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Abstract
Self-service advertising platforms such as Cidewalk enable advertisers to directly launch
their individual mobile advertising campaigns. These platforms contract with advertis-
ers to provide a certain number of impressions on mobile apps in a specific geographic
location (usually a town or a zip code) within a fixed time period (usually a day); this is
referred to as a campaign. To meet the commitment for a campaign, the platform bids on
an ad-exchange to win the required number of impressions from the desired area within
the time period of the campaign. We address the platform’s problem of deciding its bid-
ding policy to minimize the expected cost in fulfilling the campaign.

Key Words: Internet Advertising, Self-Service Platforms, Mobile-Ad Campaigns, Opti-
mal Bidding.

1. Introduction

The increase in the use of online media – personal computers, mobile phones, tablets, etc. – for advertising
has been tremendous over the past decade (Central Market Research, 2012; Lieberman, 2013). The rate of
growth of online advertising has been particularly impressive in the past five years; e.g., the total revenue
from online advertising in the United States in 2013 was about 17% more than that in 2012 (Interactive
Advertising Bureau, 2014). In the United Kingdom, Internet advertising revenue increased 12.5% over that
in 2011 (Interactive Advertising BureauUK 2013a,b). It is estimated that revenues from Internet advertising
will reach $76 billion by 2016 (Hof, 2011; eMarketer, 2012).

The focus of the current study is on advertising on a mobile device (e.g., a smart phone, or a tablet). Specif-
ically, we consider ads that are displayed on a mobile application (hereafter abbreviated as an app), such as
an app for weather, stocks, or a game. This form of advertising is on the increase. In addition to the end
user of the mobile app, there are at least two other parties that are involved in the process of mobile in-app
advertising: (i) The advertiser, who provides ads created to promote products or services, and (ii) the pub-
lisher, or the owner of the mobile app. The advertiser and the publisher often interact with one another
through their respective agents. Advertisers (who ultimately generate demand for advertising space) are
usually represented by demand-side agents (or ad aggregators). Demand-side agents provide advertisers
the access to a variety of publishers for the appropriate exposure of their ads. On the other hand, supply-
side agents represent publishers that supply the space for ad-display. Supply-side agents help monetize the
space owned by publishers and earn revenue for them.

Till recently, most of the supply of ad space from apps was sold on a contractual basis. That is, supply-side
agents entered into relatively long-term contractual arrangements with app owners to sell their space for the
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display of ads. These contracts were often drawn on a revenue-sharing basis, i.e., app owners got a propor-
tion of the revenue generated from their ad-space. In recent times, with the advent ofmobile ad exchanges
(e.g., Nexage, AdMarvel, etc.) the supply of ad-space on apps is fast becoming a commodity. There are no
long-term contracts; rather, each opportunity to display an ad (called an impression) is auctioned off on a
mobile ad exchange. Impressions are typically sold on a cpm (cost per thousand impressions) basis.

The growth of mobile ad exchanges has also led to changes in the demand-side of the industry. Demand
aggregators are now able to directly buy supply from exchanges rather than acessing the supply via a supply
aggregator. While the advertising needs of large advertisers (such as GE or SONY) are often addressed
in an “ad agency” mode providing end-to-end service, demand aggregators are moving to a “self-service”
mode for small advertisers. Here, advertisers directly launch their individual campaigns using a self-service
platform. The self-service mode is suitable for thousands of small advertisers without deep pockets and
offers an attractive advertising solution for a hitherto underserved segment of the market. A prominent
example is Facebook that offers a self-service advertising solution, albeit the service is restricted to the supply
within Facebook.

Self-service platforms scale well and provide access to supply via the use of ad exchanges. The key expertise
underlying the platform is in the ability to bid intelligently for supply on a mobile ad exchange. Also, there
needs to be a high level of integration between the ad exchange and the platform to complete the bidding
process in real-time and render the winner’s ad on a mobile app. Such technical expertise is usually not
possessed by small advertisers. Hence there is a niche for firms that possess sophisticated integration skills
and fast, real-time analytic abilities to buy supply at affordable prices and deliver ad campaigns at a net
profit.

In this study, we consider the problem faced by one such ad firm (Cidewalk; http://www.cidewalk.com) of
optimizing the bidding policy for mobile ad delivery to support self-service ad campaigns. Cidewalk enters
into contracts with advertisers under which they have to provide a certain number of impressions (which
we refer to as a “campaign”) on mobile apps in a specific geographic location (usually a town or a zipcode)
within a fixed time period (usually a day). Cidewalk bids on ad-exchanges to win these impressions: The
more the bid, the higher is the probability of winning an impression. The objective is to win a contracted
number of bids (to place impressions) over a given time period at minimum cost.

2. Model

Themodel we study is the following. The firm (Cidewalk, in the description above) has made a commitment
to a customer to deliver C impressions, as part of a campaign within a certain period of time, to users of
mobile apps in a certain geographical area. For example, a newly opened restaurant may want to run an
ad-campaign targeting 10,000 potential customers within a certain zip-code within one week. Specifically,
the customer is interested in displaying the ad on mobile devices when users open an app – we refer to
the event of a mobile device user in the desired area opening an app as an impression. These impressions
are auctioned in real-time in an ad-exchange. Advertisers or advertising companies who act on behalf of
advertisers bid for these impressions. The highest bidder wins the impression and pays the price that she
bids to the exchange. Clearly, the higher the bid, the greater the probability of winning an impression. We
model this using a win-curve, that is a function p(b) : [0, bmax] → [0, 1] which specifies the probability of
winning an impression by bidding an amount b. It is reasonable and convenient to assume that bmax is a
large enough value that an impression will definitely be won with a bid of that value. In order to avoid the
possibility of incurring a very high cost for procuring C impressions to meet a strict guarantee of delivering
that many impressions to the customer, the firm specifies a probability α (very close to 1) and promises the
customer that it will deliverC impressions with a probability of α or more (a typical value of α could be 0.99,
i.e., 99%).1 We use T to denote the number of time slots in the desired time period; for example, a time slot
could be a millisecond. By time slot, we mean a sufficiently small interval of time in which the probability of
more than one impression arriving from the desired geographical area is zero. Let q denote the probability
that an impression from the desired area arrives in a time slot; thus, 1 − q is the probability that no such

1Since our firm and its customers expect to engage in many such campaigns over a year, customers will have the ability to assess
whether the firm is meeting their “probabilistic guarantee”.

Thirty Sixth International Conference on Information Systems, Fort Worth 2015 2

http://www.cidewalk.com


Bidding for Mobile-Ad Campaigns

impression arrives in a time slot. We focus on the firm’s problem for a single campaign. The decisions are
the bids to place on the impressions that (possibly) arrive from the desired area in time slots {1, 2, . . . , T}.
Notice that these bids can be dynamic; for example, if many impressions have been won early on within the
campaign period, the firm may start bidding low on subsequent impressions. The objective is to minimize
the expected cost while the constraint is to obtain C impressions with a probability of α or more. We denote
this problem by PProb(C,α) (the superscript “Prob” denotes the probabilistic constraint).

Below, we present a mathematical formulation of PProb(C,α). To do this, it is useful to define b(x) : [0, 1] →
[0, bmax] as the inverse of the function p; that is, b(x) = p−1(x). We also define f(x) = x × b(x); this is
the expected cost associated with choosing a win-probability of x for an impression. It should be clear that
our problem can also be formulated as one in which the decisions are the win-probabilities to use on the
impressions that arrive. Now, a policy can be formally defined as a matrix x of win-probabilities, whose
entries are {x(t, jt) : 1 ≤ t ≤ T , 0 ≤ jt ≤ t − 1}; here, x(t, jt) specifies the win-probability for the
impression that could possibly arrive in time slot t if the firm has won jt impressions in the first t − 1 time
slots. If x(t, jt) is constant (i.e., independent of t and jt), we refer to x as a static policy. In general, we refer
to x as a dynamic policy. The stochastic process {jt : 1 ≤ t ≤ T}, under a given policy x, evolves as follows:

jt+1 = jt + 1 if an impression arrives in slot t and the bid of x(t, jt) wins impression i ,

= jt otherwise.

Then, PProb(C,α) can be written as follows:

min
x

E

[
T∑

t=1

qf(x(t, jt))

]
(1)

s.t. P [jT+1 ≥ C] ≥ α , and (2)
x(t, jt) ∈ [0, 1] for all 1 ≤ t ≤ T and all jt ∈ {0, 1, . . . , t− 1} , (3)

where jT+1 is the number of impressions won by the policy x at the end of the desired time period (i.e., end
of slot T ).

Our Goal: It is easy to see that the optimal policy for problem PProb(C,α) will, in general, be a non-trivial
function of the states (t, jt); in other words, the optimal policy is state-dependent. In addition to being
difficult to obtain, such a policy is also cumbersome to use since the number of impressions that arrive at
the ad exchange over the desired time period (say, one day) is very high – and so is the number of states.
Our goal in this paper is to obtain a policy that is simple to compute and is provably near-optimal. Indeed,
the policy that will result from our analysis is state-independent and is described by a single number.

3. A Real-World Policy

As mentioned earlier, the advertising platform Cidewalk (Cidewalk, Inc. 2015) faces problem PProb(C,α)
when it bids for the impressions needed to satisfy a user’s campaign. Cidewalk uses the following bidding
policy:

Cidewalk’s Policy: Bid b
(
min

{
C−jt
q(T−t) , 1

})
in state (t, jt).

The numerator in the ratio above, i.e., C − jt is the remaining number of impressions to be won in state
(t, jt), while the denominator q(T − t) is the expected number of impressions yet to arrive over the desired
time period. This is clearly a dynamic policy; e.g., the bids become progressively aggressive as the expected
number of impressions to arrive approaches the remaining number of impressions to be won. If the re-
maining impressions to be won exceeds the expected number of impressions to arrive in the remainder of
the period, then the policy bids bmax.

In thenext section, wewill analyze a relaxation of the problemPProb(C,α). Wewill obtain a state-independent
optimal policy for this relaxation. Then, in Section (5), we will exploit this simple policy to obtain a feasible
and near optimal policy for our original problem PProb(C,α).
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4. A Relaxation and Its Optimal Solution

We start by defining a new problem, similar to problem PProb(C,α), in which the constraint is to deliver a
certain number of impressions, say β ≥ 0, in expectation. More formally, we denote by PE(β) the following
problem:

min
x

E

[
T∑

t=1

qf(x(t, jt))

]
(4)

s.t. E[jT+1] ≥ β , and (5)
x(t, jt) ∈ [0, 1] for all 1 ≤ t ≤ T and all jt ∈ {0, 1, . . . , t− 1} . (6)

Next, we know fromMarkov’s inequality that

P
[
jT+1 ≥ C

]
≤ E[jT+1]

C
.

Also, we need P [jT+1 ≥ C] ≥ α; thus,

α ≤ P
[
jT+1 ≥ C

]
≤ E[jT+1]

C
.

Therefore, the probabilistic guarantee in problem PProb(C,α), that is, the constraint P [jT+1 ≥ C] ≥ α
implies the inequality

E[jT+1] ≥ Cα. (7)

Thus, using the choice β = Cα, Problem PE(Cα) is a relaxation of Problem PProb(C,α). We now proceed
to solve this relaxed problem. We begin with an assumption on the win-curve, p(·).

Assumption 1 The function p(·) is strictly increasing and concave.

The following result is a consequence of Assumption 1. Its proof is a straightforward exercise in calculus and
is, hence, omitted.

Claim 1 Under Assumption 1, the functions p−1(·) and f(·) are both increasing and convex.

Next, we observe from the definition of jt and x(t, jt) thatE[jT+1] =
∑T

t=1 E[x(t, jt)]. Thus, Problem PE(β)
can be written as

min
x

E

[
T∑

t=1

qf(x(t, jt))

]
(8)

s.t.
T∑

t=1

E[x(t, jt)] ≥ β , and (9)

x(t, jt) ∈ [0, 1] for all 1 ≤ t ≤ T and all jt ∈ {0, 1, . . . , t− 1} . (10)

Using the convexity of f shown earlier and a standard Lagrangian analysis, we obtain the solution to Problem
PE(β) as follows:

x(t, jt) =
β

Tq
, for all t = 1 . . . T , jt = 1 . . . (t− 1). (11)

We formally state this below.
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Theorem 1 The policy x(t, jt) =
β
Tq is optimal for problem PE(β).

Note that the policy above is static and, moreover, is described by a single number. In the next section, we
will use the above analysis to obtain a near-optimal solution to problem PProb(C,α).

5. A Near-Optimal Solution to Problem PProb(C, α)

Motivatedby the preceding analysis, our hope is to obtain a static policy that is feasible for problemPProb(C,α)
and has a near-optimal expected cost. Since the expected cost f(x) is increasing in the associated win-
probabilityx, wewill aim to obtain a static policywith awin-probabilityxα, i.e., x(t, jt) = xα; t = 1, . . . , T ; jt =
1, . . . , (t−1), such that Constraint (2) is tight. That is,P [jT+1 ≥ C] = α. With a (static) win-probability of xα,
the number of impressions won over T periods is a binomially-distributed random variable with a trial suc-
cess probability of p̂ = xαq; letΦBin(T,p̂) denote the c.d.f. of this distribution. Thus, to satisfy Constraint (2),
we impose

Φ̄Bin(T,p̂)(C) = α. (12)

Using a normal approximation to Bin(T, p̂) (which is appropriate since T is large in practice), we obtain

Φ̄N

( C − Txαq√
Txαq(1− xαq)

)
= α,

where ΦN (.) is the c.d.f. of the standard normal distribution. Thus, we obtain the following quadratic equa-
tion in xα:

(C − Txαq)
2 = z2αTxαq(1− xαq),

where zα = Φ−1
N (α). The relevant solution to this quadratic equation is

xα =

(2C + z2α) +

√
(2C + z2α)

2 − 4
(
1 +

z2
α

T

)
C2

2(Tq + z2αq)
.

In practice, C is of the order of thousands. Consequently, for practically relevant values of α (e.g., 0.99), we
have C ≫ zα. Therefore, the expression above for xα can be approximated as

xα ≈ C

Tq
+

zα
√
C

Tq
.

We now proceed to show that the cost incurred by following the static policy with win-probability xα is very
close to the lower boundon the optimal cost of problemPProb(C,α). Let Cost(xα) represent the cost incurred
by following the static policy with win-probability xα and let Opt(C,α) be the optimal cost associated with
problem PProb(C,α). We calculate the ratio

Cost(xα)

Opt(C,α)
.

We know that Cost(xα) = Tqf
(

C
Tq + zα

√
C

Tq

)
and Opt(C,α) ≥ Tqf

(
Cα
Tq

)
. Therefore, we have

Cost(xα)

Opt(C,α)
≤

f
(

C
Tq + zα

√
C

Tq

)
f
(

Cα
Tq

) . (13)
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Theorem 2 The policy x(t, jt) = xα, ∀ t, jt, achieves the following performance guarantee for problem
PProb(C,α):

Cost(xα)

Opt(C,α)
≤

f
(

C
Tq + zα

√
C

Tq

)
f
(

Cα
Tq

) .

To assess the quality of this upper bound, consider the following example with realistic values of the param-
eters:

• Let p(b) = 3
√
b, 0 ≤ b ≤ 1. Therefore, b(x) = x3.

• Let each time slot be of duration 1 millisecond. Thus, corresponding to an eight-hour-campaign, the
total number of time slots is T = 259, 200, 000.

• Assume one impression arrives every second. Thus, q = 1
1000 .

• Let the total number of impressions to be won over the campaign be 100,000. Thus, C = 100, 000.
• Let α = 0.99. Therefore, zα = 2.326.

For the above values of the parameters, the win-probability of our static policy is xα = 0.38865 and the
value of the upper bound in (13) is about 1.072. That is, the total cost corresponding to the static policy with
win-probability xα is at most 7.2% higher than that of an optimal policy.

Remark: In the analysis above, to solve the feasibility equation (12) for our policy x(t, jt) = xα,∀ t, jt, it was
convenient to use the normal approximation to the c.d.f. of the binomial distribution – this approximation
resulted in a closed-form expression for the win-probability xα. The approximation, however, may lead to
the policy acquiring slightly fewer than the number of impressions required to guarantee feasibility. This
infeasibility can be easily avoided if closed-form expressions are not required. One can directly use the c.d.f.
of the binomial distribution to numerically solve Φ̄Bin(T,p̂)(C) = α for the value of p̂. If we use this direct
approach in the numerical example above, then the value of the upper bound in (13) is 1.0721. That is, the
total cost corresponding to the static policy x(t, jt) = xα is at most 7.21% (instead of 7.20% with the Normal
approximation) higher than that of an optimal policy forPProb(C,α). One can also ensure feasibility by using
sharp bounds on the c.d.f. of the binomial distribution (see, e.g., Zubkov and Serov 2013) at the expense of
losing our simple closed-form expressions.

The above analysis can be extended in a straightforward manner when the arrival probability depends on
time; that is, the arrival probability is q(t).

6. Ongoing Research

The problem formulated in this paper addresses the service platform’s bidding policy for a single campaign.
In practice, one would expect several campaigns that are simultaneously active in the same geographical
area. Generalizing further, each of these campaigns could be interested in advertising in multiple geograph-
ical areas (e.g., towns or zip-codes). Thus, a multi-campaign, multi-location extension of the problem re-
quires the platform to win a sufficient number of impressions from a set of locations for each campaign. We
are actively working on this extension.
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