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Abstract 
Big data has become a popular buzzword today with the underlying assumption that bigger data 

is better. However, by its nature, big data comes with many challenges and environmental costs. 

In contrast to other research that has examined the benefits and costs of big data independently, 

our research-in-progress provides an integrated perspective. Theoretically, we draw on the 

perspective of lean information management to develop the novel concept of Lean Big Data 

Management and a framework for evaluating it. In developing our framework, we characterize 

and define new concepts including Big Data Efficiency, and propose the data envelopment 

analysis approach as a method for measuring it. We provide an illustrative example using data 

from the U.S. electricity sector and discuss potential implications of this research. 

 

 

Keywords 

Big Data, Lean Information Management, Data Envelopment Analysis 

 

 
1. Introduction 
In 2011, the digital universe reached 1.8 trillion gigabytes and it is doubling every two years 

(Hudson 2014). Big data has become a business buzzword with the underlying assumption that 

bigger data is better. However, big data comes with many challenges (Jacobs 2009): 

organizations must adjust analytic processes, develop new data scientist capabilities, move 

analytics into core business functions, and ensure alignment between the business goals and 

technical capabilities (Davenport et al. 2012; Kiron 2013). Environmentally, big data also has 

substantive costs associated with powering the internet, servers, data centers and other IT 

infrastructures necessary for collection, analytics, storage and distribution (Hudson 2014). 

 

Work is underway to improve the efficiency and environmental performance of data centers 

(Daim et al. 2009), however, the majority of research relates to IT infrastructures rather than the 

applications being run or data being processed. Similarly, we find gaps in the big data research. 

Research has examined the benefits of big data (e.g., Brynjolfsson and McAfee 2012) or the 

costs of big data (e.g., Winter Corporation 2013), but few studies have investigated both.  Our 



   

  

research-in-progress addresses these gaps by focusing on the integrated consideration and 

measurement of big data benefits and costs.   

 

To inform our research, we refer to the literature on lean information management. Lean thinking 

is a general management philosophy focused on eliminating waste in order to optimize customer 

value (Liker 2003). Originally conceptualized within manufacturing, subsequent work has 

extended the concept to lean management (Womack and Jones 1996) and lean information 

management (Hicks 2007). Extending the idea further, our work develops the novel concept of 

Lean Big Data Management and seeks to create a conceptual framework for evaluating it. We 

define new concepts including Big Data Efficiency, Information Waste and Costs of Big Data. 

Then, we propose to illustrate these concepts using data envelopment analysis (DEA) and data 

from the smart grid implementation in the U.S, which is expected to result in a nine-fold increase 

in the amount of data available to utilities (Ambrosio 2011).  

 

The expected contributions of our research are twofold. First, we extend the big data literature by 

defining the new concept of Lean Big Data Management. Our conceptualization provides a more 

holistic view of big data processes owing to the addition of the lean perspective which seeks to 

optimize complete processes rather than sub-processes where waste may exist in the gaps. 

Second, we propose a novel performance measure termed Big Data Efficiency to jointly measure 

the benefits and costs of big data management and illustrate this measure with numerical 

examples from smart grid implementation.  
 

 

2. Literature Review: Lean Information Management 
Lean information management (LIM) focuses on the creation of value and the elimination of 

waste throughout the information processing lifecycle (Cottyn et al. 2008). Waste includes “the 

additional actions and any inactivity that arise as a consequence of not providing the information 

consumer immediate access to an adequate amount of appropriate, accurate and up-to-date 

information” (Hicks 2007, p. 238). For some time, lean thinking and information technology 

were considered to be incompatible (Cottyn et al. 2008) because IT was seen as a barrier to lean 

information management (Hölttä et al. 2010). Although analogies to the seven essential sources 

of waste in manufacturing have been identified for information management (Table 1), their 

impacts have not been thoroughly investigated as they are often considered to be trivial (Hicks 

2007). In contrast, we contend these costs are becoming significant in the era of big data.  

 

3. Conceptual Development 
Our conceptual framework involves four main constructs: Lean Big Data Management, Big Data 

Efficiency, and Costs of Big Data, and Big Data Benefits. Each of these is defined below. 

 

We suggest the goal of Lean Big Data Management is the creation of a value stream related to 

the collection, processing, storage, analysis and mining, dissemination, maintenance and disposal 

of big data with minimal waste. Waste arises from different organizational processes along the 

value chain from collection and creation of big data to its eventual disposal. Beyond the types of 

waste associated with LIM, we identify new types of waste specifically associated with big data 

(see Table 1). Given the potential for big data waste, the question becomes: how we can measure 



   

  

lean big data management and make comparisons across different organizations? Our conceptual 

model proposes to do this through the new construct of Big Data Efficiency.  
 

 
 
Manufacturing Waste 

(Womack and Jones 1996) 

Information 

Management Waste  

Big Data Waste  

Overproduction  Flow excess (Cottyn et al. 

2008; Hicks 2007) 
Flow excess; excess data collection: 

activities associated with collecting and creating data 

beyond value-added needs 

Waiting  Flow demand (Cottyn et 

al. 2008; Hicks 2007) 

Flow demand; data congestion:  queue in data 

processing due to insufficient processing 

capacity/capability 

Transport Unnecessary transfer 
(Cottyn et al. 2008) 

Data transmission excess: unnecessary transmission 

of data during collection, storage and processing 

Extra processing  Failure demand (Cottyn 

et al. 2008; Hicks 2007) 

Failure demand; data cleansing waste:  resources 

spent on cleansing and mining “dirty data” (Hernandez 

and Stolfo 1998) 

Inventory Excessive information 
(Cottyn et al. 2008; Hölttä 

et al. 2010) 

Data storage excess; data entropy: over-time the 

usability of data diminishes (Christensen et al. 2011)  

Motion Incompatibility  (Cottyn 

et al. 2008; Hölttä et al. 

2010) 

Data integration failure: extra processing and data 

integration efforts taken to accommodate inefficient 

layout, defects, reprocessing, and excess data 

Defects Flawed flow (Hicks 2007; 

Hölttä et al. 2010) 

Flawed flow; flawed data waste: activities resulting 

from poor data quality (Olson 2003) 

 

Table 1: Sources of waste 
 

Based on the input-output model in economics (Miller and Blair 2009), we define Big Data 

Efficiency as the ratio of the total output to total inputs of a big data management system. The 

total input may include different forms of quantifiable resources, such as costs, time and energy, 

for collecting, distributing, compiling, sorting, mining, processing and maintaining big data. The 

total output is measured by different quantifiable benefits created from analyzing big data, such 

as improved profitability, service quality and environmental performance. Big Data Efficiency 

measures how efficiently resources are used for value creation.  

 

The costs of big data can be categorized according to operational costs and environmental costs. 

Examples of operational costs associated with big data include (but are not limited to): 

 Systems costs: Costs to acquire, maintain, support and upgrade hardware and software 

plus the cost of space, power, and cooling (Winter Corporation 2013). 

 System and data administration costs: Costs of expert staff to administer the system and 

the data stores (Winter Corporation 2013). 

 Integration costs: Costs of developing or acquiring ETL (extract, transform and load) 

functionality to prepare data for analytic use; developing processes to cleanse the source 

data, recognize it as necessary, and store it in accordance with an integrated database 

design (Winter Corporation 2013). 

 Querying and analytical costs: Costs associated with developing queries that can be 

expressed in SQL, or the development of procedural programs that demand data analyses 

too complex to express in SQL (Winter Corporation 2013).  



   

  

 Application costs: Costs of developing applications using data to support repeatable 

processes (Winter Corporation 2013), such as demand-side management.   

 

There are also important environmental costs, deriving primarily from the energy consumption 

related to the operational costs of big data. Energy and environmental costs for powering the 

internet, servers, data centers, and other IT devices and infrastructures to collect, distribute, 

compile, store, mine, process and maintain big data (Coroama and Hilty 2014) are commonly 

measured through energy consumption and carbon emissions.  
 

Recently, there has been much hype around the benefits of big data to organizations, with some 

predicting up to 60% improvements in operating margins and enhanced competitive advantage 

(McGuire et al. 2012). Improvements to operating efficiency result from greater and faster access 

to information to support organizational decision-making (Brynjolfsson and McAfee 2012). Big 

data coming from GPS and mobile devices can also contribute to time and fuel savings (McGuire 

et al. 2012). In the electricity sector, the big data is expected to transform the grid into a more 

reliable, affordable, efficient and environmentally benign supply system (Fox-Penner 2010).  

 

 

4. Methodology 
For this research, we propose to use data envelopment analysis (DEA).  DEA is a nonparametric 

method for multi-objective performance evaluation through benchmarking (Charnes et al. 1978). 

DEA is commonly used to measure and characterize how the limited resources (inputs) are 

utilized to achieve multiple objectives (outputs). As a nonparametric method, DEA has the 

advantage of uncovering the relationships among multiple objectives without the use of any 

explicit mathematical function. Another advantage of DEA is the capability to synchronize 

different input/output measurements on a consistent basis to avoid potential issues associated 

with scaling and different measurement units (Zhu and Cook 2013).  
 

Our research setting is the smart grid. Through the implementation of smart meters and advanced 

metering infrastructures (AMI), electricity service providers (“utilities”) are entering the era big 

data. We will test our model in the context of the U.S. electrical utility sector, comprising over 

3200 utilities.  There are substantial variations among utilities in terms of size, ownership, 

geography and progress in implementing the smart grid, providing a rich research context. More 

practically, there is a readily-available and consistent data set from the U.S. Energy Information 

Administration (EIA). We focus on the utilities’ implementation of AMI and their demand-side 

management (DSM) activities. To illustrate the operationalization of our constructs and to 

demonstrate the DEA methodology, we provide a simple example below.   
 

5. A Numerical Example of Big Data Efficiency  
To determine Big Data Efficiency, we require measures for the inputs and outputs for each 

decision-making unit (utility). In this illustration, we include two measures for inputs: number of 

AMI devices and indirect costs associated with DSM. In the absence of knowing specific 

operational costs, the number of AMI devices provides a reasonable measure for system and data 

administration costs. Similarly, for environmental costs, the volume of electricity consumption is 

likely to increase with the number of AMI devices. There is no need to determine the actual 

environmental impact because we are concerned with the relationship (efficiency), rather than 



   

  

absolute levels. The second input variable is the indirect costs of utilities’ DSM programs. 

According to the EIA, these costs are attributable to cost categories such as administration, 

monitoring and evaluation. Although this measure includes indirect costs which may not relate 

specifically to big data, it represents a reasonable proxy for application-type costs associated big 

data. For the outputs, we include two performance measures: energy efficiency effects of DSM 

programs; and load balancing as measured by actual reductions in annual peak load achieved by 

consumers participating in DSM programs (Energy Information Association 2011).     

 

As our data extraction and compilation is not completed, we used a small sample of 10 

hypothetical utilities. All input and output values were randomly generated based on the average 

values across relevant utilities in the 2010 EIA Annual Electric Power Industry Report. The CRS 

(Constant Returns to Scale) Multiplier Model of DEA was used in the analysis. The inputs, 

outputs and the Big Data Efficiency scores are shown in Table 2.  

 

From this illustration we can highlight certain key results. First, we consider Utility 9 which has 

the lowest efficiency score of 0.36169. This case may present a typical example of over-

investment in big data with high operational costs (high costs for powering a large number of 

AMI units) which cannot be justified by the relatively low outputs (especially energy efficiency).  

 

Alternatively, we find Utilities 3, 4, 7, 8, and 10 all of which have big data efficiency scores of 

100%. A utility with 100% efficiency represents a decision making unit with the best 

performance along a particular direction (i.e., a particular combination of inputs and outputs) in 

the multi-dimensional space.  The efficient units (with 100% efficiency) form the so-called ‘best-

practice frontier’ in the multi-dimensional space. Thus, these cases are examples of efficient 

units which achieve the best performances in energy efficiency and/or load balance with mostly 

low to moderate levels of investments on inputs. 
 

  Inputs Output   

  Indirect Cost AMI Units Energy Efficiency Load Balance Efficiency 

Utility 1 58 442 000 98 106  12 123  6 118  0.72768 

Utility 2 58 776 858 141 756  15 878  5 981  0.75995 

Utility 3 37 413 630 102 055  13 987  8 844  1.00000 

Utility 4 75 578 196 58 796  16 559  3 468  1.00000 

Utility 5 43 815 236 105 084  6 110  3 209  0.39314 

Utility 6 75 151 826 116 862  14 635  4 423  0.67245 

Utility 7 31 713 243 139 462  13 961  3 734  1.00000 

Utility 8 32 090 938 65 719  10 728  4 601  1.00000 

Utility 9 76 720 925 142 098  6 434  6 698  0.36169 

Utility 10 29 770 352 66 613  8 248  8 724  1.00000 

 

Table 2: Numerical Example of DEA Analysis 
 

6. Conclusion 
In this paper, we propose that Big data Efficiency can be used as an integrated measurement of 

the costs and benefits in Lean Big Data Management. This integrated model and measure 



   

  

represent a main contribution of this work to the literature. To date, there has been limited 

research of lean management in the context of information systems (Bortolotti and Romano 

2012), yet we believe the integration of lean with IS provides a fruitful new avenue for 

considering the performance of data-intensive IS solutions. 

  

Our work also has important implications for practice. First, Big Data Efficiency can be achieved 

when any data or data management activities that deviate from the true analytical needs are 

considered information waste and should be eliminated. By reducing big data wastes, the 

financial and environmental performance of organizations should improve. Second, we suggest 

Lean Big Data Management can be realized with a pull-based system (Cottyn et al. 2008) in 

which data collection is driven by the true analytical needs of data consumers. Current models 

for big data tend to rely on push-based systems (Franks 2012). There has been initial 

consideration of more efficient pull-based systems for the electricity sector (Tsigkas 2011) and 

our work suggests continued efforts in this area may be worthwhile.  
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