
RESEARCH PAPER

Mixed-Paradigm Process Modeling with Intertwined State Spaces

Johannes De Smedt • Jochen De Weerdt •

Jan Vanthienen • Geert Poels

Received: 28 February 2015 / Accepted: 7 September 2015 / Published online: 2 December 2015

� Springer Fachmedien Wiesbaden 2015

Abstract Business process modeling often deals with the

trade-off between comprehensibility and flexibility. Many

languages have been proposed to support different para-

digms to tackle these characteristics. Well-known proce-

dural, token-based languages such as Petri nets, BPMN,

EPC, etc. have been used and extended to incorporate more

flexible use cases, however the declarative workflow

paradigm, most notably represented by the Declare

framework, is still widely accepted for modeling flexible

processes. A real trade-off exists between the readable,

rather inflexible procedural models, and the highly-ex-

pressive but cognitively demanding declarative models

containing a lot of implicit behavior. This paper investi-

gates in detail the scenarios in which combining both

approaches is useful, it provides a scoring table for Declare

constructs to capture their intricacies and similarities

compared to procedural ones, and offers a step-wise

approach to construct mixed-paradigm models. Such

models are especially useful in the case of environments

with different layers of flexibility and go beyond using

atomic subprocesses modeled according to either para-

digm. The paper combines Petri nets and Declare to

express the findings.

Keywords Business process modeling � Mixed-paradigm

process modeling � Petri nets � Declare

1 Introduction

Business Process Modeling (BPM) (Dumas et al. 2013) has

become a powerful approach for managers to capture and

analyze their workflows. To be effective, process models

need to be both expressive and understandable. To achieve

these goals, numerous languages have been proposed, each

adding a certain aspect to the BPM language and tool

sphere. There are two main control-flow paradigms,

extensively discussed in Goedertier et al. (2013), that deal

with the trade-off between comprehensibility and flexibil-

ity, the procedural and declarative paradigms. The former

is characterized by the use of explicit activity flows to

express the activity paths through a process model, while

the latter is typified by a focus on curtailing behavior with

activity-level rules rather than specifying entire activity

paths, thus leaving many options for possible enactment.

On the one hand, procedural models are regarded as rigid,

but comprehensible, as they present the reader with what is

possible in the process in a rather deterministic way.

Declarative models on the other hand, leave much

unspecified and therefore are harder to read, as the activity

sequences allowed by the model remain implicit until they

Accepted after two revisions by the editors of the special issue.

Electronic supplementary material The online version of this
article (doi:10.1007/s12599-015-0416-y) contains supplementary
material, which is available to authorized users.

J. De Smedt (&) � Prof. J. De Weerdt � Prof. J. Vanthienen
KU Leuven Faculty of Economics and Business, Leuven

Institute for Research on Information Systems, Naamsestraat 69,

3000 Louvain, Belgium

e-mail: Johannes.DeSmedt@kuleuven.be

Prof. J. De Weerdt

e-mail: Jochen.DeWeerdt@kuleuven.be

Prof. J. Vanthienen

e-mail: Jan.Vanthienen@kuleuven.be

Prof. G. Poels

UGent Management Information Systems Research Group,

Ghent University Faculty of Economics and Business

Administration, Tweekerkenstraat 2, 9000 Ghent, Belgium

e-mail: Geert.Poels@ugent.be

123

Bus Inf Syst Eng 58(1):19–29 (2016)

DOI 10.1007/s12599-015-0416-y

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301368181?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/s12599-015-0416-y
http://crossmark.crossref.org/dialog/?doi=10.1007/s12599-015-0416-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12599-015-0416-y&domain=pdf

become visible during execution. Each paradigm also has

solutions to leverage its issues with flexibility and com-

prehensibility. For example, in procedural process models

one can loosen the typically explicit paths around a certain

activity, or declarative models one can overly restrain a

process path to obtain a stricter workflow.

This paper investigates the possibilities of combining

constructs of both paradigms in an intertwined model,

supported by the semantics of both languages. More

specifically, the authors seek to combine Petri nets with

Declare, which are both well-supported languages in

their paradigm. Mixed forms have already been dis-

cussed in Pesic et al. (2007) and Westergaard and Slaats

(2013), mainly focusing on execution, while this paper

rather focuses on the modeling effort itself. Since many

real-life processes are not completely flexible, nor

completely fixed, the setup of mixing both paradigms

offers business process modelers many applications. The

contributions are as follows. We identify in which

scenarios such models are useful and what benefits they

offer in a tutorial-like style. Also, we scrutinize the

overlap and interplay of mixed-models’ semantics and

syntax with a scoring table for Declare constructs.

Constraints that obtain a higher score are more difficult

to represent with Petri net-based constructs and thus are

a greater need of a mixed model. Finally, we propose a

step-wise approach for modeling mixed-paradigm mod-

els for future users, taking into account the different

characteristics of both models. Accordingly, this paper

tries to address the following issues raised in van der

Aalst (2013):

– The paper proposes a step-wise approach to model

mixed-paradigm models, addressing use case Design

Model (DesM).

– In case models from different systems, expressed by

different model types are merged, the paper can be

helpful to support the Merge Models (MerM) and

Compose Model (CompM) use cases.

– The paper addresses issues that arise when mixing

different model types, addressing the use case Enact

Model (EnM).

The remainder of this paper is structured as follows. Sec-

tion 2 reviews the state-of-the-art and represents the dif-

ferent approaches graphically. Next, the models’ syntax

and semantics are discussed. An example and use case for

combining both paradigms is given in Sect. 4, after which

Sect. 5 compares model constructs and different charac-

teristics that are of high importance when mixing different

paradigms. Finally, Sect. 6 provides a step-wise mixed-

modeling approach and is followed by the conclusion

which outlines future work.

2 Related Work

2.1 Procedural BPM

Process modeling has gained ground as a methodology to

represent activities in a directed graph-like manner in order

to capture and discuss business flows such as an ordering

process, a customer journey, etc. (Rosemann et al. 2006).

For this purpose, many languages have been proposed,

most notably business process model and notation (BPMN)

(White 2004), Petri nets (Murata 1989), event-driven pro-

cess chains (EPC) (van der Aalst 1999), and yet another

workflow language (YAWL) (van der Aalst and Ter Hof-

stede 2005). BPMN and EPC are often used in a business

context and have been enhanced with numerous constructs

supporting, e.g., message flows and ad-hoc processes.

YAWL can be seen as an extension and effort to improve

the stripped down Petri net execution semantics. Due to the

simple, yet effective way Petri nets can capture flows and

concurrency, they are widely used in numerous application

domains. Their properties are well-studied and as such they

remain very popular with researchers as well. Furthermore,

the analysis techniques such as state space generation and

soundness checks (van der Aalst 2002) make them the

preferred language to which BPMN models and EPCs are

translated to in order to provide firm execution semantics

and model checking (Dijkman et al. 2008; van der Aalst

1999).

2.2 Declarative and Flexible BPM

Flexibility has numerous forms, such as flexibility by

design, deviation, underspecification, and change, which

are described in Schonenberg et al. (2008). Flexible pro-

cess models tend to make use of these concepts, mostly in

certain parts of the model, e.g., pockets of flexibility (Sadiq

et al. 2001) and worklets (Adams et al. 2006). These are

approaches for enabling procedural models to include

flexible behavior by postponing and underspecifying exe-

cution decisions until run-time.

The major difference between procedural and declara-

tive modeling is the way in which one approaches the

model: either a specification of what has to happen (pro-

cedurally) is made, leaving no room for non-modeled

behavior, compared to specifying what can happen, where

everything that is not prohibited is possible (declaratively).

Hence, declarative models leave more room for non-

modeled behavior and thus are regarded as allowing more

flexibility in the process execution. The event- and rule-

driven Declare framework (Pesic and van der Aalst 2006;

Pesic et al. 2007) has gained attraction amongst researchers

as a completely flexible solution. Declare is based on rule

123

20 J. De Smedt et al.: Mixed-Paradigm Process Modeling with Intertwined State Spaces, Bus Inf Syst Eng 58(1):19–29 (2016)

templates, which are developed by the means of linear

temporal logic (LTL). Declare has become a widely spread

language and modeling suite for rule-based modeling.

Other well-known languages include the guard-stage-

milestone models (Hull et al. 2011) and dynamic condition

response graphs (Hildebrandt et al. 2012).

The differences and characteristics of how modelers and

users apply both paradigms, has been researched exten-

sively by Reijers et al. (2013), Haisjackl et al. (2014), and

Fahland et al. (2009). The outcomes suggest that, overall, it

is very difficult to read Declare models due to the invisible

execution of accepting and non-accepting behavior, the

lack of clear sequences in the beginning and ending, the

subtleties of the constraints, and especially the complex

interaction of the different templates. The overall sugges-

tion is to model very sequential information with proce-

dural languages, and to model flexible processes with

declarative languages instead, in analogy to procedural and

declarative programming.

The different types of behavior of the two paradigms can

be depicted as in Fig. 1. To the left, Fig. 1a shows the

traditional representation of both paradigms as in Pesic

et al. (2007). Usually, Declare is referred to as the model

type that constraints behavior by activity-level rules,

leaving options open for more flexible specification and

execution. Procedural models are depicted as very rigid

process flows, containing only strictly regulated and

delineated behavior.

2.3 Mixed Forms and Conversion

Modeling languages incorporating both paradigms also

exist, but still focus rather on separate subworkflows,

modeled with either procedural or declarative constructs, in

Fig. 1 Three layers indicating all the possible behavior of the

activities and flow constructs contained in a model. The dotted line

represents the outcome of a combination of declarative and proce-

dural constructs in (b), (c), and (d). A color version of all figure is

available online via http://link.springer.com. a The behavior allowed

by the procedural model is depicted as the dark square, the behavior

allowed by the declarative model as a trapezoid. b This figure shows a

procedural model which is relaxed on one side where the behavior is

restricted only by the declarative model. c The model is a pentagon

using both model paradigms to account for the different levels of

flexibility. d This figures shows a procedural model which is even

further restricted by declarative constraints

123

J. De Smedt et al.: Mixed-Paradigm Process Modeling with Intertwined State Spaces, Bus Inf Syst Eng 58(1):19–29 (2016) 21

http://link.springer.com

order to keep the state spaces and execution semantics of

these subworkflows separated. This has been proposed for,

e.g., YAWL and Declare (van der Aalst et al. 2009). This

approach is similar to pockets of flexibility. Thus, flexi-

bility is introduced into some parts of the process in a

hierarchical way. This is depicted in Fig. 1b. Typically, a

certain part of the model is loosened, e.g., the procedural

model loosens a certain part which is now constrained by

activity-level rules. The opposite is also possible, in that a

very flexible main process contains some fixed sequences

which can be easily captured by, e.g., a small Petri net

fragment.

Execution semantics for truly intertwined state spaces

exist as well. In Westergaard and Slaats (2013), execution

semantics for Petri nets and Declare automata are pre-

sented. Intertwined state spaces can also be constructed by

mixing converted Declare constraints expressed in Petri net

constructs with other Petri nets, thus obtaining a mixed-

model. In Fahland (2007), the possibility of converting a

subset of DecSerFlow constraints, the predecessor of

Declare, has been investigated. A full conversion is sought

after in De Smedt et al. (2015), in which the full body of

Declare templates is offered as a lexicon of Petri net con-

structs, extended with reset and inhibitor arcs (R/I-nets).

The conversion of Declare constraints based on regular

expressions has been researched in Prescher et al. (2014).

By making use of synthesizing finite state machines into

Petri nets with the theory of regions (Cortadella et al.

1998), Declare constraints can be converted to Petri nets.

This technique is similar to enumerating all possible exe-

cution scenarios, as many duplicate activities are required

to do so.

A process with mixed layers of flexibility which spread

throughout the whole state space of the model cannot be

captured by using solely subworkflows, as this setup

requires the models to synchronize to a state before and

after executing the subflow. For instance, an activity which

can appear to be rather flexible, i.e., without a fixed place

in a sequence, but which still affects a procedural part of

the model cannot be modeled outside of its subworkflow.

In a true mixed-paradigm approach with intertwined state

spaces, process behavior is restricted by making use of the

most appropriate combination of subsets of both models,

thus combining modeling constructs that restrict the pro-

cess behavior in some directions, but relax behavioral

constraints in other directions. This is depicted in Fig. 1c,

where a subset of both models constitutes the mixed-

paradigm model. Still, one paradigm can dominate the

other (e.g., the example in Fig. 6 where the declarative part

clearly dominates the procedural part), however, they can

also have equal influence on activities. Furthermore, not

only flexibility can be achieved, but also an especially strict

specification. In Fig. 1d, the Declare constraints cut into the

procedural model, resulting in a less flexible model as

sequence rules impose even further restrictions on the

workflow.

3 Model Syntax and Semantics

The syntax of the mixed models used in this paper is based

on the syntaxes of Petri nets and Declare. All activities are

represented as transitions, connected by both Petri net

places and arcs, and Declare arcs. The semantics for exe-

cuting them are discussed below. For Petri nets, they are

intertwined with syntax, for Declare they are not. Execu-

tion semantics, however, can aid users in understanding

construct implications as they can immediately recreate a

token game.

3.1 Declare Execution Semantics

In order to execute a Declare model, i.e., a set of declar-

ative constraints, the constraints are converted to Büchi

automata (Pesic 2008). Next, by taking the product of all

separate automata (one for each constraint), a full

Fig. 2 A very straightforward AND-split and -join based process model represented in a mixture of Petri nets and Declare in standard notation

123

22 J. De Smedt et al.: Mixed-Paradigm Process Modeling with Intertwined State Spaces, Bus Inf Syst Eng 58(1):19–29 (2016)

executable model is obtained, which can then be applied to

detect satisfying, temporal, and permanently violated states

when replaying words over them (Maggi et al. 2012).

In more recent work, a shift is made towards expressing

Declare constraints by means of regular expressions (as

opposed to LTL formula) (Di Ciccio and Mecella 2013;

Westergaard et al. 2013). Both works deem LTL unfit to

express finite traces and hence redefine Declare in finite state

machines. A full overview of all constraints can be found in

Table 2 (available online via http://link.springer.com).

3.2 Petri Nets with Reset and Inhibitor Arcs

Petri nets (Murata 1989) are a mathematical modeling

language to describe distributed, concurrent systems. A

weighted Petri net with reset and inhibitor arcs is a directed

graph, expressed as a tuple, PN ¼ ðP; T;F;R; I;WÞ, with P

a finite set of places (visually represented as circles), T a

finite set of transitions (visually represented as boxes) with

P \ T ¼ ;, and F � ðP� TÞ [ðT � PÞ the set of normal

arcs (shown as arcs with a single arrow). Let W : F ! N

determine a weighting function which associates a weight

to each arc. Let R : T ! PðPÞ define the reset places (with
PðPÞ the powerset of P) and I : T ! PðPÞ the inhibitor

places for each transition, which also implicitly define the

reset arcs (shown as an arc ending with double arrows) and

inhibitor arcs (shown as an arc ending with a circle)

respectively. The set of input nodes of a node x 2 P [T is

denoted as �x ¼ fðy 2 P [T jðy; xÞ 2 FÞ_ ðx 2 T ^ y

2 RðxÞ [IðxÞÞg, and the output nodes similarly as x�.
The state of a Petri net is called marking M 2 P ! N,

indicating the number of tokens contained in each place. A

transition t is said to be enabled, denoted as M½ti, iff

MðpÞ[0; 8p 2 �t : ½ðp; tÞ 2 F _p 2 RðtÞ� ^MðpÞ ¼ 0; 8
p 2 IðtÞ. Firing an enabled transition results in a new

marking M0 so that M0ðpÞ ¼ MðpÞ � ðMðpÞiffp 2 RðtÞ;
Wðp; tÞ iffðp; tÞ 2 F; 0 otherwiseÞ þðWðt; pÞiffðt; pÞ 2 F; 0

otherwiseÞ. That is, tokens are removed from input places

according to arc weights. Places which act as reset places

for a fired transition are emptied completely. Next, the

token count of output places is incremented according to

arc weights to obtain the new marking. We refer to Murata

(1989) for more details.

3.3 Mixed-paradigm with intertwined state spaces

For combining both Declare and Petri nets, we use the

conversion approach of De Smedt et al. (2015). This has

the benefit of a pluggable approach in which there is no

need for merging both state spaces as in Westergaard and

Slaats (2013), as both models use the same language. For

the R/I-net constructs in Table 2, we define for every letter

in the Declare template/model alphabet one in the Petri

net alphabet RPN ¼ RDec [fkInvisibleg, with labeling func-

tion d : T ! RPN .

In the templates, it is assumed that T ¼
ftsink; tAð; tB; tCÞ; tsinkg; tC ¼ TnftA; tB; tsource; tsinkg, P ¼
fpsource; psink; p1ð; p2; p3; p4Þg, and F ¼ fðpsource;
tsourceÞ; ðtsink; psinkÞg:

In order to synchronize Declare and Petri net models, it

is also necessary to initialize and end the execution prop-

erly. For this purpose, it is important that there are dedi-

cated source and sink activities tsource; tsink, in the Petri net

that match the activities involved in the Init and Last

constraints. Tokens needed in the initial state of the

Declare constraints are inserted by tsource (e.g. Re-

sponse(A,B) is temporarily violated by default, enforced by

a token in the input place of tsink, and connected with a

reset arc with B, see Table 2). For the sake of brevity, we

assume the tokens are present in the places where they are

required in the initial marking. Hence

M0ðpÞ ¼ Wðtsource; pÞ 8p 2 �t; 8t 2 T . tsink is added in a

way in which it can fire only once to keep track of the

violation state of a Declare constraint. This might require

introducing an extra (invisible) sink transition.

4 Running Example of a Mixed Model with Intertwined

State Spaces

Consider the mixed-paradigm model in Fig. 2 which con-

tains a procedural backbone which is supplemented with a

flexible component containing activities Call customer and

Start logging. The flexible part starting with activity Start

logging can execute irrespective of the behavior modeled

in the procedural backbone, but still influences the main

process. The inclusion of Chain response(Start logging,

Call customer) (after Start logging, Call customer has to

happen next) disrupts the global model, as every activity

but Call customer becomes disabled after firing Start log-

ging. Call customer has to happen before Send invoice can

ever occur (Precedence), and Close order can only fire

again after a new occurrence of Call customer (Alternate

precedence).

The combined use of procedural and declarative con-

structs results in an effective alternative solution, in-be-

tween solutions that would use declarative or procedural

model constructs exclusively. By explicitly capturing the

loop with Petri nets and reducing the amount of Declare

constraints, readers and modelers can easily grasp the token

game while a few verbose sequence rules (which can be

found in Table 2) can explain the interplay of the flexible

activities with the procedural net.

123

J. De Smedt et al.: Mixed-Paradigm Process Modeling with Intertwined State Spaces, Bus Inf Syst Eng 58(1):19–29 (2016) 23

http://link.springer.com

Modeling the same scenario with a procedural language

such as Petri nets, results in either a model with many

duplicate activities, or reset and inhibitor constructs, as

depicted in Fig. 3. Furthermore, capturing Chain response

severely disrupts the main process which needs the incor-

poration of many (inhibitor) arcs which clutter up the

model completely.

Using Declare, it is hard to capture the procedural

backbone in a straightforward and comprehensible way. To

capture the same behavior as the loop does, one needs

many Alternate succession constraints in which the loop

remains hidden. Also, a Chain precedence constraint is

required to model the XOR-split at the end of the loop. By

providing readers solely with the standard constraint

description, interpreting the model requires a significant

amount of cognitive effort (Fig. 4).

In the end, a Declare model is not executable unless

transformed into an automaton, displayed in Fig. 5. The

flexible activities of Fig. 2 are indicated in red as well.

The state space is the same for all the models, and in the

automaton, it is clearly visible how the state spaces are

intertwined. The procedural behavior only needs a few

state transitions, while the flexible behavior requires the

inclusion of many of them, even though only three Declare

constraints are used in the case of the mixed model in

Fig. 2.

Observe that using a subworkflow for Call customer and

Start logging is not possible. Since both activities affect the

main workflow, one cannot simply model these activities in

a concurrent subworkflow as, e.g., the impact of the Chain

response is global and not restricted to both activities

involved. Therefore, mixed-paradigm modeling attempts

that only allow a combination of paradigms by making use

of fully separated subprocesses modeled with one or

another type of constructs, are not able to model the desired

behavior appropriately.

5 Mixed-Paradigm Process Modeling: Constructs

and Characteristics

Incorporating both modeling syntaxes and semantics into a

single model requires carefully scrutinizing the different

constructs and avoiding overlap as much as possible. In this

section, a scoring mechanism for Declare constraints is

presented according to different characteristics, which

makes it possible to assess how straightforward it is to

express them in R/I-net constructs, whether the constraint

Fig. 3 The same model as in Fig. 2, but now solely in R/I-net constructs

Fig. 4 The same model as in

Fig. 2, but now solely in Declare

standard notation

123

24 J. De Smedt et al.: Mixed-Paradigm Process Modeling with Intertwined State Spaces, Bus Inf Syst Eng 58(1):19–29 (2016)

impacts global concurrency and global timing, and whether

it inflicts hidden dependencies. These characteristics play

an important role for merging procedural and declarative

process models.

5.1 Construct-Based Similarities and Differences

Declare consists of many templates which have distinct

features that require a large amount of Petri net constructs

to mirror their behavior, as can be seen in Table 1. How-

ever, many other templates exist that can be straightfor-

wardly represented with only a few Petri net constructs.m

Therefore, these constraints can be easily interchanged in

mixed-paradigm models to avoid using different syntaxes.

The advantage of R/I-net constructs is that the syntax

immediately yields execution semantics. Each constraint is

thus scored for the amount of places (P) and occasionally

transitions (T), arcs (A), reset arcs (R), and inhibitor arcs

(I) that is needed to express them. Each construct is scored

for 1 point.

5.2 Impact on a Global Concurrency Level

Constraints that can force activities, not directly related to

them by other constraints, to be disabled impact global

concurrency. Most notably, the Chain constraints exhibit

this behavior, as they can stop any activity from executing

until a certain other has fired. Not only does this require

many constructs such as inhibitor arcs or prioritized Petri

nets to model this in a procedural model, they also impact

the execution semantics of, e.g., a Petri net mixed with a

Declare model containing Chain constraint(s). This makes

it harder to model and understand the behavior of such

mixed-models. This is scored with 2 points in Table 1.

5.3 Impact on a Global Temporal Level

The concept of temporary violation is typical for rule-based

approaches. It can be compared to a final marking in a Petri

net. In the R/I-net, a dedicated sink transition tsink is used to

indicate the current violation status of the model (firing it

leads to the accepting marking of a single token in psink). If

the transition is enabled, no temporary violations are pre-

sent (permanent violations cannot appear by default).

Adding this explicit monitor helps users grasp the status of

the net. Many constraints make use of this construct, as can

be seen in Table 2. However, the concept of violation adds

extra constructs and also requires a procedural model

mixed with a Declare model to be able to also resolve the

same temporary violation(s), which raises the efforts

Fig. 5 The automaton for the Declare model with the flexible activity transitions in red

123

J. De Smedt et al.: Mixed-Paradigm Process Modeling with Intertwined State Spaces, Bus Inf Syst Eng 58(1):19–29 (2016) 25

needed to model correctly. Since this has a major impact,

especially for synchronizing Declare with any other models

in terms of temporal consistency, this is scored with 5

points in Table 1.

5.4 Permanently Disabling

Some Declare constraints require activities to become

permanently disabled when they become satisfied. Most

notably, Absence, Exactly, Not succession, Not co-exis-

tence, and Exclusive choice disable at least one activity for

the rest of the execution. If this activity was still required to

resolve any other constraints to an accepting state, the

model ends up in a deadlock. This is often referred to in the

literature as the ’hidden dependencies’ (Haisjackl et al.

2014). In execution semantics, these dependencies are

added by multiplying separate automata into one general

executable automaton, as the sum of separate constraints

does not prevent the model of ending up in such a state.

This can result in, e.g., one Exclusive choice disabling

many transitions permanently at once. Executing such

models, thus, is extra precarious. Hence, constraints

inflicting such behavior are hard to incorporate in two

semantics at the same time, thus a high score of 10 is given

to such constraints.

5.5 Overview

Taking into account all these different aspects of the con-

straints, a final score is assigned. The lower the score, the

better. Constraint with a score below ten are easily plug-

gable into a procedural model. Between ten and twenty,

considerable care must be taken. For constraint with a

score above 20, it becomes very tedious to include them in

a procedural model. E.g., the Chain response constraint

requires one place, one Petri net arc, one reset arc, and

inhibitor arcs connected to all other transitions in the net

but one (jT j � 1Þ. Hence, it impacts global concurrency, as

it can stop all activities in the net but one, and impacts

global timing as it can be in a temporarily violated state.

Hence, it receives a score of ð1þ 1þ 1þ jT j � 1Þþ 2þ 5.

Since |T| is included, using this constraint in bigger models

with more transitions becomes more tedious.

As can be seen from the last column in Table 1, only a

few constraints are considerably straightforward to model,

comprehend, and use in a mixed-paradigm model:

– The simple and alternating ordered constraints are not

impeded by the fact that they do not expose sophisti-

cated behavior nor many constructs. This is especially

true for Precedence constraints.

– Every constraint that impacts global concurrency or

inflicts hidden dependencies cause severe synchroniza-

tion problems. This includes, among others, the Chain,

Absence, and Existence constraints.

– Although their principle is simple, Not co-existence and

especially Exclusive choice are very hard to incorporate

in a mixed-paradigm model.

6 A Step-Wise Approach for Mixed-Paradigm

Modeling with Intertwined State Spaces

6.1 Introduction

Based on the insights gathered from previous sections, we

now propose a step-wise approach for modeling mixed-

paradigm models. The insights relate directly to the dif-

ferent characteristics discussed in Sect. 5. The table can be

used by mixed-paradigm modelers to assess the influence

of certain constraints on the model and what the conse-

quences of using them might entail. By applying the scores,

Fig. 6 A well-known fulfillment process model reworked according to the step-wise approach

123

26 J. De Smedt et al.: Mixed-Paradigm Process Modeling with Intertwined State Spaces, Bus Inf Syst Eng 58(1):19–29 (2016)

it now also becomes possible to objectively start measuring

different mixed-paradigm solutions in terms of compre-

hensibility (in terms of the amount of model constructs),

and the semantic difficulties that are introduced.

1. Determine for each activity whether its behavior can

be contained in a procedural workflow, or rather

requires a looser setup with rules. By indicating where

in the process an activity can occur, it will reveal the

extent to which it requires flexibility.

– If the position of the activity is not fixed within the

workflow, it is better to exclude it from the

procedural model.

– If the activity occurs a predefined number of times,

Petri nets might be used, or a Unary Declare

constraint. Otherwise, it may prove hard to use a

token game around the activity, as an undesired

amount of tokens might be pushed down the

model, which could require adding silent transi-

tions to model skipping steps.

2. Determine which relationships are needed between the

different model types. In a mixed-model, there are 4

different types of relationships, given that activities are

labeled ’Declarative’ or ’Procedural’ in step 1:

– Declarative-Declarative,

– Declarative-Procedural,

– Procedural-Declarative,

– and Procedural-Procedural.

The second and third types constitute the real mixed

cases. In the case of using them, it is advisory to

consult Table 1 to check for characteristics towards

violation and temporal issues. Generally, it is advised

to avoid using binary Declare rules between activities

solely present in the procedural part of a mixed-model.

Although it is possible to do this, it is better to

approach the procedural part from the outside to avoid

internal anomalies such as deadlocks. Only the con-

struction of the state space of a Petri net can show

whether the resolution of, e.g., temporary violations is

still possible. Hence, avoid constraints that have, e.g., a

global impact on concurrency and timing. Also, hidden

dependencies propagate through the procedural model.

Therefore, these constraints are best used in isolation

within a declarative model. Safe connections between

Table 1 Scorecard of Declare constraints for the number of R/I-net constructs needed, and semantic characteristics

R/I-net constructs Impact global

concurrency (2)

Impact global

timing (5)

Permanently

disabling (10)

Interchangeability

score
P/T A R I Sum

Init 1 |T|-1 |T| |T|

Last |P| |P| U |P|?5

Existence 1 2 3 U 8

Absence 1 2 3 U 13

Exactly 1 2 1 4 U U 19

Response 1 1 1 1 4 U 9

Precedence 1 3 4 4

Succession 2 4 1 1 8 U 13

Alternate response 2 2 2 1 7 U 12

Alternate precedence 1 2 1 4 4

Alternate succession 2 4 1 7 U 12

Chain response 1 1 1 |T|-1 |T|?2 U U |T|?9

Chain precedence 1 |T|-1 1 1 |T|?2 U |T|?4

Chain succession 2 2 2 |T| |T|?6 U U |T|?13

Responded Existence 2?1T 3 2 1 9 U 14

Co-existence 3?1T 6 3 1 14 U 19

Not succession 1 1 1 3 U 13

Not chain succession 1 |T|-2 1 |T| U |T|?2

Not co-existence 2 2 2 6 U 16

Choice 1 2 1 4 U 9

Exclusive choice 3 2 2 3 10 U U 25

|T| and |P| stand for the number of transitions and places in the model respectively

The ticks indicate whether a certain property holds for the constraint

123

J. De Smedt et al.: Mixed-Paradigm Process Modeling with Intertwined State Spaces, Bus Inf Syst Eng 58(1):19–29 (2016) 27

procedural and declarative parts are mainly Prece-

dence relations, and any constraint that does not impact

global timing and hidden dependencies.

3. Synchronize beginning and end points of both model

types if possible. By using Init and Last constraints in

combination with a Petri net source and sink transition,

the models are intertwined in a proper way. The

inclusion of separate sink activities might be required.

4. Check whether it is necessary to use two types of

language constructs. According to the scores in

Table 1, several constraints are easy to model in Petri

nets with R/I-net constructs. Replacing them, while

still referring to them with their Declare constraint

name, avoids multiple modeling notations. Further-

more, R/I-net constructs yield executable syntax, hence

making the construction of an automaton obsolete in

many cases (not, however, where there are hidden

dependencies or multiple violation states).

6.2 Reworking an Existing Example with the Approach

In this section, we show how to transform a procedurally

modeled order fulfillment process (Dumas et al. 2013, page

77), and expand it with declarative constructs. Also, it is

shown where gaps still exist between the two approaches.

The setup of the order fulfillment process, however, is

interpreted slightly differently than in Dumas et al. (2013).

In this scenario, which can be found in Fig. 6, multiple

orders can be made and at least three product shipments

and payments have to have happened before the archiving

of an order. Furthermore, the requests for raw materials can

now only be done directly after checking their stock level,

and obtaining the materials always has to happen directly

after requesting them.

1. In the original model, every activity is rather fixed

within the sequence. Due to the unspecified amount of

occurrences of Receive order and its successors it

becomes more interesting to use declarative constructs,

as they are better capable of mixing different strings of

activities while maintaining a somewhat structured

process. Hence, everything up to Confirm order is

rather declarative, while the shipping and invoicing

processes are kept procedural.

2. Some relationships, as indicated in Table 1, are easier

to express in Declare. Most notably, the use of Chain

relationships to indicate directly follows parity, and the

use of Alternate precedence for an unspecified amount

of occurrences of activities around Receive order are

more convenient and avoid the model becoming

convoluted. It is more tedious to express that Archive

order needs at least three occurrences of Ship product

and Receive payment in Declare, as it is harder to count

in regular languages than in Petri nets (requirements

such as anbn). Also, it is clearer to do so by keeping

track of the tallying with tokens. Finally, some Declare

constraints are used to connect the material and

invoicing and shipping parts.

3. Beginning and end points are synchronized through the

Init and Last constraints. In this case, the Last

constraint for Archive order has a global impact on

the declarative part of the model as well, most notably

on Manufacture product.

4. As can be seen in Table 1, the Precedence constraints

can be expressed with R/I-net constructs. Not succes-

sion, however, requires special care in this case, as it

has an impact on dependent activities both in the

declarative part as well as in the procedural part due to

propagation of dependency (disabling Receive order

also disables all succeeding activities in a Precedence

relationship).

In the end, using different syntaxes in mixed-paradigm

models is also of interest as it can better indicate which

parts of the model are procedural, and which ones are

declarative.

7 Conclusion and Future Work

This paper explored the gap between procedural and

declarative process modeling approaches, focusing on

understandability, syntax, and execution semantics. More

specifically, the authors looked at the possibilities that arise

when combining both paradigms with intertwined state

spaces. Overall, it is found that there is a trade-off between

syntax that yields execution semantics, and verbose

Declare constraints with many implications for execution.

A scoring table for Declare constraints is presented, which

can be used for objectively assessing the complexity of

mixed-models, enabling the comparison of different

mixed-paradigm solutions and guiding modelers when

selecting appropriate constructs. Finally, a step-wise

approach is proposed for mixed-paradigm modeling, for

which an example is elaborated in which the trade-offs that

exist are illustrated and made explicit.

Future work will entail integrating the insights into

different process languages, such as BPMN, for con-

structing mixed-paradigm models with high readability and

applications for business users. Furthermore, it will be

investigated how this approach might simplify model col-

lections and how to elaborate more extensive examples.

Finally, tool support for transforming and reducing mixed-

paradigm models will be pursued, based on the guidelines

in this paper.

123

28 J. De Smedt et al.: Mixed-Paradigm Process Modeling with Intertwined State Spaces, Bus Inf Syst Eng 58(1):19–29 (2016)

References

Adams M, Ter Hofstede AHM, Edmond D, van der Aalst WMP

(2006) Worklets: a service-oriented implementation of dynamic

flexibility in workflows. In: On the move to meaningful internet

systems 2006: CoopIS, DOA, GADA, and ODBASE. Springer,

pp 291–308

Cortadella J, Kishinevsky M, Lavagno L, Yakovlev A (1998)

Deriving Petri nets from finite transition systems. Comput IEEE

Trans 47(8):859–882

De Smedt J, vanden Broucke SKLM, De Weerdt J, Vanthienen J

(2015) A full R/I-net construct lexicon for declare constraints.

Research report KBI 1506

Di Ciccio C, Mecella M (2013) A two-step fast algorithm for the

automated discovery of declarative workflows. In: Computa-

tional intelligence and data mining (CIDM), 2013 IEEE

Symposium on IEEE, pp 135–142

Dijkman RM, Dumas M, Ouyang C (2008) Semantics and analysis of

business process models in BPMN. Inf Softw Technol

50(12):1281–1294

Dumas M, La Rosa M, Mendling J, Reijers HA (2013) Fundamentals

of business process management. Springer

Fahland D (2007) Towards analyzing declarative workflows. Auton

Adapt Web Serv 7061:6

Fahland D, Lübke D, Mendling J, Reijers H, Weber B, Weidlich M,

Zugal S (2009) Declarative versus imperative process modeling

languages: the issue of understandability. In: Enterprise, busi-

ness-process and information systems modeling. Springer,

pp 353–366

Goedertier S, Vanthienen J, Caron F (2013) Declarative business

process modelling: principles and modelling languages. Enterp

Inf Syst pp 1–25 (ahead-of-print)

Haisjackl C, Barba I, Zugal S, Soffer P, Hadar I, Reichert M, Pinggera

J, Weber B (2014) Understanding declare models: strategies,

pitfalls, empirical results. Softw Syst Model, pp 1–28

Hildebrandt T, Mukkamala RR, Slaats T (2012) Nested dynamic

condition response graphs. In: Fundamentals of software engi-

neering. Springer, pp 343–350

Hull R, Damaggio E, Fournier F, Gupta M, Heath III FT, Hobson S,

Linehan M, Maradugu S, Nigam A, Sukaviriya P et al (2011)

Introducing the guard-stage-milestone approach for specifying

business entity lifecycles. In: Web services and formal methods.

Springer, pp 1–24

Maggi FM, Westergaard M, Montali M, van der Aalst WMP (2012)

Runtime verification of LTL-based declarative process models.

In: Runtime verification. Springer, pp 131–146

Murata T (1989) Petri nets: properties, analysis and applications. Proc

IEEE 77(4):541–580

Pesic M (2008) Constraint-based workflow management systems:

shifting control to users. PhD thesis, Technische Universiteit

Eindhoven

Pesic M, Schonenberg H, van der Aalst WMP (2007) Declare: full

support for loosely-structured processes. In: Enterprise dis-

tributed object computing conference, 2007. EDOC 2007. 11th

IEEE International, IEEE, pp 287–298

Pesic M, van der Aalst WMP (2006) A declarative approach for

flexible business processes management. In: Business process

management workshops. Springer, pp 169–180

Prescher J, Di Ciccio C, Mendling J (2014) From declarative

processes to imperative models. In: Proceedings of the 4th

international symposium on data-driven process discovery and

analysis (SIMPDA 2014), Milan, pp 162–173

Reijers HA, Slaats T, Stahl C (2013) Declarative modeling–an

academic dream or the future for BPM? In: Business process

management. Springer, pp 307–322

Rosemann M, Recker J, Indulska M, Green P (2006) A study of the

evolution of the representational capabilities of process model-

ing grammars. In: Advanced information systems engineering.

Springer, pp 447–461

Sadiq S, Sadiq W, Orlowska M (2001) Pockets of flexibility in

workflow specification. In: Conceptual modelingER 2001.

Springer, pp 513–526

Schonenberg H, Ronny M, Nick R, Nataliya M, van der Aalst WMP

(2008) Towards a taxonomy of process flexibility. In: CAiSE

forum, vol 344, pp 81–84

van der Aalst WMP (1999) Formalization and verification of event-

driven process chains. Inf Softw Technol 41(10):639–650

van der Aalst WMP (2002) Making work flow: on the application of

petri nets to business process management. In: Application and

theory of petri nets 2002. Springer, pp 1–22

van der Aalst WMP (2013) A comprehensive survey. ISRN Software

Engineering, Business process management

van der Aalst WMP, Adams M, Ter Hofstede AHM, Pesic M,

Schonenberg H (2009) Flexibility as a service. In: Database

systems for advanced applications. Springer, pp 319–333

van der Aalst WMP, Ter Hofstede AHM (2005) YAWL: yet another

workflow language. Inf Syst 30(4):245–275

Westergaard M, Slaats T (2013) Mixing paradigms for more

comprehensible models. In: Business process management.

Springer, pp 283–290

Westergaard M, Stahl C, Reijers HA (2013) UnconstrainedMiner:

efficient discovery of generalized declarative process models.

Technical Report BPM-13-28, BPMcenter

White SA (2004) Introduction to BPMN. IBM Corporation, vol 2

123

J. De Smedt et al.: Mixed-Paradigm Process Modeling with Intertwined State Spaces, Bus Inf Syst Eng 58(1):19–29 (2016) 29

	Mixed-Paradigm Process Modeling with Intertwined State Spaces
	Abstract
	Introduction
	Related Work
	Procedural BPM
	Declarative and Flexible BPM
	Mixed Forms and Conversion

	Model Syntax and Semantics
	Declare Execution Semantics
	Petri Nets with Reset and Inhibitor Arcs
	Mixed-paradigm with intertwined state spaces

	Running Example of a Mixed Model with Intertwined State Spaces
	Mixed-Paradigm Process Modeling: Constructs and Characteristics
	Construct-Based Similarities and Differences
	Impact on a Global Concurrency Level
	Impact on a Global Temporal Level
	Permanently Disabling
	Overview

	A Step-Wise Approach for Mixed-Paradigm Modeling with Intertwined State Spaces
	Introduction
	Reworking an Existing Example with the Approach

	Conclusion and Future Work
	References

