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Abstract. Increased regulation forces financial companies to assure their busi-
ness processes’ compliance with legal and company-internal rules. In this pa-
per, we introduce a model-driven business process compliance checking ap-
proach. It allows for defining compliance rules and identifying their occur-
rences in process models based on a graph theory-based approach. We outline 
the challenges to be met in the conceptualization of the approach and especially 
its implementation through suitable algorithms. Furthermore, we present an ac-
cording modeling tool and evaluate the approach against related work. 

Keywords: Business Process Management, Process Model Compliance Check-
ing, Pattern Matching, GMQL 

1 Introduction 

In the wake of recent financial and economic crises, financial institutions are faced 
with a steady increase in regulations [1]. Against this backdrop, compliance checking 
has become of major interest in both Business Process Management research [2] and 
practice [3]. Compliance checking means determining if all business processes of a 
company comply with existing internal and external regulations [4]. It impacts pro-
cess modeling, because regulations need to be represented in the process models of a 
company. This is commonly referred to as design time compliance checking [3]. 

In this context, a regulation can be understood as a restriction on the control flow 
of a process model. This restriction can be represented as a subsection or pattern of 
the overall model graph. For example, a simple, yet commonly occurring compliance 
rule states that a particular activity A must be preceded by an activity B. To apply for 
a loan, for instance, a customer’s financial background first needs to be investigated. 
For a process model to comply with this rule, every instance of A (apply for loan) 
must consequently have a predecessor B (investigate financial background). To check 
whether a given set of process models does indeed comply with this rule, all corre-
sponding pattern instances need to be found. A respective pattern can thereby either 
represent a compliance violation where A is not preceded by B or a compliant model 
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subsection where A is indeed preceded by B. Design time compliance checking thus 
corresponds to pattern matching in process models. 

As many companies develop and maintain large repositories of process models [6], 
a manual pattern search is unfeasible. Implementing an automated solution, however, 
proves challenging for three reasons:  

 First, a company may use different modeling languages to document its business 
processes. A compliance checking approach therefore should to support different 
graph-based modeling languages.  

 Second, as design time compliance checking equals the problem of graph pattern 
matching, a compliance checking approach must be able to identify arbitrarily 
complex structures within the overall model graph. In particular, compliance regu-
lations often translate to (cyclic) paths of elements, which need to be found. 

 Third, attribute values of model objects need to be compared to one another in the 
matching process. An attribute of a model object can for instance be its label or ad-
ditional information about the object that need to be captured in the model. Con-
sider the example of the 4-eye-principle which dictates that two particularly critical 
business activities need to be executed by two different employees or organiza-
tional units. Fig. 1 contains a violation of this rule in a BPMN-like process model, 
because activities “Check loan application” (A) and “Verify loan application” (B) 
are executed by the same organizational unit. In terms of a pattern query, this vio-
lation refers to a path from activity A to activity B such that the label attributes of 
the organizational units directly related to these activities carry the same value. 

 

Fig. 1. Violation of the 4-eye-principle 

To meet these challenges, a generic model query language (GMQL) has recently been 
proposed [7] and applied in the context of design-time compliance checking [8]. As 
our previous work focusses on conceptually specifying GMQL, the purpose of this 
paper is to provide an algorithmic specification of the matching process. We explain 
how GMQL is able to interpret variables and variable conditions. The paper also pre-
sents a working implementation of the algorithmic specification. As some of the com-
pliance checking approaches have not been implemented, the paper contributes to the 
proliferation of applicable compliance checking approaches in research and practice. 

As the development of a model query language falls into the realm of design sci-
ence research, the remainder of this paper is structured according to the phases of a 
design science research process as outlined by PEFFERS ET AL. [9]. To define the ob-
jectives of our solution, we briefly introduce the concept of GMQL (Section 2). We 
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design and develop the solution by proposing an algorithmic specification of GMQL 
in Section 3. This specification is implemented and applied in the context of design 
time compliance checking in Section 4. This section also provides a discussion of the 
prerequisites and limitations of GMQL. We evaluate GMQL against the backdrop of 
existing literature in Section 5. The paper closes with a summary of its main findings 
and an outlook to future research in Section 6. Figure 2 contains a description of the 
research process. The figure lists each phase, the research method used to complete 
the phase, and the section of the paper at hand containing the respective findings. 
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Fig. 2. Research methodology and structure of paper 

2 Objectives of the Solution 

GMQL recognizes any conceptual model as two basic sets. These are the set O of its 
objects and the set R of its relationships. The set E of elements is defined as the union 
of O and R. GMQL provides set-modifying functions and operators that perform op-
erations on these basic sets. To be able to specify pattern queries, we define four clas-
ses of such functions. First, we have to be able to recognize elements of a particular 
type of the language and elements having attributes (of a particular type or value): 

 ElementsOfType(X,a) returns all elements of the input set X  E that belong to a 
particular type a. The respective elements are put into a single output set. 

 ElementsWithTypeAttributeOfValue(X,a,b) returns a set containing all elements of 
the input set of elements X  E that have an associated type attribute of name a 
with the attribute value b. A type attribute is assigned to all instances of a given ob-
ject type. An example of a type attribute is the label of a BPMN activity. As all ac-
tivities have a label the according attribute is assigned to the type specification. 

 InstanceAttributesOfValue(Y,a,b) returns a set containing all instance attributes of 
the input object set Y  O whose attribute is of name a and whose values are equal 
to b. An instance attribute is assigned to an object instances. An example of an in-
stance attribute is a clause of a particular law that needs to be adhered to in order to 
compliantly execute a process activity.  

 ElementsWithTypeAttributeOfDataType(X,a) returns a set containing all elements 
of the set of elements X  E that are assigned type attributes of a particular data 
type. The data type of a type attribute can be STRING, INT, DOUBLE, BOOL, 
and ENUM. In case the second parameter is set to INT the functions will therefore 
return all elements that have type attributes of type INT. In case of a process activ-
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ity, respective type attributes can for instance be execution time, costs, or number 
of employees involved to execute the activity. 

 InstanceAttributesOfDataType(Y,a) returns a set containing all instance attributes 
of the object set Y  O whose data types equal the parameter a. Again, the above-
mentioned data types are supported.  

Furthermore, to examine neighborhood relationships, we need to identify all elements 
having (a particular number of) ingoing or outgoing relations (of a particular type): 

 ElementsWith{In|Out}Relations(X,Z) return all elements of X  E and their {ingo-
ing | outgoing} relationships defined in Z  R. These functions each return a set of 
sets. Each inner set contains an element of X and all its relationships of Z. 

 ElementsWith{In|Out}RelationsOfType(X,Z,c) return all elements of X  E and 
their {ingoing | outgoing} relationships of Z  R that are of type c. Again, these 
functions return a set of sets with each inner set containing one element of X as 
well as its {ingoing | outgoing} relationships of Z that belong to type c. 

 ElementsWithNumberOf{In|Out}Relations(X,Z,n) return all elements of X  E that 
have a predefined number n of relationships of Z  R. These functions return a set 
of sets with each inner set containing one element and its n relationships. 

 ElementsWithNumberOf{In|Out}RelationsOfType(X,Z,n,c) are a combination of the 
two latter groups of functions. They return elements having a predefined number n 
of relationships of Z  R that are of type c. These functions return a set of sets. 

In addition, we want to be able to find particular elements, their immediate neighbors, 
and the relationship(s) between them: 

 ElementsDirectlyRelated(X1,X2) and DirectSuccessors (X1,X2) return all elements 
of X1  E, their neighboring elements of X2  E, as well as the relationships be-
tween the respective elements. ElementsDirectlyRelated (X1,X2) only works on 
undirected graph sections whereas DirectSuccessors (X1,X2) only works on di-
rected graph sections. 

Lastly, to be able to find structures representing element paths of arbitrary length, we 
included the following functions in the pattern matching mechanism: 

 {Directed}Paths(X1,Xn) return all {directed} paths between all elements of X1  E 
and all elements of Xn  E. One inner set of the resulting set of sets contains one 
path from one element of X1 to one element of Xn. 

 {Directed}Paths{Not}ContainingElements(X1,Xn,Xc) return all paths from elements 
of X1  E to all elements of Xn  E that contain at least one or no element of Xc. 

For all paths-functions GMQL offers versions that determine only the shortest or 
longest paths as well as loops. As its theoretical basis is set theory, GMQL further-
more incorporates the set operators Union, Intersect, and Complement that perform 
the standard set operations on two sets of elements. Analogously to the Intersect- and 
Complement-Operators, the approach offers versions working on sets of sets (Inner-
Intersect and InnerComplement). The Join-operator unifies two inner input sets if 



 

1249 
 
 
 

they have at least one element in common. The SelfUnion operator turns a set of sets 
into a single set, whereas a SelfIntersect operator performs an intersection on all inner 
sets resulting in one single set that holds all elements contained in every inner set.  

These set-modifying functions and operators allow for constructing arbitrary pat-
tern queries recursively, as the result set of one particular function/operator call serves 
as input for another function/operator (cf. Section 4.1). 

In the context of design time compliance checking not only the graph structure 
needs to be analyzed but also information that is stored in object variables. Consider, 
again, the 4-eye-principle illustrated in Fig. 1. This rule requires the query language to 
treat values of particular attributes (in this case the labels of two organizational units) 
as variables that are to be compared to one another. Variables act as wildcards in the 
matching process and are of a predefined type. Available variable types are Ele-
mentType, RelationshipType, Integer, AttributeDataType, AttributeName, and At-
tributeValue. This implies that all functions that take instances of these data types as 
input can also take a variable of the respective type as input. The ElementsOfType 
function, for instance, is called with a set of elements and an element type specifica-
tion. Instead of this type specification the function alternatively can be fed a variable 
of type ElementType. To define variable conditions only those variables can be used 
that have the same type. In other words, only variables of the same type can be com-
pared to one another. Possible condition types are equal (=), unequal (≠), smaller-than 
(<), greater-than (>), smaller-than-or-equal (≤), and greater-than-or-equal (≥). 

3 Design and Development 

A pattern query is represented in a tree structure. The matching algorithm is imple-
mented using the visitor design pattern known from software engineering [10]. The 
visitor walks through the query expression in a bottom-up fashion calculating the leaf 
nodes first. In the following, this tree structure and the visitor calculating the node 
results will be referred to as the standard pattern compiler. 

If a pattern query is run on a model, the matching algorithm distinguishes three 
cases. First, the query does not contain any variables or conditions. Second, the query 
contains variables but no conditions. Third, the query contains both variables and 
conditions. In case the query does not contain either variables or conditions, the 
standard pattern compiler is executed. If, however, the query contains either a variable 
and/or a condition a pre-compiler is executed that replaces the variable with the con-
crete values that can be found in the model the query is executed on. Each variable 
instantiation is then used to create a standard pattern query (without variables or con-
ditions) that is fed to the standard pattern compiler. As this increases runtimes by the 
number of created pattern queries, a caching mechanism was implemented that allows 
for caching previously calculated (fragments of) pattern queries. The caching mecha-
nism is implemented as a hash table allowing access to intermediary matching results 
in constant time. 

For evaluating an arbitrary query q against a model m the function CompilePat-
ternQuery (cf. Figure 3) can be used. As an output a set of sets Sr is calculated that 
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contains all pattern matches. As a first step, the query is analyzed and all occurring 
variables are stored in a set Sv. A variable thereby at least consists of a type and a 
label. In case that no variables are discovered within the query, no pre-compiling is 
necessary and the query is included in the set Sq that is directly handed over to the 
actual compiler for evaluating the query against the model. 

 

 

Fig. 3. Pseudo-code of the function CompilePatternQuery 

In case that the query includes at least one variable (Sv  ) the compiler analyses 
whether the query also includes any conditions. If this is the case, the set Sc is created, 
which contains all conditions that are included in q. A condition thereby consists of a 
left and right value, as well as an operator that is used for comparing the included 
values. With the query q, the model m, the set of variables Sv and the set of conditions 
Sc as parameters, the function PrecompilePatternQueryWithConditions is called (cf. 
Figure 4). The goal of this call is the creation of one or several queries that do not 
contain any variables or conditions but only those concrete value occurrences for 
which the conditions are fulfilled. In analogy to the conventional approach, these 
queries are then finally handed over to the standard pattern compiler as the set of sets 
Sq. 

For generating the set of queries the algorithm requires the creation of an auxiliary 
empty set Sa. After that we use a loop over the set of variables Sv to determine the set 
of value occurrence Svo per variable sv and store Svo in Sa. These execution steps are 
exemplarily depicted in Figure 5. a-c for variables of type Integer. The potential value 
occurrences for a variable sv are identified by searching for all possible value occur-
rences within the whole model. In case of a variable of type Integer the algorithm for 
instance collects the number of incoming and outgoing relationships per object. For 
determining possible value occurrences of a variable of type AttributeValue the attrib-
ute values of instance attributes and type attributes are collected. For the other attrib-
utes the identification of value occurrences is performed accordingly. 

 

PROCEDURE CompilePatternQuery(q, m) 

INPUT: Query q with potential variable expression and op-

tional condition(s); model m to be analysed 

OUTPUT: Set Sr that contains all pattern matches  

 

Create a set Sv containing all variables in q 

IF Sv is empty THEN 

Add q to the set Sq containing all queries 

ELSE IF q contains at least one condition THEN 

Create set Sc holding all conditions of q 

Sq q PrecompilePatternQueryWithConditions(q, m, Sv, 
Sc) 

ELSE q contains no conditions 

Sq q PrecompilePatternQueryWithVariables(q, m, Sv) 
END IF 

Create Sr by executing all patterns in Sq on model m 

END PROCEDURE CompilePatternQuery 



 

1251 
 
 
 

 

Fig. 4. Pseudo-code of the function PrecompilePatternQueryWithConditions 

On the basis of the determined value occurrences that are stored per variable in Sa, the 
Cartesian product of all sets of value occurrences Svo in the auxiliary set Sa is gener-
ated for obtaining sets with all possible value combinations (cf. Figure 5 d). These 
sets are stored in the set Sqvc. For determining those value combinations that fulfill the 
associated conditions, a loop over the set Sqvc is used (cf. Figure 5 e). Thereby, a set of 
value occurrences sqvc is only written to the set of verified value combinations Svvc if 
all conditions are fulfilled by the according values (cf. Figure 5 f). Finally, for each of 
these verified value combinations svvc a copy q’ of the original query q is generated in 
which all variables sv are replaced by their concrete value occurrences. This clone q’ 
is then added to the set of precompiled queries Sq that is returned by the function. 

PROCEDURE PrecompilePatternQueryWithConditions (q, m, Sv, Sc) 

INPUT: Query q with variable expression and condition(s); 

model m to be analysed; set Sv containing all variables; 

set Sc containing all conditions 

OUTPUT: Set of precompiled pattern queries Sq 

Create empty auxiliary set Sa 
FOREACH sv in Sv 

Get set of value occurrences Svo for sv in model m 

Add Svo to Sa 
END FOREACH 

Create a set of sets Sqvc that contains the Cartesian 

products of all Svo in Sa to obtain all possible value 

combinations 

FOREACH sqvc in Sqvc 
IF all conditions in Sc hold true on sqvc THEN 

Add set of value occurrences sqvc to a set of 

verified value combinations Svvc 
END IF 

END FOREACH 

FOREACH svvc in Svvc 

Create a clone q’ of the original query 

Replace variables sv in q’ with identified valid 

value occurrences from svvc 

Add q’ to set of precompiled pattern queries Sq 

END FOREACH 

END PROCEDURE PrecompilePatternQueryWithConditions 
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Fig. 5. Exemplary execution steps of the function PrecompilePatternQueryWithConditions 

In all other cases a query is present that includes variables (Sv  ), but that does not 
have any associated conditions (Sc  ). Again, a pre-compiling of this query is re-
quired. In this case, we execute the function PrecompilePatternQueryWithVariables 
with the query q, the model m, and the set of variables Sv as input (cf. Figure 6). 

 

 

 Fig. 6. Pseudo-code of the function PrecompilePatternQueryWithVariables 

As described above, a set of queries Sq is finally returned that includes all adjusted 
queries. For generating this set the algorithm first requires the creation of two tempo-
rary sets Sq and Sq’ that are used for handling the original query q as well as the 
cleaned instances of this query where some or all of the variables have been replaced 
by concrete values. After that, we use a loop over the set of variables Sv to determine 
the set of value occurrences Svo analogously to the approach with conditions. Two 

PROCEDURE PrecompilePatternQueryWithVariables(q, m, Sv) 

INPUT: Query q with variable expression; model m to be 

analysed; Set Sv containing all variables  

OUTPUT: Set of precompiled pattern queries Sq 
Create temporary set of possible patterns Sq and add q to 

it 

Create an additional empty temporary set of possible que-

ries Sq’ 

FOREACH sv in Sv 
Get set of value occurrences Svo for variable sv in 

model m 

FOREACH svo in Svo 

FOREACH sq in Sq 
Replace sv in sp by svo and add sq to Sq’ 

END FOREACH 

END FOREACH 

Sq = Sq’ 

Clear Sq’ 

END FOREACH 

END PROCEDURE PrecompilePatternQueryWithVariables 



 

1253 
 
 
 

embedded loops (the outer one over the set of value occurrences Svo, the inner one 
over the temporary set of possible patterns Sq) are employed for replacing the varia-
bles within the queries of the set Sq. Thereby, for each inserted value occurrence an 
altered query is added to the other temporary set of possible queries Sq’. Inside the 
outermost loop the set Sq is assigned to the set Sq’ that now contains the partly re-
placed queries (if it is the ith iteration, the variable svi is replaced). The temporary set 
Sq’ is then cleared and the loop starts over. Finally, the set Sq contains all pre-com-
piled patterns that do not include any more variables. This set is then fed to the stand-
ard pattern compiler. 

4 Demonstration 

4.1 Implementation and Application 

The pattern query given below represents the violation of the 4-eye-principle outlined 
in the introductory section: 

DirectedPaths( 

 InnerIntersect(Join(  

        DirectSuccessorsInclRelations( 

           ElementsWithTypeAttributeOfValue( 

              ElementsOfType(O, Document), Caption, A) 

           ElementsOfType(O, Activity)) 

        ElementsDirecltyRelatedInclRelations( 

           ElementsWithTypeAttributeOfValue( 

              ElementsOfType(O, OrgaUnit), Caption, C) 

           ElementsOfType(O, Activity))) 

     ElementsOfType(O, Activity)) 

 InnerIntersect(Join(  

        DirectSuccessorsInclRelations( 

           ElementsWithTypeAttributeOfValue( 

              ElementsOfType(O, Document), Caption, B) 

           ElementsOfType(O, Activity)) 

        ElementsDirecltyRelatedInclRelations( 

           ElementsWithTypeAttributeOfValue( 

              ElementsOfType(O, OrgaUnit), Caption, D) 

           ElementsOfType(O, Activity))) 

     ElementsOfType(O, Activity))) 

 

A=B;C=D  

The query complies with the BPMN-like process modeling language depicted in Fig-
ure 1. It returns process paths of arbitrary length that start and end in an activity that is 
directly connected to both an organizational unit as well as a document. In addition to 
the label values of the organizational units being equal, the query further restricts the 
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result set to include only those paths whose start and end activities are directly related 
to document types that also have equal labels. 

Both parameters of the DirectedPaths call are structured analogously. The join-
construct returns all activities, their adjacent organizational units and documents, as 
well as the relationships between these objects (note that the DirectSuccessors call is 
necessary, because the relationship between an activity and a document is directed 
(cf. Figure 1)). This construct is then inner-intersected with the set of all activities to 
only feed activities to the DirectedPaths call. The set of organizational units and the 
set of documents that appear in both input parameters of the DirectedPaths call are 
further restricted to include only those objects that have captions of a particular value. 
These values take variables A to D as input that form two conditions specifying that 
all corresponding attributes need to have the same value. 

This query is only an example of how GMQL can be used in the domain of design 
time compliance checking. Further examples are introduced in the following section 
as well as in [8]. In order to specify a query for a different modeling language the type 
information only needs to be adapted to that language (e.g. in an EPC an activity is 
called a function). GMQL is thus generic in the sense that it can be used for models 
created in arbitrary graph-based modeling languages. 

 

 

Fig. 7. Query specification environment (left) and model editor (right) 

GMQL was implemented as a plugin for an existing meta-modeling tool that was 
available from a prior research project. Figure 7 depicts a screenshot of the meta-
modeling tool’s language editor that contains a query specification environment (left-
hand part of Figure 7). The various functions and operators are available on the left-
hand side. Variables and conditions can be defined on the right-hand side. These ele-
ments can be dragged and dropped to the pattern definition field where the query can 
be constructed. The right-hand part of Figure 7 contains an excerpt of the tool’s mod-
eling environment, which allows for selecting and running a previously defined pat-
tern query on a model. All identified pattern occurrences are highlighted. Note that in 
this case a path is found that starts and end in an activity. Start and end objects are 
both directly related to an organizational unit and a document that have identical la-
bels. 
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4.2 Prerequisites and Limitations 

GMQL is able to identify structural patterns in process models of arbitrary modeling 
languages. However, design time compliance checking cannot solely be based on a 
structural analysis of the model graph. In addition, the semantics of element labels 
need to be considered as well. As indicated above, GMQL considers a label to be an 
attribute of an element. Respective information can thus be included in the matching 
process. Particular semantic issues like synonyms or homonyms, however, are not 
directly addressed by GMQL. However, GMQL allows for integrating approaches 
supporting terminological unambiguousness easily. Parts of the underlying algorithms 
comparing attribute labels are built generically. This means that, for example, it can 
be determined whether two nodes carry labels with the same meaning by checking 
their underlying ontological or linguistic concepts (e.g., “check invoice” ~ “bill au-
dit”). Corresponding approaches maintaining the meaning of element labels can be 
found in [11] or [12] and can be used together with GMQL.  

An additional prerequisite of using GMQL is an appropriate level of detail for a 
given model. In particular, the model needs to be syntactically correct and termino-
logically unambiguous. Element paths, for instance, can only be found if the model 
graph is not fragmented. The application of process modeling guidelines as proposed 
by [13] is thus advisable.  

To apply GMQL in an enterprise, process managers have to learn GMQL in order 
to define the queries representing the appropriate compliance rules. Alternatively, an 
enterprise-wide role can be set up that is responsible for defining queries. In any way, 
we expect that this will require a considerable learning effort.  

In terms of limitations, GMQL is limited to design time compliance checking in 
conceptual process models. In this context design time refers to an analysis of the 
model graph structure. Therefore, compliance violations that do not translate to spe-
cific model subsections cannot be found by our approach. A common compliance 
rule, for instance, states that particular business documents need to be stored for a 
given period of time. Such a rule cannot be checked in the model graph structure and 
can thus not be found by GMQL. In addition, compliance violations that occur during 
process runtime cannot be detected by GMQL. To determine if a given process in-
stance contains a compliance violation respective mining techniques need to be ap-
plied that are beyond the scope of this paper. Such approaches are discussed in the 
area of business process intelligence [14].  

Furthermore, GMQL does not consider the execution semantics of a process mod-
el. It analyses the graph structure and includes type and label information in its match-
ing process. GMQL does not recognize the semantics of a given element type (e.g. an 
XOR split carries a different meaning than an AND join). In our experience, this, 
however, is not necessary in many cases. Consider, for example, the predeces-
sor/successor compliance rule as depicted in Figure 8. Let the rule require that activity 
B needs to be performed after activity A has been executed. In case a) the path from 
A to C represents a violation of this rule, while in case b) it does not (because of the 
AND split/join). The GMQL query given in the right-hand part of Figure 8 identifies 
corresponding structures. It determines directed paths from A to C that do not contain 
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B. From the resulting set of sets, all paths that contain AND split nodes are sub-
tracted. An AND split is a node having at least two outgoing edges. Thus, the set of 
all ANDs that have one outgoing edge is subtracted from the set of all ANDs resulting 
in the set of all ANDs that have at least two outgoing edges (i.e. AND splits). In case 
a), the query thus identifies the path from A to C as a compliance violation; while in 
case b) the empty set is returned (i.e. no violation is found). This argument demon-
strates that including execution semantics in the matching process is not always nec-
essary and analyzing the graph structure suffices to detect compliance violations. 

 

B

A

...

C

B

A

...

C

a)

b)

Complement(

DirectedPathsNotContainingElements(

ElementsWithTypeAttributeOfValue(

ElementsOfType(O, Activity), label, A), 

ElementsWithTypeAttributeOfValue(

ElementsOfType(O, Activity), label, C), 

ElementsWithTypeAttributeOfValue (

ElementsOfType(O, Activity), label, B)),

DirectedPathsContainingElements(

ElementsWithTypeAttributeOfValue(

ElementsOfType(O, Activity), label, A), 

ElementsWithTypeAttributeOfValue (

ElementsOfType(O, Activity), label, C), 

Complement(

ElementsOfType(O, AND),

ElementsWithNumberOfOutRelations(

ElementsOfType(O,AND),1))))  

Fig. 8. Predecessor/successor compliance rule (left) and according GMQL query (right) 

5 Evaluation 

Design-time compliance checking requires an approach that is able to (a) identify 
arbitrarily complex structures within a model graph, (b) define pattern queries con-
taining variables and conditions, and (c) support multiple modeling languages. 

Many approaches discussed in the literature transform a process model into some 
form of finite-state automaton. This aims at checking the temporal logic of the task 
execution. The approach of GOVERNATORI ET AL. and the related research approaches 
[15-18] fall into this category. As they transform the models to a state-based event 
system, it is possible to map control flow restrictions to these states. This transfor-
mation, however, does not allow for finding more complex structures like highly-
branched structures. This drawback is overcome in [19], as the transformation is a 
preprocessing step to an SQL-based query approach that is able to find more complex 
structures. Thus, element paths can be calculated. However, SQL suffers from per-
formance problems when calculating paths, because node and edge tables need to be 
joined a potentially huge number of times [20]. In contrast, GMQL allows for calcu-
lating element paths without complex join operations. Furthermore, as GMQL pro-
vides specialized paths functions determining paths that (do not) contain particular 
elements a transformation to finite-state automata can be avoided which further in-
creases runtime performance (see example above for more details). In addition, the 
approaches introduced above allow for defining compliance violations as formulae 
that are fed to the state automaton. These formulae require extensive knowledge about 
the used symbols and operators. GMQL queries in contrast are, albeit complex at 
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times, comparatively easy to understand, because the names of the functions and op-
erators are self-explanatory. 

Other approaches are restricted to particular modeling languages or language types 
[21-24]. The work of MONAKOVA ET AL. [25], for instance, transforms BPEL models 
to logical representations to allow for control- and data-flow analysis. The logical 
representation of a BPEL model stores the execution path and variables that allow for 
verifying compliance rules. WOLTER ET AL. [26-27] allow conditions to support dif-
ferent access control and authorization strategies in extended BPMN models. It is 
furthermore not possible to define arbitrary pattern queries. Moreover, OCL can be 
used to define and check compliance violations [28]. However, OCL is also restricted 
to UML. In contrast, GMQL can be used on models created in arbitrary graph-based 
modeling languages, because it is based on the idea that any model can be represented 
as the set of its objects and relationships. 

Therefore, GMQL is similar to many approaches put forth in the area of general 
pattern matching in (process model) graphs. In graph theory, the problem of pattern 
matching is known as the problem of subgraph isomorphism (SGI). A plethora of 
algorithms has been developed in recent years that perform well in practical runtime 
scenarios despite the theoretical intractability of this problem (e.g., [29]). SGI, how-
ever, is concerned with finding one-to-one mappings between a given pattern graph 
and a subsection of a model graph. This requires knowing the exact structure of the 
pattern before searching it, which is unrealistic in many compliance checking scenar-
ios, because, for instance, the length of a paths between particular elements is not 
always a priori known (see 4-eyes-principle above). The problem of finding similar 
patterns in a graph is known as subgraph homeomorphism (SGH). This problem, 
however, covers aspects of minor containment leading to an abundance of possible 
(mostly not suitable) pattern occurrences. These go too far for the purpose of pattern 
matching in process models [30]. Also, the theoretical runtime complexity of this 
problem is even worse than that of SGI [30]. Neither SGI nor SGH are able to define 
restrictions in the form of variables and conditions as it is possible with GMQL.  

This literature analysis demonstrates that GMQL advances the current state of the 
art in design time compliance checking, because it is able to find arbitrarily complex 
patterns in models of any graph-based modeling languages. At the same time it allows 
for defining restrictions on attributes of particular model elements while avoiding 
computationally expensive model transformations to finite-state automata.  

6 Summary and Outlook 

We presented an algorithmic specification of a generic model query language. Be-
sides the graph structure of a model, the language compiler is able to process attrib-
utes, variables, and variable conditions. Future research will continue along multiple 
consecutive lines. We plan to extend GMQL to allow for searching pattern occur-
rences that stretch across multiple models. This implies that GMQL must also allow 
for defining pattern queries that apply to models of more than one language. So far, a 
pattern query can only be executed on a model of the language the query was created 
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for. Relaxing this restriction will allow for verifying, if a hierarchy structure captured 
in an organizational chart is properly represented in a process model. Both extensions 
can be easily implemented by augmenting the set of elements that is initially fed into 
matching algorithm. We aim at gaining a deeper understanding of the compliance 
checking domain in order to determine if GMQL is indeed sufficient for this field. 
This may require including additional information in the matching process which so 
far has not been necessary (e.g. execution semantics). We will explore the possibility 
of compliance checking during modeling by enriching a process modeling language 
with GMQL-based concepts supporting the ex-ante specification of compliance rules. 
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