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Abstract  
When navigating into a new research field, it is important to identify papers with greatest impact 

and prominent authors which we can refer to. This work is motivated by the need to identify key 

authors in research fields. Traditional indices such as h-index only show the overall performance 

of an author. However, researchers generally contribute to more than one fields of research in 

their career, which makes it impractical to use h-index for identifying a key researcher in a 

research field. In this paper we propose a new PageRank-based scheme named “AuthorRank” for 

identifying key researchers in a specific field. We show that the proposed ranking system 

performs better than h-index does.  
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1. Introduction 
With the flourishing development of the Internet and web technology, nowadays people tend to 

search for information from the Internet. Since a large number of resources would be matched to 

a given query, ranking technique is crucial for all kinds of search engines. When it comes to 

academic search, it has some characteristics which are different from web page search. One of 

the characteristics that we should be considering when implementing ranking techniques is that a 

paper can only cite papers published earlier than it, and the citations could not be modified after 

publishing. This causes latest papers hardly get high ranking in citation-based ranking system. 

Another characteristic is that except for citations, there are various information could be 

considered using as ranking factors, such as titles, abstracts, reference, authors, journals and vice 

versa. 

 

Several algorithms have been proposed to improve the way paper is ranked. Some of them are 

inspired by the famous PageRank algorithm (Page et al., 1999), while others consider properties 
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like author-paper relationship (Nie et al., 2005; Yan and Lee, 2007). However, currently neither 

search engines nor the online databases in the library could tell which author is more important 

from the others in a specific field. There are works been done to propose new algorithm for 

author ranking in either micro-blog (Kong and Feng, 2011) or question answer portal (Chen and 

Nayak, 2008), but little work has been done in the academic fields. There are some methods for 

identifying influential researchers, such as h-index and Highly Cited Researchers, but none of 

them have the ability to rank researchers in a specific field. 

 

Identifying key authors in research fields help researchers to find important paper more quickly 

and give researchers a general sense on which opinion leader in that field is. Therefore, it is 

crucial to find out proper methodology for ranking authors in the target field for academic 

communities. In this paper, a PageRank-based technique is introduced. The core idea is that an 

author's rank should be calculated from both the impact of his paper and the order listed in the 

author list. 

 

The paper is organized as follows: related works on this topic are presented in Section 2. In 

Section 3 we proposed a field-specific author ranking algorithm, and details of the 

implementation are described in 4. In Section 5 we present the experiment result and evaluate its 

performance. Section 6 concludes the paper with future work. 

 

2. Related Work 
There are a lot of similarities between ranking web pages, ranking researchers in academic field 

and ranking key opinion leaders in social network. All of them have citation (retweet) 

relationship which can be transformed into a directed graph. Link analysis algorithms like 

PageRank and Hypertext Introduced Topic Selection (HITS) (Kleinberg, 1999) are the most 

popular algorithm for ranking webpages. These algorithms are later used for identifying the key 

opinion leader in social networking or academic paper ranking. For example, IP-Influence 

(Romero et al., 2011), considering passivity of users, is a HITS-based approaches, while the 

variants of PageRank, such as TunkRank (Tunkelang, 2009) and TwitterRank (Weng et al., 

2010) are based on a user graph which is constructed according to following relationships in 

twitter. In addition to user graph, some researches use a user-tweet graph, which emphasizes real 

interaction between users and tweets, like TURank (Yamaguchi et al., 2010) and topic-specific 

author ranking algorithm (Kong and Feng, 2011). Link analysis also works well on expertise 

analysis if users in a question answering system behave properly (Chen and Nayak, 2008). 

 

Since author ranking in academic communities is based on the contribution of their published 

papers, it would be helpful for examining paper ranking algorithm to get some idea for building 

the author ranking algorithm. There have been several algorithms consider not only the number 

of citations but also other factors which could be used to measure the quality of the paper. For 

example, Authority-Based Ranking (Hristidis et al., 2008) determines ranking by simultaneously 

taking citations, authors, publication venues, and relevance to queries into account. Both 

PopRank (Nie et al., 2005) and Browsing-Based Model (Chen and Nayak, 2008) utilize the 

author-paper relationship. The difference between them is that PopRank considers the 

publication venue-paper relationship apart from citations and the author-paper relationship. To 

give recent papers a fair credit, there are researchers defined the age damping factor, which 

consists of decay time and the age of paper, for the papers in their proposed algorithm (Hwang et 
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al., 2010). CiteRank modifies PageRank algorithm by initially distributing random surfers 

exponentially with age, in favor of more recent publications (Walker et al., 2007). 

 

To the best of our knowledge, there is only little work done on author ranking in the academic 

communities, especially for identifying key authors in a specific field. So far, the most famous 

method for measuring the productivity and impact of the publication works of a scholar is h-

index. The basic idea of h-index is that a scientist has index h if h of his or her  papers have at 

least h citations each, and the other (  - h) papers have fewer than h citations each (Hirsch, 

2005). In recent studies, h-index has been proved to be valid (Bornmann and Daniel, 2006; 

Bornmann et al., 2008). However, h-index has several shortcomings, such as its weakness to 

differentiate between significant works in the past (but not anymore) and the works which are 

trendy (Sidiropoulos et al., 2007) and its tendency to put newcomers at a disadvantage (Cronin 

and Meho, 2006; Glanzel, 2006). Since h-index is more about the productiveness of a scientist, 

there are several other indices like a-index (Jin et al., 2007), m-index (Bornmann et al., 2008) 

and hw-index (Egghe and Rousseau, 2008) proposed to address the peer assessment. Therefore, 

some researchers recommend a combination of indices be used for evaluative purposes 

(Bornmann et al., 2008; Jin et al., 2007; Liu and Rousseau, 2007). 

 

However, h-index and its variants all overlook the impact of the order of the author in the author 

list and none of them can be used to find important author in a specific field. To solve these 

problems, Osaka et al. (2012) proposed a matrix called Author and Paper Matrix (APM). The 

APM is shown as a direct graph which consists of a matrix of nodes. Each node, generated from 

a paper, represents the binding of the paper and an author of that paper. The co-author and 

related-paper are factors to determine edges and weight of edges between nodes. The lead author 

is considered to be most influential while the last author is deemed to be the one responsible for 

the paper. The weaknesses of this research are that the result of the ranking algorithm depends 

the search result of third-party searching engines, and they did not consider the time factor, such 

that paper publish long time ago tend to have higher score then recent published papers. In this 

work we tried to solve the above problem be introducing a normalization of time factor. 

 

The lack of related research motivates us to develop a new technique for finding out the author 

ranking in a research field. In our approach, we consider both the impact of the paper and the 

order of the author to get an accurate author ranking. Since link analysis has good performance 

on author ranking in both social networking and question answering portal, we first use 

PageRank algorithm to address the citation relationship in order to measure the impact of the 

paper. Then, we add a parameter to take time effect into account because paper can only cite 

papers published earlier than it, which would underrate the value of recent papers. The author 

ranking is based on the paper rankings, and each author would gain different scores depending 

on their order in each paper. With this, we developed a field-specific author ranking algorithms 

that could extract key authors from a selected research field. 

 

3. Model and Methodology 
The core idea of our methodology is that an author's ranking should be calculated from both the 

impact of his paper and the order listed in the author list. In the following subsections we address 

the details of the methodology. 
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3.1 Ranking Algorithm 
To generate a list of important authors in the target field, it is important to figure out a reasonable 

method to extract all the related papers in a field for further process. One way to classify the 

topic of the paper is by keywords. Therefore, in this study, we first choose a target field, and then 

we select a set of keywords which best describe the target field. By filtering the papers which 

contains the selected keywords, we can generate a list of paper related to the target field. 

 

Next, we rank the selected papers by their relative importance. In the field of paper ranking, most 

of the proposed algorithms consider many other factors such as author and journal or time. For 

example, Walker et al. (2007) proposed a technique which considers the publication time of a 

paper as a factor. However, these methods often require additional information such as 

conference and journal ranking, making it harder to implement. In our work we use a modified-

PageRank algorithm as the ranking algorithm. Since the citation relationship of the papers can be 

viewed as a directed graph, we can apply PageRank algorithm easily without extra information 

other than citation relationship. The original PageRank algorithm is described as follows: 

 

 
 

   is the total number of papers in the dataset. 

  a damping factor which can be set between 0 and 1. It is usually set to 0.85 according to 

the researchers who proposed PageRank algorithm (Brin and Page, 1998). 

  the total number of papers in the network. 

   is the total number of papers citing paper . 

  the set of papers citing paper . 

  the number of outgoing links from paper . 

 

However, the publication time of a paper greatly affects the number of citation a paper has. A 

paper published earlier tends to have more citation than paper published recently. In order to 

compensate for this effect, we divide the original PageRank value by a time factor in deriving a 

publication rank (PubRank): 

 

 
 

   is the total number of papers in the dataset. 

  paper  paper ranking. 

  a value counted by PageRank algorithm for paper . 

  current year (e.g., 2015) 

  paper  publication year.  

 

In PubRank, each paper  ranking is its PageRank value divided by a logarithm value of current 

year minus paper  publication year. By dividing the time factor, we get a hopefully time-
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independent ranking of the papers. In our experiment this method generates good results in that 

we find important papers published recently with rank higher than those published very long ago. 

 

After calculating the PubRank of the select papers of the target field, we can calculate a rank for 

the authors involved in these papers. The AuthorRank algorithm is describes as follows: 

 

 
 

   is the total number of authors in the specific topic. 

  author  number of papers in the specific topic. 

   is author  total number of papers in the specific topic. 

 : a value counted by PubRank algorithm for paper . 

  author  weight in paper , which . The value of the weight depends on 

author  order  of the authorship in paper .  There are more details about  in the next 

section.  

 

In AuthorRank, we first multiply paper  PubRank value with author  weight in paper  to 

get a value representing author  score for paper , and then we sum all values getting from 

author  to get author  total score. The final score represent the author ranking of a specific 

author in a target field. 

 

Summarizing the algorithm, the algorithm is composed of three parts: 

 

 Extract related papers for a specific field using a group of keywords which best describes a 

field. 

 Calculate the modified-PageRank on the extracted papers. 

 Weighted-sum the PageRank of all the papers an author published. A weight is determined 

by the order of the author in the author list. 

 

 

3.2 Keyword Selection 
The task of identifying keywords which best describe a target field is a critical problem in that it 

seriously affect the field of the selected paper. In this work we either manually select the 

keywords by ourselves or use the top keywords provided by websites such as Google Scholar or 

Microsoft Academic Search. However, it is possible to develop a clustering-based algorithm for 

identifying top keywords for describing a field. Also keywords usually have synonyms, i.e. two 

different keywords conveying the same concept. When selecting keywords, we should also 

include the keywords with similar meaning, or else we may miss papers that use different 

keywords than those we selected. 
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4. Implementation 

4.1 Dataset Attributes 
In our experiments, we used IEEE Xplore Digital Library data, which was crawled in April 2014. 

The crawler, written in Python, sends a POST request to IEEE Xplore Digital Library in order to 

get the BibTex and citation information. The data downloaded from webpages would be first 

parsed to JSON format, and then would be stored in MongoDB. Note that the citation 

relationship in the database forms a strongly connected component (SCC), so all the cited paper 

can be found in the same database. The basic information of the dataset is shown in Table 1. 

 

Table 1: Characteristics of IEEE Xplore Digital Library (as of April 2014). 

 

In order to have a better understanding for the data, Figure 1 shows the distribution of the 

number of times a paper is cited. As shown in the figure, most of papers have been cited at least 

one time. The average number of citations per paper is 4.42. Figure 2 shows the distribution of 

the number of authors per paper. Most of papers have two authors. The average number of 

authors per paper is approximately 3. 

 

Figure 1: The distribution of the number of times a paper is cited. 
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Figure 2: The distribution of the number of authors per paper. 

 

4.2 Keyword and Parameter Selection 
Since our purpose is to find out a list of key authors in a specific field, we selected three fields of 

study including Computer Vision, Operating System and Networking to measure the author 

ranking algorithm. A set of keywords defined as being relevant to a field of study is generate 

from Microsoft Academic Search, which has a page listing top keywords in a specific field of 

study. We collect top 13 keywords for each field. The top 13 keywords in three fields are shown 

in Table 2. These keywords are used to select papers for each field. We implemented all the 

ranking algorithms to these papers to generate a list of important author in the target field. 

 

Table 3 shows the weighting factor of the authorship. The weight is determined by the order 

of the author in the author list. We experimented on several combinations and finally get a 

reasonable weight for each author. Finally, we compare our result with h-index to test the 

performance of the author ranking algorithm. 

 

4.3 Program Implementation 
Since we are using MongoDB as our data store, all the data processing steps are written in 

Javascript with MongoDB’s Javascript shell. The PageRank algorithm is implemented in the 

MapReduce (Dean and Ghemawat, 2008) model, which is natively supported by MongoDB. 

Since PageRank is an iterative algorithm that needs to be run iteratively until the result 

converges. We implement each iteration as a MapReduce task and run it iteratively until the L2-

norm of the difference between current and previous iteration is smaller than some ϵ value. In 

our implementation, ϵ is selected to be 0.001, where most PageRank can converge within 20 

iterations. 
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Table 2: The top 13 keywords in three selected fields. 

 

Table 3: The weighting factor table of the authorship. 

 

 

5. Performance 
We perform field specific author rank on three fields including “Computer Vision”, “Operating 

System”, and “Networking”. The reason for choosing system-related papers is because that IEEE 

Xplore contains mostly such papers. After calculate the ranking, we can generate a list of top 20 

authors in each field, which is shown in Table 4. 
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Table 4: The top 20 authors in selected field generated by field-specific AuthorRank. 

 

 

It is very hard to create a ground truth for author rank, since the relative importance of author is 

subjective. However, looking at the result we can still gain insights on the accuracy of the 

proposed technique. We can see from the table that results are quite accurate. For example, in the 

Operating System field, Shin, K.G. is known for his contribution in the real-time system domain; 

Baruah, S. is well known for his work in real-time system; Tei-Wei Kuo is also known for his 

work in real-time databases; Lui Sha is well-known for his Priority Ceiling Protocol; and other 

listed here are also well known for each of their contribution in the operating system field. The 

ranking in the Computer Vision field, Chellappa, R. is famous for his work in computer vision 

and pattern recognition, Jain, A.K. is also very well known for his work in computer vision. 

Besides, Iyer, R. K. and Boukerche, A. were elevated to IEEE fellows in 2015, which indicates 

newcomers are not put at a disadvantage as h-index. Our observation indicates that the result 

generated by our algorithm is quite accurate. Since the selection of keywords affects that 

extracted papers and thus seriously affect the final score of the author, more keyword 

combination can be tested. Also the weight assignment shown in Table 3 requires more tuning to 

achieve moderate values. 
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Table 5: The top 20 authors in selected field generated by h-index. 

 

 

To illustrate how h-index performs badly on identifying important authors in a target field, we 

sort the list of field specific authors generated with our technique with regard to their h-index. 

The result is show in Table 5. As the reader may point out, the h-index rank of the three fields is 

complete the same. This is because if an author published a paper with one of the keywords we 

select, the author is included in that field. Most authors publish a large amount of papers, and 

they usually also cross over fields. In our case, these 20 authors all published some papers 

including keywords in all three fields; this is why they are all selected. The experiment shows 

that h-index is completely useless in identifying key authors in a field. 

 

Note that in Table 5, Wei Wang appears to have the highest h-index in our system. Digging in to 

the raw data we found that it is because Wei Wang is a very common name, in the first 10 papers 

we looked at with this author's name on it, they are all different individuals. We did not remove 

it from the list because we want to show the calculated data in their original form. When 

counting h-index, it is hard to rule out with certainty that papers by a different scientist of the 

same name are entering into the calculation. For this reason, Bornmann and Daniel (2007) 
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recommend calculating the h-index on the basis of a complete list of publications that is 

authorized by the scientist himself or herself, which is one of the disadvantages of h-index. 

 

6. Conclusion and Future Work 
In this paper we proposed a PageRank-based technique for identifying author ranking in a 

specific research field. The main difference from h-index is that not only can we specify a 

research field, but we also take the authors' order in a paper into consideration. The resulting 

ranking system shows much better performance than h-index. 

 

A key step in our methodology is to extract field related papers from the paper database. When 

extracting field related paper, we need to identify a group of keywords which best describes the 

field. In this work we use the top-K keywords listed in Microsoft Academic Search system. 

However, the listing of Microsoft Academic Search may be inaccurate. Furthermore, keywords 

with similar meanings may not be selected in this way. In our future work, we should investigate 

clustering related algorithms and stemming algorithms to automatic group keywords with similar 

meaning together, so we will not miss any related paper in the filtering step. Also, a new method 

is required to identify a subset of keywords which can best describe the target research field. 
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