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Abstract 

Data is becoming increasingly valuable, but concerns over its security and privacy 
have limited its utility in analytics. Researchers and practitioners are constantly 
facing a privacy-utility tradeoff where addressing the former is often at the cost of the 
data utility and accuracy.  In this paper, we draw upon mathematical properties of 
partially homomorphic encryption, a form of asymmetric key encryption scheme, to 
transform raw data from multiple sources into secure, yet structure-preserving 
encrypted data for use in statistical models, without loss of accuracy. We contribute to 
the literature by: i) proposing a method for secure and privacy-preserving analytics 
and illustrating its utility by implementing a secure and privacy-preserving version of 
Maximum Likelihood Estimator, “s-MLE”, and ii) developing a web-based framework 
for privacy-preserving peer-to-peer analytics with distributed datasets.  Our study has 
widespread applications in sundry industries including healthcare, finance, e-
commerce etc., and has multi-faceted implications for academics, businesses, and 
governments. 
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Introduction 

We live in an information age and performing analytics on data is becoming increasingly valuable to 
businesses (Chen et al. 2012). However, data may be fragmented and held by multiple organizations - 
limiting its usefulness.  Privacy, security, and legal issues, in addition, may restrict data sharing (Goldfarb 
and Tucker 2012; Hann et al. 2007). Responding to the recent concerns over data privacy, Governments 
too are introducing stricter policies and laws (Information Shield 2011). Researchers in the field of 
Information Systems as well as related businesses are thus faced with the tradeoff between deriving useful 
insights from data while respecting individual rights to information privacy.  In our study, we attempt to 
address this tradeoff by designing and developing a secure distributed analytics system which parties can 
use to effectively share and analyze datasets without compromising on either accuracy or privacy.  

In this research in progress paper, we propose and build a system to perform peer-to-peer secure analytics 
using homomorphic transformations on data from two or more parties. While recent research on 
homomorphic encryptions have hinted at the potential for this method to be used in cloud computing 
environments (Hall et al. 2011), ours is the first to design and implement a workable peer-to-peer (P2P) 
solution that leverages this concept. We specify an efficient communication protocol using REST, for 
performing complex mathematical operations, including multiplicative inverse and statistical operations, 
including linear and logistic regressions and numerical optimizations in a computationally acceptable 
manner.  Our system has wide-spread benefits in many industries where data secrecy and customer 
privacy are major concerns, like the finance, healthcare, retail, and telecommunications industries. Our 
proposed method will also enable researchers and academics in marketing, information systems and 
related disciplines to investigate questions pertaining to information sharing, data security and privacy-
preserving analytics from a fresh perspective (Xu et al. 2012; Bélanger and Crossler 2011; Sheth 2011). 

Our system provides a number of advantages and capabilities over existing solutions which use data 
anonymization or privacy-preserving tools.  We argue that previous systems are often inadequate, risky 
and prone to a single-point-of-failure, or popular attack. While most public datasets revealed by 
companies are anonymized to protect user privacy, researchers hint that perfect anonymization is not 
possible without damaging the utility of the data (Sweeney 2010; Narayanan and Shmatikov 2008). In 
fact, there is increasing evidence, both anecdotal and grounded, that it’s fairly easy to de-anonymize 
popular datasets by comparing data points across different datasets (Ohm 2010; Narayanan and 
Shmatikov 2008). Others argue in favor of the efficacy of existing anonymization approaches (Cavoukian 
and Emam 2011). We contend, however, that in light of such conflicting information on anonymization 
strategies, organizations would be increasingly reluctant to use such approaches. The efficacy of privacy-
preserving tools is questionable too as most of them rely on “trusted” third parties. Sharemind is a good 
example of this (Bogdanov et al. 2008). A clear shortcoming of this system is the constant risk of data 
disclosure if the data miners are corrupt or are compromised.  

We address these shortcomings of existing secure analytics solutions by proposing a system that leverages 
the well-established cryptographic approaches.  The Paillier’s encryption scheme that we describe in this 
paper draws upon homomorphic properties to allow arbitrary computations on fully encrypted data. 
Thus, our P2P system provides stronger privacy guarantees than simple anonymization techniques while 
not relying on any single third party for performing the secure computations.  As with most homomorphic 
encryptions, the elephant in the room is the efficiency of computations. However, in our project,we 
introduce certain design improvisations in our security protocols to make them computationally 
acceptable solutions for use in industry and academia. 

In the next section, we briefly look at some previous work on information privacy and privacy-preserving 
data analysis.  Following this, we introduce the two-party protocols which we have designed for various 
mathematical and statistical operations. Next, we present some preliminary evaluation results and 
conclude with a brief discussion on the research plan ahead. 
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Background 

Individual’s Information Privacy Debate  

Information privacy has been an active area of interest among Information Systems researchers and 
practitioners. We draw heavily from two meta-analyses by Bélanger and Crossler (2011) and Smith et al. 
(2011) to discuss and guide our review of the current discourse in this popular domain. In their analysis, 
Smith et al. note that most of the previous research in information privacy spanning Economics, 
Marketing, Law, Philosophy and Information Systems disciplines have attempted to answer one of the 
following three questions about privacy: (i) What is (and is not) privacy and how is it different from the 
notion of security?  (ii) What is the relationship between privacy and other related constructs? (iii) To 
what extent does context matter in the relationship between privacy and other constructs? (i.e. how 
generalizable are privacy related findings across industries and environments?).  Several studies have 
attempted to discuss the first from philosophical, psychological, sociological and legal perspectives, with 
limited consensus (Solove 2006; Westin 1968).  This has led to a stark increase in several competing 
theoretical frameworks, with often conflicting empirical evidence (Bélanger and Crossler 2011; Siponen 
2005).  At the heart of these discussions on information privacy lies an ongoing debate between the idea 
of privacy as a general right (Warren and Brandeis 1890; Rosen 2012; Bennet 2012) and as a commodity 
(Campbell and Carlson 2002; Davies 1997; Laudon 1996).   

In addition, a related stream of literature illustrates the idea of a privacy calculus by assuming that 
individuals face a tradeoff between the costs and benefits of privacy disclosure, and that this tradeoff is 
salient in guiding the user’s behavior in privacy decisions (Klopfer and Rubenstein 1977; Laufer and Wolfe 
1977; Posner 1981; Stone and Stone 1990; Chellappa and Sin 2005; Hui et al. 2006; Xu et al. 2009). In 
other words, an individual's decision to reveal personal information depends on the outcome of a rational 
cost-benefit analysis of disclosing this information (Dinev et al. 2006; Krasnova and Veltri 2010). More 
recent studies have pointed out that while higher privacy is clearly desired by end-users (Goldfarb and 
Tucker 2012), it might reduce the quality of services provided to them e.g. poor targeting of online ads, 
and thus adversely affect their preferences towards the service (Goldfarb and Tucker 2011). However, this 
reduction might be countered by an increase in the willingness of the users to use the service, due to the 
added privacy guarantees (Tucker 2014). Evidently, researchers have proposed certain information-
theoretic frameworks to better quantify these risks and benefits of data disclosure (Sankar et al. 2013; 
Brickell and Shmatikov 2008; Li and Li 2009; Rastogi et al. 2007).  

Privacy-preserving Analytics 

Existing approaches to preserving security and privacy of data involve use of asymmetric key encryption 
algorithms and the partitioning of cloud storage into unsecure or “unsafe” zones, which are essentially 
databases containing unencrypted data and “safe” zones, which are storage locations deemed to be secure 
to external breaches (Yu and Liu 2007). Most data analysis happens by first transporting encrypted data 
from the unsafe to the safe zones and then decrypting it before the analysis starts. However, the efficacy of 
this approach depends on the safety of data in “safe” zones. Recent reports suggest that these might also 
be vulnerable to external threats (Wilson and Ateniese 2014; Purewal 2014).  

Another approach originating from the statistical sciences looks into understanding how best to perform 
analysis without compromising security and privacy (Duncan et al. 2011), through data masking (Duncan 
and Stokes 2009) or data-noising strategies. This approach reduces the problem to that of extracting 
usable information from noisy data (Chen et al. 2009; Duncan and Stokes 2009). While this approach is 
fairly robust to standard security attacks like the man-in-middle and SQL injection, the accuracy of the 
analysis result often suffers as a function of the amount of noise introduced in the initial data (Agrawal 
and Srikant 2000). Moreover, repeated observations of the encrypted data might also reveal insights 
about the usage pattern and result in possible de-anonymization of the data. In rare cases, such usage 
patterns can be traced back to unique individuals.  A number of more recent studies have also looked at 
secure single- and multi-party computation techniques, similar to the one described in this study, but lack 
any performance benchmarks on real-world data (Du et al. 2004; Chaudhuri and Monteleoni 2008; 
Zhang et al. 2012) 
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In the current study, we address the limitations of the above approaches by using a class of homomorphic 
encryption algorithms, specifically the Paillier’s Cryptosystem (Paillier 1999). As introduced earlier, 
homomorphic encryption is a form of asymmetric-key data encryption which permits certain types of 
computations to be carried out on encrypted data to generate an encrypted result which, when decrypted, 
gives the same result as the one obtained by performing the computation on unencrypted data (Rivest et 
al. 1978; Gentry 2009).  The intuition behind this is that structure-preserving transformations (i.e. 
encryption) of the data would behave similar to the actual data, with certain permitted mathematical 
operations (e.g. additions, multiplications etc.). This avoids the need to decrypt data before performing 
any data analysis. 

Secure Two-Party Protocols 

Our method builds upon Hall et al.’s (2011) initial proposed framework which used Paillier’s 
homomorphic encryption (Paillier 1999). The concept behind these protocols hinges on the basic idea of a 
private data “share.” Consider the model specification for a linear regression model: 

                  (1) 

In the model above,   represents design matrix and   represents response matrix. Since we are 
performing analysis on data from multiple parties, each party would provide several rows or columns of 
data. The complete dataset, however, would not be known to any party at any point in time. Assume there 
are   parties and the design matrix of party   is represented by    and the response matrix by   , then 
             and             . Here we call    and    shares from each party. If the sum 
of two numbers  and   is  , we can also call   and   shares of  . We extend this idea of distributed shares 
to a secret share scheme as illustrated later in this paper, wherein the intermediate results for any 
statistical analysis would not be stored with any one party. Instead, these results would be split into secret 
shares and stored with multiple parties, thereby protecting the system from any data leakage. Next, we 
describe the basic properties of Paillier’s encryption scheme which we leverage in our system. 

Paillier’s Cryptosystem 

We summarize the homomorphic properties of the Paillier's cryptosystem below (Paillier 1999; Hall et al.  
2011). Variables  ,   and    represent integers from the set               and      represents the 
encrypted value of  , where   is the public key, then the cryptosystem has the following properties: 

                                   (2) 

                              (3) 

Since the above cryptosystem can only encrypt integers in the set             , we map the integers to 
real numbers for application in our study. 

               {
             

 

 

        
 

 

        (4) 

In this method,   is the public key and   is a constant which determines the precision of the fractional 

representation. Further,  
 

  
 and 

 

  
 are the smallest and largest number represented using this method. 

Two-Party Protocols for Mathematical Operations 

To compute the secure protocols for linear and logistic regression models we first need secure sub-
protocols for the intermediate mathematical operations including addition, multiplication and 
multiplicative inverse. Past studies have implemented secure protocols for matrix addition, multiplication 
and inverse (Karr et al. 2005; Hall et al. 2011).However, since we intend to implement protocols for 
logistic models, we extend the design to support new sub-protocols for operations including sum-of-
products and exponentiation. We also note that the previous techniques to compute multiplicative inverse 
using Schur-Newton approaches (Guo and Higham 2006) are practically inefficient with large data.  As a 
result, we design and implement a new protocol for performing multiplicative inverse, which is 
computationally more efficient, given the networking cost. In the following subsection, we highlight the 
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protocols for these new contributions viz. secure protocol for sum of products, secure protocol for 
exponentiation and an improved secure protocol for multiplicative inverse.  

Secure Two-Party Protocol for Computing Sum of Products 

Past research have provided protocols for computing simple products of integers, where each party knows 
one of two numbers,   and   , and the desired result is to compute   *  .  We extend this simple system 
to also perform sum of products. For instance, assume         and        , where    and    are 
shares from party one and     and    are shares from party two. If we need to compute the value of     
as is the requirement with some non-linear models we propose a protocol to do so.  It is important to 
emphasize at this point that the outputs from these mathematical protocols are essentially intermediate 
results for the statistical estimations we illustrate later. Thus, these intermediate results are not stored “as 
is” with any one party, but instead, stored as secret data shares which when combined produce the 
intermediate result. These data shares, denoted by    and    in Fig 1 below, have no informative property 
by themselves and thus offer no opportunity for data leakage. 

Input: Party one has the private key to an instance of Paillier's encryption scheme, and shares    and 
  . Party two knows the corresponding public key n, and shares   and   .        ,        . 
Step 1 Party one computes      locally and sends the encrypted values of     ,    and    to party 
two. 
Step 2 Party two computes      locally. Then, party two applies the homomorphic property (3) of 
Paillier's cryptosystem to compute the encrypted value of                      . Thus,   is 
the product of    and   . 
Step 3 Party one and party two apply the standard two-party protocol for computing simple products 
(Hall et al. 2011) to compute the shares of  , that is    and   . 
Output: Party one outputs share    and party two outputs share   such that             
               

Figure 1.  Secure Two-Party Protocol for Computing Sum of Products 

Secure Two-Party Protocol for Computing Exponentiation 

In this section, we use the homomorphic properties of the Paillier’s encryption system to compute 
exponential functions when the shares are known.  This will be a necessary operation for logistic 
regression as we demonstrate later in the paper. This protocol is based on the property of the 

exponentiation function,          , so each party can compute    or    locally and then apply the 

standard two-party protocol (Hall et al. 2011) for computing products to generate the shares of     . For 
example, if we want to raise a number m to the power of              , when m is known to both 
parties and    and    are shares of the exponent, we can use the protocol in Fig. 2 below to compute the 
shares of       . 

Input: Party one has the private key to an instance of Paillier's encryption scheme, and share   , 
party two knows the corresponding public key n, and share   . Also,               . 
Step 1 Party one uses the real number mapping method to compute the real numbers that   and m 
are mapped to, which are represented by      and      respectively. Then, party one computes 

         , and uses the real number mapping method to map its result to   . Then, the encrypted 
value of    is sent to party two. 

Step 2 Party two computes           and maps the result to   . Party two applies the homomorphic 
property (3) of Paillier’s cryptosystem to compute          .  
Step 3 The two parties now apply the standard two-party protocol for computing simple products to  
generate shares of the product of   and   . 
Output: Party one gets output    and party two gets output    such that             . 

Figure 2.  Secure Two-Party Protocol for Computing Exponentiation 
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Improved Two-Party Protocol for Computing Multiplicative Inverse 

Inverting a number is a particularly important mathematical operation since it forms a key part of most 
statistical estimator functions, including linear and logistic regressions. Hall et al. (2011) suggest using the 
Schur-Newton method (Guo and Higham 2006) to compute the inverse of a number. However, this 
method is iteration-intensive and hinges on strong restrictions on the stopping criteria to achieve 
convergence. While this is acceptable for Hall et al. who use experimental simulations to demonstrate 
their protocols, it entails significant I/O delays for us since our distributed system is deployed on physical 
servers to emulate a real world P2P scenario. To resolve this concern, we develop a more I/O efficient 
protocol for inverting a number or a matrix. Assume that party one has the private key and party two has 
the public key, and that party one knows a number    and party two knows a number    such that 

       .  To compute 
 

 
, the parties use the protocol in Fig. 3 to compute shares of the inverse of a 

number. 

 

Input: Party one has the private key and party two has the public key, and that party one knows a 
number    and party two knows a number    such that        .   
Step 1 Party one sends the encrypted value of    to party two. 
Step 2 Party two applies the homomorphic property (2) of Paillier's cryptosystem to compute the 
encrypted value of        . Then party two generates a random number   and applies the 
homomorphic property of Paillier's cryptosystem to compute the encrypted value of    , because the 
fixed point number mapping method will result in a stray factor  .  
Step 3 Then, party two may take the encrypted value of     as an input of the protocol shown in Fig 1. 
After applying the two-party protocol for computing products, party one and party two would get shares 
   and     respectively, and            . Party two can now send    to party one. 
Step 4 Party one computes the sum of    and   , which is the value of   .Then party one can apply the 
real number mapping method to get the real value of   , compute its multiplicative inverse, and then 

map the result to a integer representation of 
 

  
. 

Step 5 Party one and party two now apply the standard two-party protocol for computing simple 

products to compute the shares of the product of 
 

  
 and  . 

Output: Parties one and two get a fresh pair of data shares    and    such that,       
 

  
   

 

 
. 

Figure 3.  Improved Two-Party Protocol for Computing Multiplicative Inverse 

 

Secure Two-Party Protocols for Statistical Models 

Using our extended framework, we implement secure-MLE (s-MLE), a secure protocol for logistic 
regression using maximum likelihood estimator and numerical optimization procedures. The binomial 
logistic model specification is as follows: 

   (
  

    
)  ∑      

 
                    (5) 

In this model, we assume there are N records and K independent variables in the dataset. X is the design 
matrix, which is composed of N rows and K+1 columns. The elements in the first column of X are all 1. 
    is an element of X on row   and in column  .   is a column vector with K+1 rows that represents the 
coefficient vector. Column vector   also has N rows, with each element    representing the probability of 
the dependent variable taking a value 1, given the observation on the      row. Our goal here is to estimate 
  in the above specification (5).The parameters in  can be estimated with maximum likelihood estimation 
using the Newton Raphson (NR) optimizer, which helps to find the parameters for which the probability 
of the observed data is the greatest (Czepiel 2002). Although there are better methods than the Newton 
Raphson approach that would considerably lower the I/O load on our system, but for illustrative 
purposes, we retain the NR approach for the current paper.  The matrix formulation of the NR iterative 



 Privacy-preserving Distributed Analytics  

 Thirty Sixth International Conference on Information Systems, Fort Worth 2015 7 

function is as shown below where   and   are the design and response matrices respectively.   is a square 
matrix of order N, with          on the diagonal and zero elsewhere. 

        [    ]                          (6) 

Similarly,    can also be expressed in the format of matrix operations as follows: 

   (
   

     
)            (7) 

Using our sub-protocols, the secure protocol for logistic regression can be designed as shown in Figure 4. 

Step 1: We apply the extended two-party protocol for computing products (Fig. 1) to compute shares 

of   . This gives us the shares of   , which is the    element of column vector   . Next, we use the 
exponentiation protocol (Fig. 2) to compute shares of     , and the improved multiplicative inverse 

protocol (Fig. 3) to compute shares of 
 

     
.  Now, with shares of     and shares of 

 

     
 as inputs to the 

extended two-party protocol for computing products (Fig. 1), each party gets a share of    (
   

     
). 

Next, we construct matrix shares of   since    are elements of this column vector . 
Step 2: Construct shares of   with          on the diagonal and 0 elsewhere. Since,          
        , the two parties apply the extended two-party protocol for computing products (Fig. 1) to 
compute shares of     . Next, they utilize the homomorphic property (2) of Paillier’s cryptosystem to 
compute the shares of        . 
Step 3: Each party applies the protocol from Fig. 1 to compute shares of    , since shares of   and   
are known to each party. In the same way, shares of      are computed. 
Step 4: The two parties now apply the protocol for matrix inversion (Fig. 3) to compute shares of 
[    ]  . 
Step 5: The two parties now use Paillier’s homomorphic property to compute shares of    . Next, 
the shares of     and shares of     are used as inputs to the protocol for computing products (Fig. 1) 
to compute shares of         . 
Step 6: Shares of  [    ]   and           are now used as inputs to the protocol for computing 
products (Fig. 1) to compute shares of [    ]          . 
Step 7: For the first round of the NR iteration, shares of    are initialized to a zero vector. Each 
party’s shares of     and [    ]           are added up locally to get a share of     . Next, the two 
parties check the difference between      and   for convergence. If not, they check whether   is 
tending to infinity, in which case, they initialize   with a new value and start from Step 1. Otherwise, 
both parties preserve the value of   and continue from Step 1. 

Figure 4.  Secure Two-Party Protocol for Estimating a Logistic Regression Model using s-MLE 

Runtime Evaluation 

We are currently evaluating the suitability of our design artifacts (Hevner and Chatterjee 2010; Hevner et 
al. 2004) by analysing the runtime performance and scalability of our system to understand the protocol 
design limits and the effect of encryption delays. We present here some preliminary benchmark data from 
our evaluation tests. Table1 shows the runtime complexities of each protocol implemented in our system 
when performing analytics on a matrix   of   rows and   columns and matrix    of   rows and   column. 
Figure 5 shows the performance of our system with increasing length of the public key, which is a major 
contributor to encryption delays. The length of public key determines the “hardness” of our encryption 
scheme as well the range of numbers that our real number mapping method could represent. In our real 
number mapping method,   in formula (4) determines the precision of our number representation. In 
this implementation,       is used, so the smallest positive number we could represent is     , which is 

precise enough in most cases. According to (4),  
 

  
 and 

 

  
 are the smallest and largest number that 

could be represented. Thus, using a 512-bit public key, the range of numbers we could potentially use is 
approximately between      and     . Therefore, unless the user wants to perform analytics on extremely 
large numbers or the user has an extremely high requirement on the precision of the analytics result, a 
512-bit public key should be acceptable. 
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Conclusion and Future Work 

In this paper we illustrate our initial efforts at proposing a new system for performing analytics on 
sensitive data that is held by separate parties e.g. separate organizations or separate research groups. 
While the benefits of performing analytics on combined datasets are well understood in academia and 
industry, there is no satisfactory method that allows us to do so in a secure and privacy-preserving 
fashion. As a result, researchers and practitioners in IS and related disciplines constantly balance a 
privacy-utility tradeoff when performing analytics on user data. We argue that contemporary techniques 
to deal with this problem compromise on either accuracy or privacy. While there have been some early 
inroads into using homomorphic techniques to solve this problem (Hall et al. 2011), considerable effort is 
still required to handle the communication and practical bottlenecks. The utility of existing approaches 
therefore remains limited due to the lack of a workable system design, absence of real world 
benchmarking data and a lack of focus on non-linear models that are most popular in information 
systems, computer science and statistics. Our study aims to address these gaps.  The current paper 
highlights that our early attempts at doing so have been fruitful. While our system provides significant 
improvements over existing techniques which use anonymization and third-party privacy tools, we also 
extend past work on homomorphic encryptions by designing newer protocols and developing a fully-
operational and web-based analytics system. Moreover, our system makes no apriori assumptions on the 
trustworthiness of the parties, their locations or the specific nature of the datasets. 

As next steps, we are looking to extend our research on two fronts. First, we are running performance 
evaluation tests to identify computationally costly points with our existing secure protocols. For instance, 
knowing the delay-intensive operations would help us to not just make efficient protocols but to also make 
pointed recommendations to other security researchers on how to design computationally efficient 
protocols for big data. For this purpose, we are also developing parallelized versions of the secure 
protocols mentioned in this study that could be deployed on Graphics Processing Units (GPUs) for fast 
execution. On completion of this parallelization task, we would be able to provide both time-efficient as 
well as secure protocols for statistical computations.  Second, we plan to continue designing protocols for 
diverse statistical models that provide increasing benefits to researchers and practitioners alike. In the 
present paper, for instance, we have showcased our design and implementation for logistic regression, a 
popular statistical modeling technique. Further work could look into other useful models like panel data 
models, duration models e.g. proportional hazard models, and clustering algorithms. This can potentially 
benefit both academic researchers as well as analytics professionals.  

                                                             

1Server configuration for all experiment devices: Processor: i7-2630QM 2GHz, RAM: 8 GB 

Table 1. Runtime Complexity 

Protocol Big-O 

Encryption/Decryption       

           

          

              

                

                    

               

 

Figure 5.  Regression delays (sec) with varying public key sizes
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