The potential value
occurrences for a variable sv are identified by searching for all possible value occur-
rences within the whole model. In case of a variable of type Integer the algorithm for
instance collects the number of incoming and outgoing relationships per object. For
determining possible value occurrences of a variable of type AttributeValue the attrib-
ute values of instance attributes and type attributes are collected. For the other attrib-
utes the identification of value occurrences is performed accordingly.

PROCEDURE CompilePatternQuery(q, m)

INPUT: Query q with potential variable expression and op-

tional condition(s); model m to be analysed

OUTPUT: Set Sr that contains all pattern matches

Create a set Sv containing all variables in q

IF Sv is empty THEN

Add q to the set Sq containing all queries

ELSE IF q contains at least one condition THEN

Create set Sc holding all conditions of q

Sq q PrecompilePatternQueryWithConditions(q, m, Sv,
Sc)

ELSE q contains no conditions

Sq q PrecompilePatternQueryWithVariables(q, m, Sv)
END IF

Create Sr by executing all patterns in Sq on model m

END PROCEDURE CompilePatternQuery

1251

Fig. 4. Pseudo-code of the function PrecompilePatternQueryWithConditions

On the basis of the determined value occurrences that are stored per variable in Sa, the
Cartesian product of all sets of value occurrences Svo in the auxiliary set Sa is gener-
ated for obtaining sets with all possible value combinations (cf. Figure 5 d). These
sets are stored in the set Sqvc. For determining those value combinations that fulfill the
associated conditions, a loop over the set Sqvc is used (cf. Figure 5 e). Thereby, a set of
value occurrences sqvc is only written to the set of verified value combinations Svvc if
all conditions are fulfilled by the according values (cf. Figure 5 f). Finally, for each of
these verified value combinations svvc a copy q’ of the original query q is generated in
which all variables sv are replaced by their concrete value occurrences. This clone q’
is then added to the set of precompiled queries Sq that is returned by the function.

PROCEDURE PrecompilePatternQueryWithConditions (q, m, Sv, Sc)

INPUT: Query q with variable expression and condition(s);

model m to be analysed; set Sv containing all variables;

set Sc containing all conditions

OUTPUT: Set of precompiled pattern queries Sq

Create empty auxiliary set Sa
FOREACH sv in Sv

Get set of value occurrences Svo for sv in model m

Add Svo to Sa
END FOREACH

Create a set of sets Sqvc that contains the Cartesian

products of all Svo in Sa to obtain all possible value

combinations

FOREACH sqvc in Sqvc
IF all conditions in Sc hold true on sqvc THEN

Add set of value occurrences sqvc to a set of

verified value combinations Svvc
END IF

END FOREACH

FOREACH svvc in Svvc

Create a clone q’ of the original query

Replace variables sv in q’ with identified valid

value occurrences from svvc

Add q’ to set of precompiled pattern queries Sq

END FOREACH

END PROCEDURE PrecompilePatternQueryWithConditions

1252

Fig. 5. Exemplary execution steps of the function PrecompilePatternQueryWithConditions

In all other cases a query is present that includes variables (Sv), but that does not
have any associated conditions (Sc). Again, a pre-compiling of this query is re-
quired. In this case, we execute the function PrecompilePatternQueryWithVariables
with the query q, the model m, and the set of variables Sv as input (cf. Figure 6).

 Fig. 6. Pseudo-code of the function PrecompilePatternQueryWithVariables

As described above, a set of queries Sq is finally returned that includes all adjusted
queries. For generating this set the algorithm first requires the creation of two tempo-
rary sets Sq and Sq’ that are used for handling the original query q as well as the
cleaned instances of this query where some or all of the variables have been replaced
by concrete values. After that, we use a loop over the set of variables Sv to determine
the set of value occurrences Svo analogously to the approach with conditions. Two

PROCEDURE PrecompilePatternQueryWithVariables(q, m, Sv)

INPUT: Query q with variable expression; model m to be

analysed; Set Sv containing all variables

OUTPUT: Set of precompiled pattern queries Sq
Create temporary set of possible patterns Sq and add q to

it

Create an additional empty temporary set of possible que-

ries Sq’

FOREACH sv in Sv
Get set of value occurrences Svo for variable sv in

model m

FOREACH svo in Svo

FOREACH sq in Sq
Replace sv in sp by svo and add sq to Sq’

END FOREACH

END FOREACH

Sq = Sq’

Clear Sq’

END FOREACH

END PROCEDURE PrecompilePatternQueryWithVariables

1253

embedded loops (the outer one over the set of value occurrences Svo, the inner one
over the temporary set of possible patterns Sq) are employed for replacing the varia-
bles within the queries of the set Sq. Thereby, for each inserted value occurrence an
altered query is added to the other temporary set of possible queries Sq’. Inside the
outermost loop the set Sq is assigned to the set Sq’ that now contains the partly re-
placed queries (if it is the ith iteration, the variable svi is replaced). The temporary set
Sq’ is then cleared and the loop starts over. Finally, the set Sq contains all pre-com-
piled patterns that do not include any more variables. This set is then fed to the stand-
ard pattern compiler.

4 Demonstration

4.1 Implementation and Application

The pattern query given below represents the violation of the 4-eye-principle outlined
in the introductory section:

DirectedPaths(

 InnerIntersect(Join(

 DirectSuccessorsInclRelations(

 ElementsWithTypeAttributeOfValue(

 ElementsOfType(O, Document), Caption, A)

 ElementsOfType(O, Activity))

 ElementsDirecltyRelatedInclRelations(

 ElementsWithTypeAttributeOfValue(

 ElementsOfType(O, OrgaUnit), Caption, C)

 ElementsOfType(O, Activity)))

 ElementsOfType(O, Activity))

 InnerIntersect(Join(

 DirectSuccessorsInclRelations(

 ElementsWithTypeAttributeOfValue(

 ElementsOfType(O, Document), Caption, B)

 ElementsOfType(O, Activity))

 ElementsDirecltyRelatedInclRelations(

 ElementsWithTypeAttributeOfValue(

 ElementsOfType(O, OrgaUnit), Caption, D)

 ElementsOfType(O, Activity)))

 ElementsOfType(O, Activity)))

A=B;C=D

The query complies with the BPMN-like process modeling language depicted in Fig-
ure 1. It returns process paths of arbitrary length that start and end in an activity that is
directly connected to both an organizational unit as well as a document. In addition to
the label values of the organizational units being equal, the query further restricts the

1254

result set to include only those paths whose start and end activities are directly related
to document types that also have equal labels.

Both parameters of the DirectedPaths call are structured analogously. The join-
construct returns all activities, their adjacent organizational units and documents, as
well as the relationships between these objects (note that the DirectSuccessors call is
necessary, because the relationship between an activity and a document is directed
(cf. Figure 1)). This construct is then inner-intersected with the set of all activities to
only feed activities to the DirectedPaths call. The set of organizational units and the
set of documents that appear in both input parameters of the DirectedPaths call are
further restricted to include only those objects that have captions of a particular value.
These values take variables A to D as input that form two conditions specifying that
all corresponding attributes need to have the same value.

This query is only an example of how GMQL can be used in the domain of design
time compliance checking. Further examples are introduced in the following section
as well as in [8]. In order to specify a query for a different modeling language the type
information only needs to be adapted to that language (e.g. in an EPC an activity is
called a function). GMQL is thus generic in the sense that it can be used for models
created in arbitrary graph-based modeling languages.

Fig. 7. Query specification environment (left) and model editor (right)

GMQL was implemented as a plugin for an existing meta-modeling tool that was
available from a prior research project. Figure 7 depicts a screenshot of the meta-
modeling tool’s language editor that contains a query specification environment (left-
hand part of Figure 7). The various functions and operators are available on the left-
hand side. Variables and conditions can be defined on the right-hand side. These ele-
ments can be dragged and dropped to the pattern definition field where the query can
be constructed. The right-hand part of Figure 7 contains an excerpt of the tool’s mod-
eling environment, which allows for selecting and running a previously defined pat-
tern query on a model. All identified pattern occurrences are highlighted. Note that in
this case a path is found that starts and end in an activity. Start and end objects are
both directly related to an organizational unit and a document that have identical la-
bels.

1255

4.2 Prerequisites and Limitations

GMQL is able to identify structural patterns in process models of arbitrary modeling
languages. However, design time compliance checking cannot solely be based on a
structural analysis of the model graph. In addition, the semantics of element labels
need to be considered as well. As indicated above, GMQL considers a label to be an
attribute of an element. Respective information can thus be included in the matching
process. Particular semantic issues like synonyms or homonyms, however, are not
directly addressed by GMQL. However, GMQL allows for integrating approaches
supporting terminological unambiguousness easily. Parts of the underlying algorithms
comparing attribute labels are built generically. This means that, for example, it can
be determined whether two nodes carry labels with the same meaning by checking
their underlying ontological or linguistic concepts (e.g., “check invoice” ~ “bill au-
dit”). Corresponding approaches maintaining the meaning of element labels can be
found in [11] or [12] and can be used together with GMQL.

An additional prerequisite of using GMQL is an appropriate level of detail for a
given model. In particular, the model needs to be syntactically correct and termino-
logically unambiguous. Element paths, for instance, can only be found if the model
graph is not fragmented. The application of process modeling guidelines as proposed
by [13] is thus advisable.

To apply GMQL in an enterprise, process managers have to learn GMQL in order
to define the queries representing the appropriate compliance rules. Alternatively, an
enterprise-wide role can be set up that is responsible for defining queries. In any way,
we expect that this will require a considerable learning effort.

In terms of limitations, GMQL is limited to design time compliance checking in
conceptual process models. In this context design time refers to an analysis of the
model graph structure. Therefore, compliance violations that do not translate to spe-
cific model subsections cannot be found by our approach. A common compliance
rule, for instance, states that particular business documents need to be stored for a
given period of time. Such a rule cannot be checked in the model graph structure and
can thus not be found by GMQL. In addition, compliance violations that occur during
process runtime cannot be detected by GMQL. To determine if a given process in-
stance contains a compliance violation respective mining techniques need to be ap-
plied that are beyond the scope of this paper. Such approaches are discussed in the
area of business process intelligence [14].

Furthermore, GMQL does not consider the execution semantics of a process mod-
el. It analyses the graph structure and includes type and label information in its match-
ing process. GMQL does not recognize the semantics of a given element type (e.g. an
XOR split carries a different meaning than an AND join). In our experience, this,
however, is not necessary in many cases. Consider, for example, the predeces-
sor/successor compliance rule as depicted in Figure 8. Let the rule require that activity
B needs to be performed after activity A has been executed. In case a) the path from
A to C represents a violation of this rule, while in case b) it does not (because of the
AND split/join). The GMQL query given in the right-hand part of Figure 8 identifies
corresponding structures. It determines directed paths from A to C that do not contain

1256

B. From the resulting set of sets, all paths that contain AND split nodes are sub-
tracted. An AND split is a node having at least two outgoing edges. Thus, the set of
all ANDs that have one outgoing edge is subtracted from the set of all ANDs resulting
in the set of all ANDs that have at least two outgoing edges (i.e. AND splits). In case
a), the query thus identifies the path from A to C as a compliance violation; while in
case b) the empty set is returned (i.e. no violation is found). This argument demon-
strates that including execution semantics in the matching process is not always nec-
essary and analyzing the graph structure suffices to detect compliance violations.

B

A

...

C

B

A

...

C

a)

b)

Complement(

DirectedPathsNotContainingElements(

ElementsWithTypeAttributeOfValue(

ElementsOfType(O, Activity), label, A),

ElementsWithTypeAttributeOfValue(

ElementsOfType(O, Activity), label, C),

ElementsWithTypeAttributeOfValue (

ElementsOfType(O, Activity), label, B)),

DirectedPathsContainingElements(

ElementsWithTypeAttributeOfValue(

ElementsOfType(O, Activity), label, A),

ElementsWithTypeAttributeOfValue (

ElementsOfType(O, Activity), label, C),

Complement(

ElementsOfType(O, AND),

ElementsWithNumberOfOutRelations(

ElementsOfType(O,AND),1))))

Fig. 8. Predecessor/successor compliance rule (left) and according GMQL query (right)

5 Evaluation

Design-time compliance checking requires an approach that is able to (a) identify
arbitrarily complex structures within a model graph, (b) define pattern queries con-
taining variables and conditions, and (c) support multiple modeling languages.

Many approaches discussed in the literature transform a process model into some
form of finite-state automaton. This aims at checking the temporal logic of the task
execution. The approach of GOVERNATORI ET AL. and the related research approaches
[15-18] fall into this category. As they transform the models to a state-based event
system, it is possible to map control flow restrictions to these states. This transfor-
mation, however, does not allow for finding more complex structures like highly-
branched structures. This drawback is overcome in [19], as the transformation is a
preprocessing step to an SQL-based query approach that is able to find more complex
structures. Thus, element paths can be calculated. However, SQL suffers from per-
formance problems when calculating paths, because node and edge tables need to be
joined a potentially huge number of times [20]. In contrast, GMQL allows for calcu-
lating element paths without complex join operations. Furthermore, as GMQL pro-
vides specialized paths functions determining paths that (do not) contain particular
elements a transformation to finite-state automata can be avoided which further in-
creases runtime performance (see example above for more details). In addition, the
approaches introduced above allow for defining compliance violations as formulae
that are fed to the state automaton. These formulae require extensive knowledge about
the used symbols and operators. GMQL queries in contrast are, albeit complex at

1257

times, comparatively easy to understand, because the names of the functions and op-
erators are self-explanatory.

Other approaches are restricted to particular modeling languages or language types
[21-24]. The work of MONAKOVA ET AL. [25], for instance, transforms BPEL models
to logical representations to allow for control- and data-flow analysis. The logical
representation of a BPEL model stores the execution path and variables that allow for
verifying compliance rules. WOLTER ET AL. [26-27] allow conditions to support dif-
ferent access control and authorization strategies in extended BPMN models. It is
furthermore not possible to define arbitrary pattern queries. Moreover, OCL can be
used to define and check compliance violations [28]. However, OCL is also restricted
to UML. In contrast, GMQL can be used on models created in arbitrary graph-based
modeling languages, because it is based on the idea that any model can be represented
as the set of its objects and relationships.

Therefore, GMQL is similar to many approaches put forth in the area of general
pattern matching in (process model) graphs. In graph theory, the problem of pattern
matching is known as the problem of subgraph isomorphism (SGI). A plethora of
algorithms has been developed in recent years that perform well in practical runtime
scenarios despite the theoretical intractability of this problem (e.g., [29]). SGI, how-
ever, is concerned with finding one-to-one mappings between a given pattern graph
and a subsection of a model graph. This requires knowing the exact structure of the
pattern before searching it, which is unrealistic in many compliance checking scenar-
ios, because, for instance, the length of a paths between particular elements is not
always a priori known (see 4-eyes-principle above). The problem of finding similar
patterns in a graph is known as subgraph homeomorphism (SGH). This problem,
however, covers aspects of minor containment leading to an abundance of possible
(mostly not suitable) pattern occurrences. These go too far for the purpose of pattern
matching in process models [30]. Also, the theoretical runtime complexity of this
problem is even worse than that of SGI [30]. Neither SGI nor SGH are able to define
restrictions in the form of variables and conditions as it is possible with GMQL.

This literature analysis demonstrates that GMQL advances the current state of the
art in design time compliance checking, because it is able to find arbitrarily complex
patterns in models of any graph-based modeling languages. At the same time it allows
for defining restrictions on attributes of particular model elements while avoiding
computationally expensive model transformations to finite-state automata.

6 Summary and Outlook

We presented an algorithmic specification of a generic model query language. Be-
sides the graph structure of a model, the language compiler is able to process attrib-
utes, variables, and variable conditions. Future research will continue along multiple
consecutive lines. We plan to extend GMQL to allow for searching pattern occur-
rences that stretch across multiple models. This implies that GMQL must also allow
for defining pattern queries that apply to models of more than one language. So far, a
pattern query can only be executed on a model of the language the query was created

1258

for. Relaxing this restriction will allow for verifying, if a hierarchy structure captured
in an organizational chart is properly represented in a process model. Both extensions
can be easily implemented by augmenting the set of elements that is initially fed into
matching algorithm. We aim at gaining a deeper understanding of the compliance
checking domain in order to determine if GMQL is indeed sufficient for this field.
This may require including additional information in the matching process which so
far has not been necessary (e.g. execution semantics). We will explore the possibility
of compliance checking during modeling by enriching a process modeling language
with GMQL-based concepts supporting the ex-ante specification of compliance rules.

References

1. Opromolla, G.: Facing the Financial Crisis: Bank of Italy's Implementing Regulation on
Hedge Funds. Journal of Investment Compliance 10 (2), 41-44 (2009)

2. Abdullah, S.N., Indulska, M., Sadiq, S.: A Study of Compliance Management in Infor-
mation Systems Research. In: Proceedings of the 17th European Conference on Infor-
mation Systems, pp. 1-10 (2009)

3. Sadiq, S., Governatori, G., Namiri, K.: Modeling Control Objectives for Business Process
Compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.): BPM 2007. LNCS, Vol.
4714, pp. 149-164. Springer, Heidelberg (2007)

4. El Kharbili, M., De Medeiros, A.K.A, Stein, S., van der Aalst, W.M.P.: Business process
compliance checking: Current state and future challenges. In: MoBIS 2008. LNI, Vol. 141,
pp. 107-113. GI, Bonn (2008)

5. Cabanillas, C., Resinas, M., Ruiz-Cortés, A.: Hints on how to face business process com-
pliance. Ac-tas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos
4 (4), 26-32 (2010)

6. Uba, R., Dumas, M., García-Bañuelos, L., La Rosa, M.: Clone Detection in Repositories of
Business Process Models. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.): Business Pro-
cess Management. LNCS, Vol. 6896, pp. 248–264. Springer, Heidelberg (2011)

7. Delfmann, P., Herwig, S., Lis, L., Stein, A., Tent, K., Becker, J.: Pattern Specification and
Matching in Conceptual Models. A Generic Approach Based on Set Operations. Enterprise
Modelling and Information Systems Architectures 5 (3), 24-43 (2010)

8. Becker, J., Bergener, P., Delfmann, P., Weiß, B.: Modeling and Checking Business Pro-
cess Compliance Rules in the Financial Sector. In: Proceedings of the 32nd International
Conference on Information Systems (2011)

9. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research
methodology for information systems research. Journal of Management Information Sys-
tems 24 (3), 45-77 (2007)

10. Gamma, E., Helm, R., Johnson, R. E.: Design Patterns. Elements of Reusable Object-
Oriented Software. Addison-Wesley Longman, Amsterdam (1995)

11. Thomas, O., Fellmann, M.: Semantic Process Modeling – Design and Implementation of
an Ontology-based Representation of Business Processes. Business and Information Sys-
tems Engineering 1 (6), 438-451 (2009)

12. Delfmann, P., Herwig, S., Lis, L.: Unified Enterprise Knowledge Representation with
Conceptual Models - Capturing Corporate Language in Naming Conventions. In: Proceed-
ings of the 30th International Conference on Information Systems (2009)

1259

13. Mendling, J., Reijers, H., van der Aalst, W.: Seven Process Modeling Guidelines. Infor-
mation and Software Technology 52 (2), 127-136 (2010)

14. Jiafei, L., Jagadeesh, C., van der Aalst, W.: Mining Context-Dependent and Interactive
Business Process Maps using Execution Patterns. In: Proceedings of the 6th International
Workshop on Business Process Intelligence (2010)

15. Governatori, G., Milosevic, Z.: A formal analysis of a business contract language. Interna-
tional Journal of Cooperative Information Systems 15 (4), 659-685 (2006)

16. Hoffmann, J., Weber, I., Governatori, G.: On compliance checking for clausal constraints
in annotated process models. Information Systems Frontiers 43, 1-23 (2009)

17. Lu, R., Sadiq, S., Governatori, G.: Compliance aware business process design. In: ter
Hofstede, A., Benatallah, B., Paik, H.-Y. (eds.): Business Process Management Work-
shops. LNCS, Vol. 4928, pp. 120-131 , Springer, Heidelberg (2008)

18. Lu, R., Sadiq, S., Governatori, G.: Measurement of Compliance Distance in Business Pro-
cesses. Information Systems Management 25 (4), 344-355 (2008)

19. Awad, A., Weske M.: Visualization of Compliance Violation in Business Process Models.
In: Awad, A., Weske, M. (eds.): BPM 2009. LNBIP 43, pp. 182-193. Springer (2010)

20. Sakr, S.: Storing and Querying Graph Data Using Efficient Relational Processing Tech-
niques. In: Proceedings of the 3rd International United Information Systems Conference
(2009)

21. Liu, Y., Muller, S., Xu, K.: A static compliance-checking framework for business process
models. IBM Systems Journal 46 (2), 335-361 (2007)

22. Knuplesch, D., Ly, L., Rinderle-Ma, S., Pfeifer, H., Dadam, P.: On Enabling Data-Aware
Compliance Checking of Business Process Models. In: Conceptual Modeling – ER 2010.
LNCS, Vol. 6412, pp. 332-346. Springer, Heidelberg (2010)

23. Trčka, N., van der Aalst, W., Sidorova, N.: Data-Flow Anti-patterns: Discovering Data-
Flow Errors in Workflows. In: Advanced Information Systems Engineering. LNCS, Vol.
5565, pp. 425-439. Springer, Heidelberg (2009)

24. Kumar, A., Liu, R.: A Rule-Based Framework Using Role Patterns for Business Process
Compliance. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.): Rule Representation,
Interchange and Reasoning on the Web. LNCS, Vol. 5321, pp. 58-72, Springer, Heidelberg
(2008)

25. Monakova, G., Kopp, O., Leymann, F., Moser, S., Schäfers, K.: Verifying Business Rules
Using an SMT Solver for BPEL Processes. In: Proceedings of the Business Process and
Services Computing Conference, pp. 81-94 (2009)

26. Wolter, C., Miseldine, P., Meinel, C.: Verification of business process entailment con-
straints using SPIN. In: Massacci, F., Redwine, S.T., Zannone, N. (eds.): Engineering Se-
cure Software and Systems, pp. 1-15 (2009)

27. Wolter, C., Meinel, C.: An approach to capture authorisation requirements in business pro-
cesses. Requirements Engineering 15 (4), 359-373 (2010)

28. Warmer, J., Kleppe, A.: Object Constraint Language 2.0. mitp, Bonn 2004
29. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism algorithm

for matching large graphs. IEEE transactions on pattern analysis and machine intelligence
26 (10), 1367-1372 (2004)

30. Lingas, A., Wahlen, M.: An exact algorithm for subgraph homeomorphism, Journal of
Discrete Algorithms 7 (4), 464-468 (2009)

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2013

	Using a Generic Model Query Approach to Allow for Process Model Compliance Checking – An Algorithmic Perspective
	Sebastian Bräuer
	Patrick Delfmann
	Hanns-Alexander Dietrich
	Matthias Steinhorst
	Recommended Citation

	Untitled

