
 Learning from the Offline Trace 
  

 Thirty Sixth International Conference on Information Systems, Fort Worth 2015 1 

Learning from the Offline Trace: A Case 
Study of the Taxi Industry 

 

Completed Research Paper 

 

Yingjie Zhang 
Carnegie Mellon University 

5000 Forbes Ave, Pittsburgh, PA 
yingjie@cmu.edu 

 

Beibei Li 
Carnegie Mellon University 

5000 Forbes Ave, Pittsburgh, PA 
beibeili@andrew.cmu.edu 

 
Ramayya Krishnan 

Carnegie Mellon University 
5000 Forbes Ave, Pittsburgh, PA 

rk2x@cmu.edu 

Siyuan Liu 
Pennsylvania State University 

University Park, PA 
sxl68@psu.edu  

Abstract 

The growth of mobile and sensor technologies today leads to the digitization of 
individual's offline behavior. Such large-scale and fine-grained information can help 
better understand individual decision making. We instantiate our research by analyzing 
the digitized taxi trails to study the impact of information on driver behavior and 
economic outcome. We propose homogeneous and heterogeneous Bayesian learning 
models and validate them using a unique data set containing complete information on 
10.6M trip records from 11,196 taxis in a large Asian city in 2009. We find strong 
heterogeneity in individual learning behavior and driving decisions, which significantly 
associate with individual economic outcome. Interestingly, our policy simulations 
indicate information that is noisy at individual level can become most valuable after 
being aggregated across various spatial and temporal dimensions. Overall, our work 
demonstrates the potential of analyzing the digitized offline behavioral trace to infer 
demand as well as to improve individual decision efficiency. 
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Introduction 
The recent development of pervasive, interconnected, and smart technologies allows us to digitize our 
human behavior and interactions at large scale and granular level. Such new sources of information help 
us to form a holistic view of individual decision making process and to unravel the complexity of human 
behavior patterns. For example, in the past decade our opinions have been traced as digital word-of-
mouth and online user-generate content (UGC). Previous studies have shown significant economic value 
of such digitized opinion information (e.g., Chevalier and Mayzlin 2006, Ghose et al (2012)). Meanwhile, 
our online activities such as search and click have been digitized as click-streams data, and our purchase 
behavior has been traced as digital conversions on search engines like Google, Amazon or Travelocity. 
Such digitized consumer search-click-purchase information is able to help businesses today infer 
consumer preferences and choice decisions (e.g., Ghose and Yang 2009; Agarwal et al. 2011; Abhishek et 
al. 2011; Ghose et al. 2014). Moreover, our social interactions with friends and peers can be traced as 
digital interactions on online social networks. Previous studies have demonstrated the potential of 
analyzing digitized social interactions to understand social influence and information diffusion (e.g., Aral 
and Walker 2011, 2012).  

However, existing literature tends to focus mainly on the digitization of user online behavior. Such studies 
have attracted large attention, one reason of which is that online behavior can be easily traced through 
online cookies, searching logs and other digital sources. However, beyond the online behavior, user offline 
behavior is in fact more informative to reveal individual preferences because most people spend a 
significant larger amount of time in the offline physical world than in the online virtual world. Moreover, 
offline behavior involves much higher opportunity cost due to the more complicated social contexts that 
the users are exposed to. While online users can simply click the mouse to search or choose products, 
offline users may invest much more time, energy and even pecuniary cost to gain useful information. 
Thus, offline behavioral traces can provide us with a richer picture about users’ preferences towards 
various social characteristics and deeper insights about their behavior patterns. More importantly, with 
the increasing pervasiveness of mobile and sensor technologies, as well as the recent emergence of 
Internet-of-Things (IoT), digitalization of large-scale and fine-grained individual offline behavior becomes 
feasible. However, it is challenging to track, analyze and understand complete detailed information about 
individuals’ physical behavioral traces (e.g., the offline social and contextual environments users are 
exposed to; the details of their movements together with temporal and spatial stamps). In this study, we 
are interested in exploring this emerging domain of information to better understand human behavior 
and decision making by learning from the digital offline traces.  

We instantiate our analytics by looking into the real-time taxi trails in urban city environments. Such 
digital trails allow us to see precisely where, how, and at what time different parts of our cities become 
stitched together as hubs of mobility. Besides, we also observe the passenger pick-ups and drop-offs, and 
the taxi income associated with each trail. Taxi drivers’ decision-making behavior directly links to their 
economic outcome and real-time traffic conditions. We aim to extract such knowledge by leveraging 
information on their physical trace to understand the “micro-level” behavior and the value of information 
that would otherwise be unavailable to track in the conventional organizational setting. Our study shows 
the potential of analyzing offline trace information to facilitate individual decision making, as well as to 
help policy makers identify how to reduce the social and environmental costs in the context of urban and 
transportation systems.  

More specifically, we are interested in recovering the overall city taxi demand by analyzing individual 
driver-level behavior trace. We aim to examine how taxi drivers learn from different types of social and 
contextual information at different scales by answering the following three research questions: 

• How do taxi drivers infer city demand based on the different information that they are exposed to at 
different locations at different time periods? 

• How do different drivers digest such information differently and how is it associated with their 
economic outcome? 

• How can we leverage the knowledge we learn from the offline trace to improve decision making for 
both individual users and policy makers? 

To address these questions, we propose and estimate a structural model of heterogeneous learning at 
individual driver level. We validate our study using a combination of three large, unique data sets 
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containing 10.6 million individual trip records from 11,196 taxi drivers in a large Asian city in September 
2009: (1) taxi’s GPS tracking data (e.g., real-time geographic coordinates and time stamps at minute 
level); (2) taxi’s trip records data (e.g., trip distance, geographic coordinates of pick-up and drop-off 
location,  and paid amount for the trip); (3) static spatial features data (e.g., density of points of interest). 
The data cover complete information on taxi drivers’ GPS trajectory, from which we are able to extract 
their decision-making behavior and analyze the insights of the behavior pattern.  

Our empirical analyses demonstrate some interesting findings: First, the results indicate strong 
heterogeneity in city demand across both spatial and temporal dimensions. Second, different information 
signals from various social contexts have different values for the drivers in learning the city demand. On 
average, the simple signal (i.e., pick-up signal) is more valuable to individual drivers while the complex 
signals (i.e., drop-off and drive-by signal) are rather noisy. Third, our findings indicate that there is 
significant heterogeneity across taxi drivers with regard to their learning behavior. The degree of 
heterogeneity varies among the three signals. Interestingly, we find that straightforward information like 
pick-up signal is not so valuable for drivers to gain high income. Instead, drivers with higher income and 
from larger companies benefit largely from the ability of learning from more complex information (i.e., 
drop-off signal). Finally, our policy simulation results show that by aggregating the information extracted 
from the offline behavioral trace at large scale, we can significantly improve individual drivers’ decision 
making efficiency. Interestingly, we find that information that is noisy at individual level can become most 
valuable after we aggregate it across various spatial and temporal dimensions. We also find the marginal 
value of aggregating large scale information varies among different types of information. 

The key contributions in this paper can be summarized as follows: (1) Our study demonstrates the value of 
extracting behavior patterns from large-scale, fine-grained offline trace data to understand and improve 
human decision making. Especially, by collecting and analyzing the new source of offline trace data, we 
are able to leverage information that is often unavailable to individuals or organizations in the 
conventional setting. (2) We develop a Bayesian learning framework to examine drivers’ learning process 
for city demand based on various information they are exposed to. In this model, we distinguish three 
different information signals extracted from the GPS trace. One methodology innovation of this 
framework is that we model those three information signals differently in accordance with their contexts. 
In other words, the learning process is contingent on each driver’s own experience and accumulated 
knowledge to interpret the signals in different ways. This model allows us to jointly identify the 
heterogeneity in individual learning ability as well as in the value of different types of information. (3) To 
the best of our knowledge, this is the first research studying taxi drivers’ learning behavior based on utility 
theory from economics. Such an approach allows us to build linkage between individual behavior and 
economic outcome from a more explanatory perspective. We can provide insights on how and why drivers 
behave in certain ways, and how they can be explained by observed and unobserved individual 
characteristics. (4) On a broader note, this work demonstrates the potential of combining large-scale 
temporal and spatial data mining together with econometric structural models and Bayesian statistics to 
understand human behavior. With the growing ubiquity of mobile and sensor technologies at individual 
level, more and more human behavioral information is digitalized and associated with locations and time 
stamps. Our study can pave a path for future studies to build on and our methodologies can be generalized 
to other offline settings beyond the taxi industry.  

The remainder of this paper is organized as follows. Section 2 briefly discusses previous studies related to 
this paper. Section 3 describes our unique data sets and provides with preliminary model-free evidence. 
Section 4 develops a heterogeneous Bayesian learning model to capture the dynamics of drivers’ decision-
making behavior. In Section 5 and 6, we present our estimation methods and empirical results. Based on 
the estimates of our structural model, we ran three policy simulation experiments and the results are 
shown in Section 7. Section 8 concludes this paper with discussions of the contributions of this research, 
as well as an outline of directions for future studies. 

Literature Review 
Our study draws from the following two major streams of literature: 
First, our study is related to literature on the computational urban analytics. In particular, the availability 
of real-time GPS tracing data have attracted many researchers from computer science or transportation 
fields on offline drivers’ behavior analytics using machine learning techniques. Existing studies are mainly 
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divided into two trends: exploratory and predictive analyses. The first category of studies try to explore 
behavior patterns of taxi drivers (e.g., Camerer et al. 1997; Liu et al. 2010a; Liu et al. 2010b; Liu et al. 
2014a; Liao et al. 2006). For example, Camerer et al. (1997) analyzed the relationship between the hours 
supplied and the changes in taxi drivers’ wages. Besides, Liu et al. (2010a) did a comprehensive study with 
large-scale trace data on several behaviors, including route choice behavior and spatial selection behavior. 
And Liu et al. (2010b) proposed a new approach called mobility-based clustering to identify hot spots of 
moving vehicles in an urban area. The second category of studies focus on predictive analysis based on the 
historical behavior (Liu et al. 2014b; Yuan et al. 2011; Hunter et al. 2009). Specifically, Liu et al. (2014b) 
used a learning framework by combining own experience with socialized information to study how drivers 
stay or cruise when seeking next passengers. The social information came from the calls between two 
drivers and closeness measures between drivers. But how drivers make decisions based on the learned 
information remained unanswered. Yuan et al. (2011) proposed a system for computing shortest-time 
driving routes using traffic information and driver behavior. They only used individual behavior to infer 
the distribution of spatial and temporal travel time without exploring the insights of driver behavior. Most 
previous studies focused on how offline users behave while it remains to be explored about why they 
behave in certain way and why they behave differently. To answer these questions, we need to look deeply 
into the incentives that drive users’ behavior. In this paper, we aim to bridge such gap. 
Second, our paper is also related to literature on consumer Bayesian learning models, which have been 
widely applied to analyze consumers’ choices under uncertainty in the fields of marketing, IS and 
economics. One of the most influential papers is Erdem and Keane (1996), which proposed a structural 
model to estimate learning signals from both purchase experience and advertisement. Since Erdem and 
Keane’s paper, Bayesian learning models have been widely used in various fields, including health 
technology adoption (Hao et al. 2014), crowdsourcing (Huang et al. 2014), wireless service adoption 
(Iyengar et al. 2007), etc. Within this general framework, there are different types of learning models 
(Ching et al. 2013) depending on the assumptions about the consumer behavior: (1) Myopic versus 
forward-looking manners. “Myopic” means that the consumers choose the product with the highest 
expected current utility. Some recent studies assume people behave in a myopic manner without any 
active search (Huang et al. 2014; Narayanan and Manchanda 2009). Others make a further step by 
assuming individuals are “forward-looking” and make choices based on the total expected utility over a 
time horizon including both the current period and the future (Erdem and Keane 1996; Ackerberg 2003). 
(2) Homogeneity versus heterogeneity. Some papers assume that individuals learn in the same way and 
have the same preferences (Erdem and Keane 1996; Hao et al. 2014), while others allow individuals to 
have heterogeneous preferences and to learn differently even when receiving the same signals (Huang et 
al. 2014; Narayanan and Manchanada 2009). 

Data 
We instantiate our research by focusing on the taxi tails. Our empirical study is validated using a 
combination of three large, unique data sets containing 10.6 million individual trip records from 11,196 
taxi drivers in a large Asian city in September 2009. All the data are company-provided. This section 
describes our raw data, and the detailed process about how we transform the raw data and code our 
model variables. 

Data Description 
The empirical analysis is conducted on a combination of three large data sets. First, the taxi behavior trace 
data contain two real-time data sets: 1) Taxi driver GPS coordinates tracking data and 2) Taxi trip records 
data. In addition, we supplement these two data sets with the static geographic location data. Our full data 
set covers all existing companies in the focal city which allows us to infer the overall city demand from the 
individual taxi trace. This is one advantage of our cross-company data because no single company data 
can observe all the information signals each driver receives to recover the true spatial and temporal 
demand. 

Taxi driver GPS coordinates tracking data: Each taxi GPS tracking record includes taxi ID, real-time 
geographic coordinate information (i.e., longitude and latitude), recorded time, taxi company ID and taxi 
type ID. In this city, due to policy reasons, taxis are divided into three types: urban taxis that can only 
drive within downtown area; suburban taxis that can only drive outside downtown area; and other taxis 
that can drive in the whole city. The GPS tracking data were recorded approximately every 50 seconds. 
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Taxi trip records data: Each trip record includes Taxi ID, geographic and temporal information of starting 
and ending points, trip amount (i.e., total money paid by the passengers) and total distance, taxi company 
ID and taxi type ID. Combining this data with the GPS tracking data, we have a total of 10.6 million trip 
records from 11,196 taxi drivers in September 2009.  

Static geographic location data: This data set consists of two parts: POIs (point of interest) and road 
intersections. Each POI has its geographic location and name, on which POI can be classified into 
different categories (we will discuss in the next subsection); each road intersection has its geographic 
coordinates. 
Variable Definition 
This subsection discusses how we code important variables based on the data sets for our model.   
(a)Division of City Plane 

We use Voronoi diagrams method (Aurenhammer 1991) to partition the city plane into grids based on the 
road intersections. Thus, for each road intersection, there is a corresponding location grid closer to that 
intersection than to any others (Okabe et al. 2009). Then the number of road intersections is exactly the 
same as the number of location grids in the data set. The drivers are assumed to make decisions and 
update knowledge of uncertainty at the level of a location grid unit. The road intersection may distribute 
sparsely in some rural areas. To keep sizes of location grids similar, in this study we focus only on the 
downtown area of the city (which covers the majority of the taxi demand). This step leads to a total 
number of 87 road intersections. 

(b)Extraction of Location Type, Time-of-Day, and Static Location Features 

To define the choice set in this study, we classify the above 87 location grids into six location types 
according to POIs within each location grid. First, we classify all the 25,317 POIs into different location 
types based on the keywords in the POI names using supervised learning method 1. Our algorithm 
identifies six major types of locations: shopping area; entertainment area; office area; residence area; 
transportation hub and others2. However, often times a location grid contains a mixture set of different 
types of POIs. For example, a location grid can have a large number of both shopping and entertainment 
POIs. Therefore, to capture the distribution of different types of POIs within the same location grid, we 
assign each location grid with a weight vector of the corresponding six location types. The weights are the 
corresponding probability densities of certain types of POIs within the location grid.  

Moreover, to control for the temporal effect, we consider four time-of-day periods for each location: 
midnight (12am-6am), morning (6am-12pm), afternoon (12pm-6pm) and evening (6pm-12am). Thus, our 
model is able to estimate demand for six types of locations and over four different time-of-day periods. 

Based on the above definitions, we extract two static features from our static geographic data set to 
control for the popularity of a location. The first feature is POI density. A point of interest (POI) is a 
specific useful or interesting location for geographic identification. This feature captures the total number 
of POIs within a location grid. The second feature is the percentage of location grids in the city that belong 
to the current location type.  This feature further captures the overall popularity of a location type. 

(c)Extraction of Information Signals 

One advantage of our data set is that based on all the taxi trace information we are able to recover the 
offline demand signals a driver is exposed to while driving. Such offline information allows us to better 
understand the overall decision process of a driver at a much finer grain (i.e., minute or second level). 
Note that this granular offline information was usually unobserved in the conventional setting for decision 
analytics. In particular, we focus on three types of demand signals: pick-up, drop-off, and drive-by. The 
assumption is that when a driver observes any of these three activities from other peer taxi drivers in the 
same location at the same time, he/she can gain some additional (but potentially noisy) knowledge about 

                                                             
1 We also tried unsupervised learning in this case to reduce the manual effects in constructing the training data based on domain 
knowledge. Some examples of the unsupervised learning include: topic modeling (Blei et al. 2003), DBSCAN clustering (Ester et al. 
1996). However, the results were not satisfying because the names are short and diverse.  
2 Some POIs contain vague message in their name and hard to be labeled (e.g., parking lots, gas stations). Those POIs have a 
common feature that they can be in any areas. Thus, we divide them into a separate type called “Others”). 
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the demand in the local area during that time period. We aim to extract this information from our data 
and to model the value of these offline information signals in drivers’ decision making process.  

More specifically, we extract pick -up and drop-off signals from the taxi trip records data using the 
starting and ending time and locations. We extract drive-by signal from both taxi trip records data set and 
taxi GPS tracking data set. Specifically, first, we extract a driver’s trajectory from the GPS tracking data to 
summarize what location grids the driver drives by during any 10-minute bins. Then, according to the 
definition of signals, a driver would only receive a signal if he/she passes a given location where the 
number of other drivers’ corresponding activities (pick-up, drop-off or drive-by) in that location is 
nonzero in the same time period (i.e., within the same 10-minute bin). We provide more details on how 
we define and incorporate these three signals into modeling drivers’ decision process in the next section3.  
(d)Extraction of Choice Decisions 

We assume that taxi drivers make driving decisions if and only if the taxi is empty. In other words, when a 
taxi is empty, the driver needs to choose between staying and leaving the current grid to look for potential 
passengers. We extract drivers’ decisions by combining the two real-time data sets. First, we need to 
detect when the taxi is empty. If the GPS trace show that a driver is driving but the corresponding time is 
not included in any trip record, we define that the taxi is empty at the moment and the driver is seeking 
passengers. Then, to infer the driver’s decision we look into the GPS trace data. If within a given 10-
minute time slot, the driver only drives within the same location grid, we define the decision as 𝑆𝑆𝑆𝑆; 
otherwise, it is 𝐿𝐿𝑆𝐿𝐿.  
(e)Extraction of Individual Demographics 

In the heterogeneous model, we assume that individual-specific parameters are a function of individual 
demographic features. In this study, we include two different features: Company indicator (i.e., whether 
the company is larger or not) and income level. Our data covers 109 taxi companies in the focal city. Some 
companies have significant more taxis than the others. Thus, we divide the companies into two categories: 
large companies (with more than 200 taxis) and small companies. The second feature is drivers’ hourly 
income level. We use the hourly income instead of daily income to control for the length of working time 
(e.g., a high daily income may not come from efficient decision making but simply long working hours). 
Model-Free Evidence 
Before modeling the detailed decisions, we would like to explore our data to develop intuition about 
individuals’ behavior. Figure 1 shows that distributions of individual daily number of trips (Figure 1a), 
average distance per trip (Figure 1b) and average daily empty-car hours (Figure 1c). Each trip represent a 
taxi pick-up. Distance per trip is the driving distance when the taxi is full. Empty-car hours mean the time 
when the taxi is empty and the driver is seeking the next passengers. The three plots suggest that there 
exists significant heterogeneity in taxi drivers’ behavior. Figure 2 shows individual’s daily number of trips 
over time (For illustration, we present five randomly sampled drivers in the plot). On average, drivers’s 
daily number of trips increases but the scale of increasing rate is different among individuals. Generally, 
our data indicates two types of drivers: (i) experienced drivers (shown as solid lines) who behave relatively 
stable over time with only a small increase in the number of daily trips; (ii) new drivers (shown as dash 
line) who improve their performance largely over time. This plot suggests that drivers become more 
knwoledgable about the taxi demand through learning, but the rate of learning is heterogeneous among 
individual drivers. To summarize, Figure 2 shows that for each driver on average there seems to exist 
learning behavior over time. More importantly, there exists significant heterogeneity in drivers’ learning 
behavior. In the next section, we propose a heterogeneous structural model to explain what factors may 
drive these observations. 

                                                             
3 Note that in our main estimation we use 10-minute time slot as the unit of analysis for driver learning. This is why we extract all the 
information at 10-minute level here. We discuss more details on the reason behind this definition in the next section. In addition, we 
have tested other definitions of the time slot, such as 30 minutes, an hour, six hours or a day. We find the results are qualitatively 
consistent.  
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(a) Distribution of Daily Number of Trips   (b) Distribution of Average Distance per Trip    (c) Distribution of Daily Empty-Car Hours 

Figure 1 Distributions of drivers’ behavior 

 
Figure 2 Individual Daily Numbers of Trips over Time 

Model 
Following Erdem and Keane (1996), we develop a Bayesian learning framework to model how taxi drivers 
learn the city demand. Such a structural mechanism helps us explicitly model individual decision making 
process through the utility function. Besides, this model also explains how drivers’ uncertainty about the 
taxi demand is resolved via three different information signals with a Bayesian updating process. To begin 
with, we first explain individual utility function. 
Utility Function 
The value of a location for a taxi driver is its potential demand. That is, the higher value a location grid is, 
the larger probability that the driver can pick up next passenger quickly. Thus, we model the utility a 
driver gain from a location as a function of demand. However, demand is an abstract concept for drivers 
and cannot be observed fully and directly from visible factors. On the one hand, some static location 
features can partially reflect the taxi demand. For example, an area with more buildings may indicate a 
high population density, which leads to a higher taxi demand. On the other hand, the true demand may 
only be revealed through drivers’ experience because there is uncertainty beyond the observed location 
features. Therefore, we model the utility to be a combination of observed demand (as captured by the 
observed features) and unobserved demand. More formally, utility function is described as follows: 

Suppose that there are 𝐼  individual drivers in the market. Each driver 𝑖(𝑖 = 1,2, … , 𝐼) updates his/her 
knowledge of temporal and spatial demand, and then makes choice decisions among 𝐽  possible 
alternative. Each 𝑗(𝑗 = 1, … , 𝐽) represents a tuple with spatial and temporal elements: 𝑗 = (𝑙, 𝜏), where 𝑙 
denotes location grid and 𝜏 denotes time-of-day. During each time period 𝑆, the driver makes choices 
based on the overall utility of the location at the current time of day. The utility is defined as a linear 
function of the demand at each 𝑗. In general, the utility (as shown in Eq.1) is a function of the mean 
demand together with a random shock 𝜀𝑖𝑖𝑖, which captures any idiosyncratic shock during the decision 
process. We assumed 𝜀𝑖𝑖𝑖 to be i.i.d. and to follow type I extreme value distribution: 
   𝑈�𝑖𝑖𝑖  =  𝑓(𝐷𝐿𝐷𝑆𝐷𝑑𝑖𝑖𝑖) + 𝜀𝑖𝑖𝑖  
            =  𝑓�𝑂𝑂𝑂𝐿𝑂𝐿𝐿𝑑𝐷𝐿𝐷𝑆𝐷𝑑𝑖𝑖 + 𝑈𝐷𝑈𝑂𝑂𝐿𝑂𝐿𝐿𝑑𝐷𝐿𝐷𝑆𝐷𝑑𝑖𝑖𝑖� + 𝜀𝑖𝑖𝑖     
            = 𝛽𝑖𝑋𝑖  + 𝛿𝑖𝑄�𝑖𝑖𝑖  + 𝜀𝑖𝑖𝑖                                       (1) 
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As mentioned above, the demand is divided into two parts: observed ( 𝑂𝑂𝑂𝐿𝑂𝐿𝐿𝑑𝐷𝐿𝐷𝑆𝐷𝑑𝑖𝑖)  and 
unobserved (𝑈𝐷𝑈𝑂𝑂𝐿𝑂𝐿𝐿𝑑𝐷𝐿𝐷𝑆𝐷𝑑𝑖𝑖𝑖). The observed demand consists of several static spatial features of 
the neighborhood (𝑋𝑖). In this study, we consider two features as we introduced in the previous section: 
(1) POI density; (2) Percentage of location grids in the city that belong to the same location type. The 
coefficient vector 𝛽𝑖  captures drivers’ preferences towards these observed features. The unobserved 
demand is denoted as 𝑄�𝑖𝑖𝑖, which varies among individuals because different drivers perceive different 
levels of uncertainty in demand depending on the information they are exposed to. 𝛿𝑖 captures drivers’ 
preference towards the unobserved demand. The driver is assumed to make decisions based on expected 
utility value. Thus, this expected utility is: 

𝑈𝑖𝑖𝑖 = 𝐸(𝑈�𝑖𝑖𝑖)  =  𝛽𝑖𝑋𝑖  +  𝛿𝑖𝐸�𝑄�𝑖𝑖𝑖� +  𝜀𝑖𝑖𝑖          (2) 

Learning Process in Bayesian Mechanism 
To reduce the uncertainty about the true demand, the driver needs to learn through social contexts. We 
follow standard method of Bayesian learning model by assuming drivers behave in a Bayesian fashion. 
For tractability, we divide a day into 144 time slots and assume that drivers will update their knowledge of 
the unobserved demand every 10 minutes4. As we discussed in the previous section, we consider three 
different information signals that a driver is potentially exposed to in an offline setting.  
(a)Pick-up Signals 
It is intuitive that if a location has more pick-ups within a given time period, it is more likely to indicate a 
higher local demand. Thus, if a driver passes a location 𝑙 with one or more pick-ups during the given 10-
minute slot 𝑆, we assume that he/she receives a Pick-up signal at location 𝑙 and corresponding time-of-day 
𝜏 (combined to 𝑗 = (𝑙, 𝜏), and will update his/her knowledge of the unobserved demand at 𝑗. Notice that 𝜏 
is the time-of-day period that contains the given 10-minute unit of time slot for learning update. 

However, each driver may not precisely evaluate the messages from pick -up signals. For example, the 
drivers may not be able to capture all the pick-ups made by the other taxi drivers or the overall pick-ups 
may be affected by some unexpected random shocks. Thus, similar to previous studies (Erdem and Keane 
1996; Huang et al. 2014), we assume that each driver's pick-up signal (𝑃𝑖𝑃𝑃𝑆𝑖𝑖𝑖 ) follows a normal 
distribution around the true unobserved demand: 

𝑃𝑖𝑃𝑃𝑆𝑖𝑖𝑖~𝑁(𝑄𝑖 ,𝜎𝑃𝑖𝑃𝑃,𝑖
2 ),      (3) 

where 𝜎𝑃𝑖𝑃𝑃,𝑖
2  is the variance of the signal which indicates the precision (or value) of the information. 

(b)Drop-off Signals 
A previous drop-off can lead to a potential future pick-up in the same location. For example, a consumer 
may go to shopping malls at 7pm and go back home three hours later. Thus, the drop-off at 7pm may lead 
to potential future demand at 10pm. To model such more complex information, we consider the drop-off 
signal in drivers’ learning process. Specifically, suppose a driver passes a location 𝑙 where there exist one 
or more drop-offs during the given 10-minute slot 𝑆 (say its corresponding time-of-day is 𝜏0), the driver 
will update his knowledge of future demand in 𝑗,where 𝑗 = (𝑙, 𝜏) is a combination of the same location and 
a future time slot. In other words, 𝜏 = 𝜏0 + ∆, where ∆ is the time gap between the current drop-off and 
future pick-up. Similar to the pick -up signal, we also assume that each drop-off signal follows a normal 
distribution with variance 𝜎𝐷𝐷𝐷𝐷,𝑖

2  which indicates the value of the drop-off information:  
𝐷𝑂𝑈𝐷𝑆𝑖𝑖𝑖~𝑁(𝑄𝑖 ,𝜎𝐷𝐷𝐷𝐷,𝑖

2 ),      (4) 

Note that in the real world the taxi drivers may not know exactly how each current drop-off will transform 
into a future pick-up. However, we assume a driver would have some ex-ante knowledge on the possibility 
of such transformation. To model this, we use historical data to recover the empirical distribution of the 
pick-up probability conditional on a drop-off. We assume this is common knowledge for all drivers.  

(c)Drive-by Signals 
A drive-by full taxi (i.e., with passenger) in a location may not directly reflect the current location’s 
demand. However, it may give us some hints about the demand in the other locations where the taxi 
                                                             
4 Our data shows that the average driving speed is around 30km/h and the approximate circumference of a location grid is around 
4.8km. Thus, driving around an area takes around 10 minutes.  
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possibly comes from. Thus, if a driver knows where and when the full taxi that drives by may originate 
from, he/she can update his knowledge of the unobserved demand in that original location and time. 

To model this, we first recover the set of all possible starting location and time combinations (𝑗) for each 
full taxi that drives by. We apply a similar approach as described above for the drop-off signals. In 
particular, to recover the set of all possible starting points, we use the historic data to estimate the 
empirical joint distribution of the original pick-up location and time conditional on each drive-by signal. 
Hence, if at time 𝜏0 and location 𝑙0 (which gives  𝑗0 = (𝑙0, 𝜏0) a driver observes a drive-by signal, then the 
driver will update his/her knowledge of the demand in 𝑗,where 𝑗 = (𝑙, 𝜏) is a combination of the original 
pick-up location and time. In other words, 𝑙 = 𝑙0 − ∆𝑙, 𝜏 = 𝜏0 − ∆𝜏, where ∆𝑙 and ∆𝜏 represent the location 
and time gaps between the current drive-by and the original pick-up.  

Similarly, we assume this is common knowledge among all drivers. Notice that this empirical distribution 
is able to account for the potential effect from the location popularity. In other words, if a location is of 
higher popularity (e.g., a large shopping mall), it is likely to have more pick-ups, which leads to larger 
probability of being as potential starting point of the drive-bys. Again, similar to the previous two signals, 
each drive-by signal follows a normal distribution with variance 𝜎𝐷𝐷𝑖𝐷𝐷,𝑖

2  which indicates the value of the 
drive-by information: 

𝐷𝑂𝑖𝐿𝐿𝑆𝑖𝑖𝑖~𝑁(𝑄𝑖 ,𝜎𝐷𝐷𝑖𝐷𝐷,𝑖
2 ),     (5) 

(d)Updating Procedure 

At 𝑆0, before receiving any information, the drivers start with some prior beliefs about the true unobserved 
demand, 𝑄𝑖 , which is assumed to be distributed normally with mean 𝑄0 and variance 𝜎02. And over time 
the drivers would receive the surrounding signals to update their beliefs about the distribution. By using 
Bayes rule (De Groot 2005), drivers will update their posterior belief conditional on the prior belief and 
signals. Because the prior belief at time 𝑆0 and all signals are assumed to be normally distributed, the 
posterior belief at any time period is also a normal distribution. The posterior belief is given by: 

𝑄�𝑖𝑖𝑖~𝑁�𝑄𝑖𝑖𝑖 ,𝜎𝑖𝑖𝑖2 �,                      (6) 
where 

𝑄𝑖𝑖𝑖 = � 
𝑄𝑖𝑖,𝑡−1

𝜎𝑖𝑖,𝑡−1
2  +  

𝑑𝑃𝑃,𝑖𝑖𝑡𝑃𝑖𝑃𝑃𝑆𝑖𝑖𝑡
𝜎𝑃𝑖𝑃𝑃,𝑖
2 +

𝑑𝐷𝐷,𝑖𝑖𝑡𝐷𝐷𝐷𝐷𝑆𝑖𝑖𝑡
𝜎𝐷𝐷𝐷𝐷,𝑖
2 +

𝑑𝐷𝐷,𝑖𝑖𝑡𝐷𝐷𝑖𝐷𝐷𝑆𝑖𝑖𝑡
𝜎𝐷𝐷𝑖𝐷𝐷,𝑖
2 � ⋅ 𝜎𝑖𝑖𝑖2         (7) 

and 

𝜎𝑖𝑖𝑖2  = � 1
𝜎𝑖𝑖,𝑡−1
2  +  

𝑑𝑃𝑃,𝑖𝑖𝑡

𝜎𝑃𝑖𝑃𝑃,𝑖
2 +

𝑑𝐷𝐷,𝑖𝑖𝑡

𝜎𝐷𝐷𝐷𝐷,𝑖
2 +

𝑑𝐷𝐷,𝑖𝑖𝑡

𝜎𝐷𝐷𝑖𝐷𝐷,𝑖
2 �

−1
                        (8) 

where 𝑑𝑃𝑃,𝑖𝑖𝑖, 𝑑𝐷𝐷,𝑖𝑖𝑖 and 𝑑𝐷𝐷,𝑖𝑖𝑖 are the indicators of whether driver 𝑖 receives a pick-up, drop-off, or drive-
by signal about 𝑗 at time 𝑆. Then given that the unobserved demand belief in any time period is a normal 
distribution with mean 𝑄𝑖𝑖𝑖  and variance𝜎𝑖𝑖𝑖2 , the expected utility function in Eq. 2 can be re-written as: 

𝑈𝑖𝑖𝑖  =  𝐸�𝑈�𝑖𝑖𝑖� = 𝛽𝑖  𝑋𝑖  + 𝛿𝑖𝑄𝑖𝑖𝑖  + 𝜀𝑖𝑖𝑖 .     (9) 

Furthermore, we define Θ𝑖 = �𝛽𝑖 ,  𝛿𝑖,  𝜎𝑃𝑖𝑃𝑃,𝑖
2 , 𝜎𝐷𝐷𝐷𝐷,𝑖

2 ,  𝜎𝐷𝐷𝑖𝐷𝐷,𝑖
2 � as a heterogeneous parameter vector. And the 

homogeneous parameter vector Φ =  (�𝑄𝑖�,𝑄0,𝜎𝑄0
2 ) is common among all individuals. Following Huang et 

al. (2014), Narayanan and Manchanda (2009), and Netzer et al. (2008), we specify the individual-specific 
preference as a function of individual demographic features: Θ𝑖 = Λ0 + Λ𝑍𝑍𝑖 + 𝜀Θ𝑖 , where 𝑍𝑖  specifies 
observed individual-specific characteristics and 𝜀Θ𝑖   is unobserved error term with uninformative prior: 
𝜀Θ𝑖~𝑁(0, ΣΘ). Λ0 is a vector of the mean individual-specific coefficients. Λ𝑍  is a 𝐷𝑍 × 𝐷Θ matrix where 𝐷𝑍 is 
the dimension of 𝑍𝑖 and 𝐷Θ is the number of individual-specific parameters. 

Individuals’ Decision Making Problem 
Individual drivers make decisions based on their expectation of the utility they derive from each 
alternative (McFadden 1973). Consistent with the updating process, we assume that drivers make choice 
decisions every 10 minutes, but only when the taxi is empty. In other words, when the drivers are looking 
for potential passengers, they need to decide whether to stay within the same location grid or drive to 
other locations. If the data shows that a driver stays within the same grid within a 10-minute slot with an 
empty taxi, the driver is considered as choosing option 𝑆𝑆𝑆𝑆. If a driver with an empty taxi passes more 
than one grids within the 10-minute slot, the driver is considered as choosing option 𝐿𝐿𝑆𝐿𝐿.  
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In such a model, we assume that a driver makes a decision based on the utility of the current location and 
time by comparing it with the outside option (normalized to 0). Based on the assumption of type I 
extreme value distribution of the error term, we derive the choice probability as the logit function form: 

𝑃𝑖𝑖𝑖(𝑆𝑆𝑆𝑆)  =
𝐷𝑒𝐷�𝑃𝑖𝑖𝑡�

1+ 𝐷𝑒𝐷�𝑃𝑖𝑖𝑡�
     (10) 

In this case, the likelihood of observing a choice, 𝐴𝑖𝑖𝑖 = �𝑆𝑆𝑆𝑆𝑖𝑖𝑖 , 𝐿𝐿𝑆𝐿𝐿𝑖𝑖𝑖�, can be expressed as: 

𝐿�𝐴𝑖𝑖𝑖�  =  �
𝐷𝑒𝐷�𝑃𝑖𝑖𝑡�

1+ 𝐷𝑒𝐷�𝑃𝑖𝑖𝑡�
�
𝑆𝑖𝑆𝑦𝑖𝑖𝑡

 � 1
1+ 𝐷𝑒𝐷�𝑃𝑖𝑖𝑡�

�
𝐿𝐷𝑆𝐷𝐷𝑖𝑖𝑡

                    (11) 

Here, 𝑆𝑆𝑆𝑆𝑖𝑖𝑖 = 1 if an driver 𝑖 chooses to stay in 𝑗 within the whole 10-minute slot 𝑆. And 𝐿𝐿𝑆𝐿𝐿𝑖𝑖𝑖 = 1 if 
the driver chooses to leave j during 10-minute slot. Notice that it is possible that 𝑆𝑆𝑆𝑆𝑖𝑖𝑖 = 0  and 
𝐿𝐿𝑆𝐿𝐿𝑖𝑖𝑖 = 0 occur simultaneously when there is no overlap between driver’s GPS trajectory and the focal 
location during the 10-minute period, or when the taxi is full in which case the driver does not make any 
choice. Here we assume that each decision is independent and we derive the overall likelihood as follows:  

𝐿(𝐴)  = ∏ ∏ ∏ 𝐿�𝐴𝑖𝑖𝑖�𝑇
𝑖

𝐽
𝑖

𝐼
𝑖      (12) 

Estimation 
In this section, we discuss how to estimate the model and identify all parameters. 

Estimation Methods 
To estimate our heterogeneous model, one challenge is to identify the individual-specific parameters, 
Θ𝑖 = �𝛽𝑖 ,  𝛿𝑖,  𝜎𝑃𝑖𝑃𝑃,𝑖

2 , 𝜎𝐷𝐷𝐷𝐷,𝑖
2 ,  𝜎𝐷𝐷𝑖𝐷𝐷,𝑖

2 �. Following Huang et al. (2014) and Netzer et al. (2008), we apply the 
Metropolis-Hasting algorithm to estimate the individual parameters in a hierarchical framework. Eq.6 
and Eq.7 show that not only 𝑄�𝑖𝑖𝑖  but also 𝑄𝑖𝑖𝑖  are stochastic, because 𝑄𝑖𝑖𝑖  is a function of the three 
stochastic variables: pick-up, drop-off and drive-by signals. We assume all these variables to follow 
normal distributions. We can derive the distribution of 𝑄𝑖𝑖𝑖 conditional on 𝑄𝑖𝑖,𝑖−1 as  

𝑄𝑖𝑖𝑖|𝑄𝑖𝑖,𝑖−1~ 𝑁(𝑄�𝑖𝑖𝑖 , 𝐿𝑖𝑖𝑖2 )  ,          (13) 
where 

𝑄�𝑖𝑖𝑖 =
𝜎𝑖𝑖𝑡
2

𝜎𝑖𝑖,𝑡−1
2 𝑄𝑖𝑖,𝑖−1 + �𝑑𝑃𝑃,𝑖𝑖𝑖 

𝜎𝑖𝑖𝑡
2

𝜎𝑃𝑖𝑃𝑃,𝑖
2 + 𝑑𝐷𝐷,𝑖𝑖𝑖 

𝜎𝑖𝑖𝑡
2

𝜎𝐷𝐷𝐷𝐷,𝑖
2 + 𝑑𝐷𝐷,𝑖𝑖𝑖 

𝜎𝑖𝑖𝑡
2

𝜎𝐷𝐷𝑖𝐷𝐷,𝑖
2 � 𝑄𝑖 ,             (14) 

and 

𝐿𝑖𝑖𝑖2 = 𝑑𝑃𝑃,𝑖𝑖𝑖 
𝜎𝑖𝑖𝑡
4

𝜎𝑃𝑖𝑃𝑃,𝑖
2 + 𝑑𝐷𝐷,𝑖𝑖𝑖 

𝜎𝑖𝑖𝑡
4

𝜎𝐷𝐷𝐷𝐷,𝑖
2 + 𝑑𝐷𝐷,𝑖𝑖𝑖 

𝜎𝑖𝑖𝑡
4

𝜎𝐷𝐷𝑖𝐷𝐷,𝑖
2    .   (15) 

Eq.8 shows that the variance of belief on unobserved demand, 𝜎𝑖𝑖𝑖2 , is a deterministic variable conditional 
on the variances of the three signals, last-period variance, and frequencies of receiving signals. Thus, 
conditional on all the parameters of the model, the mean and variance of the normal distribution in Eq.14 
are not stochastic. Thus, the individual belief on unobserved demand in any period can be drawn from the 
following hierarchy. 

𝑄𝑖𝑖𝑖|𝑄𝑖𝑖𝑖,𝑖−1~𝑁�𝑄�𝑖𝑖𝑖 , 𝐿𝑖𝑖𝑖2 � 

𝑄𝑖𝑖,𝑖−1|𝑄𝑖𝑖 ,𝑖−2~𝑁�𝑄�𝑖𝑖,𝑖−1, 𝐿𝑖𝑖,𝑖−1
2 � 

… 

𝑄𝑖𝑖1|𝑄𝑖𝑖0~𝑁�𝑄�𝑖𝑖1, 𝐿𝑖𝑖12 � 

Therefore, based on the previous assumptions, the hierarchical model can be specified as 
{Θ𝑖}|Ψ,𝑍𝑖,𝐴𝑖 ,Λ, ΣΘ,𝑋𝑖 ,𝑄𝑖  

Λ|{Θ𝑖},𝑍, ΣΘ 

ΣΘ|{Θ𝑖},𝑍,Λ 
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Ψ|𝑋,𝑄, {Θ𝑖} 

𝑄𝑖|𝑄𝑖−1,𝑄𝑖+1,𝐴𝑖 ,Θ𝑖 ,Ψ 

We use MCMC method (Agarwal et al. 2011) to draw from the joint posterior distribution of parameters (Λ 
and ΣΘ). Furthermore, for parameters ({Θ𝑖},Ψ and 𝑄) for which we cannot directly draw from the full 
conditional distributions, we apply the Metropolis-Hastings algorithm (Andrieu and Thoms, 2008).  

Identification 
The true value of unobserved demand, 𝑄𝑖  is identified by drivers’ steady-state behavior. In the Bayesian 
learning process, the belief, 𝑄𝑖𝑖𝑖  evolves to the true demand 𝑄𝑖 . In the extreme case where the state is 
stable, the demand belief is the true demand. However, following the discussion in Ching et al. (2013), we 
cannot identify 𝑄 and 𝛿 simultaneously. To address this issue, we need to either fix 𝑄𝑖  for one alternative 𝑗 
(e.g., Erdem and Keane 1996) or fix the coefficient 𝛿 (e.g., Hao et al. 2014). In both ways, the relative 
values, rather than the absolute values of unobserved demand matter. In this paper, we fix 𝑄𝑖  for one 𝑗.  

The learning parameters 𝑄0 , 𝜎02 , 𝜎𝑃𝑖𝑃𝑃,𝑖
2 , 𝜎𝐷𝐷𝐷𝐷,𝑖

2 , and 𝜎𝐷𝐷𝑖𝐷𝐷,𝑖
2 capture how the arrival of signals change 

individual’s belief about the demand distribution (i.e., 𝜎𝑖𝑖𝑖2  and 𝑄𝑖𝑖𝑖). The preference parameter 𝛽𝑖 captures 
individual driver’s heterogeneous preferences in evaluating spatial and temporal demand. Note that these 
two sets of individual-specific parameters capture the heterogeneity in both individual preferences and 
the learning processes. They can be jointly identified because we observe the difference in individuals’ 
decisions as well as the difference in their decision changes over time. More specifically, individual 
heterogeneous preferences can be identified through variations in decisions from different drivers who 
had the same information set about a location at a time (i.e., same static location features, same belief 
about unobserved demand distribution) but made different choices (stay/leave).  

On the other hand, the heterogeneity in learning (i.e., individual-specific variances of signals,  𝜎𝑃𝑖𝑃𝑃,𝑖
2 , 

𝜎𝐷𝐷𝐷𝐷,𝑖
2 , and 𝜎𝐷𝐷𝑖𝐷𝐷,𝑖

2 ) can be identified through variations in individuals’ decision changes over time, given 
that they drove by the same location at the same time, and were exposed to the same information signals. 
In particular, the extent to which, the arrival of signals alters individual behavior over time helps us 
identify the learning parameters. For instance, if upon the arrival of one signal, ceteris paribus, driver A’s 
behavior is altered much more dramatically than is driver B, it implies that the variance of the signal is 
much smaller for driver A than for driver B. In other words, this signal is more valuable to driver A than to 
driver B.  

Besides, for tractability in this study we assume the prior mean (𝑄0) and variance ( 𝜎02) of the perceived 
distribution of the unobserved demand to be common across individuals and locations. We identify them 
through the variations in the population-level average behavior change before and after receiving the 
signals. For example, if after receiving a few pick-up signals at a certain location and time, the probability 
of staying does not change significantly compared to the initial probability of staying before receiving any 
signal, then it implies that the prior belief about demand is quite precise and the prior variance is low. 
Moreover, we also observe variations in the average behavior change during early time periods when 
drivers may not receive any signal at all. This additional type of variations allows us to further pin down 
the prior variance. For example, if drivers’ behaviors change largely even without being exposed to any 
information signal, it implies that the prior variance of their belief is quite high.  

Empirical Results 
As discussed in the previous Section, for the concern of identification issue, we fix the true unobserved 
demand of one “product”, 𝑄𝑖 . Besides, the utility function requires that the unobserved demand below a 
certain level so that utility is increasing within a proper range. Thus, we set the true unobserved demand 
of shopping area at midnight (𝑄1) to be 1 initially and updated it at each step of MLE estimation process 
while keeping relative values fixed (Ching et al. 2013; Erdem and Keane 1996). 

The estimates of the parameters that do not vary across individuals (i.e., pooled parameters) are 
presented in Table 1. Here, we assume that individuals have the same prior belief and initial variance for 
all locations at all time-of-day periods. The estimates show that the common initial variance is very large 
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compared to the absolute value of prior belief. This result indicates that the prior belief of the unobserved 
demand is quite noisy even after accounting for the individual heterogeneity.  

Parameters  Parameter estimates Posterior Std. err. 
Initial variance log(𝜎02)  7.4880 0.6982 
Prior belief Q0  0.1320 0.0954 
Note: 
1. To avoid correlation among draws, we use every 50th draw to compute posterior std. err. 
2. Bold estimates are significant at 5% level. 

Table 1 Pooled Parameter Estimates 

Parameters Constant Company Income Unobserved  

δ  -0.1103 (0.3746) -3.5604 (7.5951) 1.6599 (9.5827) 0.6338 (0.2576) 
β1  0.1529 (0.2988) 5.1673 (5.7766) 1.0919 (9.9402) 0.9119 (0.1019) 
β2  0.0016 (0.0028) 0.0380 (0.0594) 0.6006 (0.3163) 27.3822 (2.9497) 
log(𝜎𝑃𝑖𝑃𝑃2 )  -0.2888 (0.2789) 6.5421 (2.6030) 5.6225 (2.7347) 6.3822 (0.9807) 
log�𝜎𝐷𝐷𝐷𝐷2 �  -0.1131 (0.2096) -2.2746 (1.7026) -3.8801 (1.9818) 219.5718 (23.6965) 
log(𝜎𝐷𝐷𝑖𝐷𝐷2 )  -0.0013 (0.0021) -0.0237 (0.0154) 0.0425 (0.0180) 8.6101 (1.3646) 
Note: 

 1. To avoid correlation among draws, we use every 50th draw to compute posterior std. err. 
2. Bold estimates are significant at 5% level. 

Table 2 Individual-Level Parameter Estimates 

The estimation results of the individual-level parameters are summarized in Table 2. Recall that we 
assume each individual-specific parameter is a linear function of individual characteristics: Θ𝑖 = Λ0 +
Λ𝑍𝑍𝑖 + 𝜀Θ𝑖 . We include two features in 𝑍𝑖: company indicators and hourly income levels. In the table, 
columns 2-4 provide the estimates of the interaction terms of constant and two observed individual 
characteristics. The last column is the standard deviation among individuals, which captures the effects of 
unobserved individual heterogeneity.  

There are several interesting findings from our estimation: First, different information signals from 
various social contexts have different values to the drivers in learning the city demand. Among the three 
signals, pick-up signal has the lowest mean variance, while drive-by signal has the highest mean variance. 
This indicates that on average, the simple signal (i.e., pick-up) is more valuable to individual drivers while 
the complex signals (i.e., drop-off and drive-by) are rather noisy. This result is intuitive because drive-by 
signal requires further inference of potential starting location and time of the upstream demand, and 
drop-off signal also requires inference of potential starting time of the future demand. However, pick-up 
signal is the most straightforward and it does not require any further inference, hence it is more precise 
on average.  

Second, our finding indicates that there is significant heterogeneity across drivers with regard to their 
learning behavior. The degree of heterogeneity varies among the three signals. Interestingly, for the pick-
up signal, we find that coefficients of its interaction terms between pick-ups signal (log (𝜎𝐷𝑖𝑃𝑃2 )) and 
income/company indicator are both significantly positive. However, for the drop-off signal, the 
coefficients of its interaction terms with the two individual characteristics are significantly negative. These 
results seem to suggest that straightforward information like pick-up signal is not so valuable for drivers if 
they want to earn high income. Notice that with a negative coefficient of interaction terms, it means that a 
higher income value (or a large company) leads to a smaller variance of signals, which indicates that the 
signals are more precise. Instead, drivers with higher income or from larger companies benefit largely 
from the ability of learning from more complex information like drop-off signal. Interestingly, for the 
drive-by signal, we find the economic scale of its interaction terms with the two individual characteristics 
is very low. This finding indicates that there is low heterogeneity in learning from the drive-by 
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information across individual drivers. This can be simply because the drive-by information is too noisy at 
individual level and no one can benefit much from it.    

Third, the estimate of ΣΘ is shown in the last column of Table 2. Here we present the standard deviations 
of the unobserved individual characteristic, which are the square root of the diagonal elements of the 
variance-covariance matrix. It captures the effects of unobserved individual heterogeneity (which cannot 
be explained by income and company indicator). Our results show that even after control for the observed 
individual characteristics, there still exists significant unobserved heterogeneity in driver learning. 

Finally, Table 3 shows the estimates of the unobserved demand of each of the six location types at four 
different time-of-day periods. Note that for identification in our estimation we fixed the demand of 
shopping area at the midnight as the baseline. Hence, all the estimates are relative values compared to 
this baseline. Notice that as pointed out by Erdem and Keane (1996), the statistical significant levels of 
these estimates do not matter, but only the relative scale of these estimates matters. Overall, our findings 
show strong evidence that there is significant heterogeneity in city demand across both spatial and 
temporal dimensions. For example, the demand of shopping area in evening and midnight is significantly 
larger than the other two periods. It is consistent with the fact that most shopping stores have their 
highest visit demand in the evening after people get off work. Besides, the continuous large demand from 
evening to midnight implies that the increasing needs for taxi may happen in the late evening, rather than 
early evening. Interestingly, office area shows the highest demand in the midnight. The potential reason is 
that taxi may not be the main choice for people during their regular home-work transportation time 
periods (early morning or late afternoon), but it becomes essential when people need to work overtime.  

 Midnight Morning Afternoon Evening 

Shopping area 0.0021 (fixed) -2.2606 (0.0082) -0.3730 (0.0134) 1.8320 (0.0120) 
Entertainment area 1.7514 (0.0403) -1.6036 (0.0263) -1.7573 (0.0318) -0.1405 (0.0827) 
Office area 0.4962 (0.0508) -0.7494 (0.0259) -0.1697 (0.1828) -1.0776 (0.0196) 
Residence area -0.4085 0.0536) 1.5131 (0.0324) 0.2962 (0.0372) 0.2539 (0.0413) 
Transportation hubs 0.1456 (0.0682) 0.6953 (0.1401) 1.0713 (0.1736) 2.0209 (0.0198) 
Others  -0.4630 (0.0157) -0.2508 (0.0105) 0.0516 (0.0120) 0.2020 (0.0104) 
Note: 

 1. To avoid correlation among draws, we use every 50th draw to compute posterior std. err. 
2. Bold estimates are significant at 5% level. 
3. Posterior standard errors are shown in the parenthesis 

Table 3 Estimates of True Unobserved Demand  

Policy Simulation 
We conduct two sets of policy simulations to examine the counterfactual effects based on the estimates 
from our structural model. The final simulation results are averaged across 1,000 simulation iterations.  

Company Size 
In our model, we divide companies into two types: large and small. We found that drivers from large 
company can extract more valuable information from complex signal (i.e., drop-off signal) better but less 
valuable information from the simple signal (i.e., pick-up signal). It is interesting to vary company size 
and examine what would happen. In particular, we are interested if we merged all small companies into 
large ones, would it improve drivers’ learning efficiency by aggregating more resources? We simulate this 
scenario by assuming that all drivers were from large companies and the corresponding result is shown in 
Figure 3(a). The y-axis is the average discrepancy between true unobserved demand and the individual 
perceived demand. The x-axis is date of the month. To illustrate the difference, we show the comparison 
in the last few days of September 2009. We observe that the dash line is slightly below the solid line, 
indicating that drivers in the simulated case perform better. It implies that large companies have a slight 
benefit in helping drivers learn the city demand. This is potentially due to the unobserved within-
company communications.   
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Information Sharing 
In our model, drivers are assumed to update their beliefs about the distribution only through the signals 
they observe on their own. However, if the companies or policy makers were to broadcast all information 
signals to everyone (so that the drivers do not have to directly observe the signals by themselves), would it 
improve drivers’ decision making efficiency? We ran the simulations by allowing for the information 
sharing with each of the signals separately. The results are shown in Figure 3(b).  

     
 (a)  Company Size   (b) Broadcast Different Types of Information 

Figure 3: Simulation Results on Company Size and Information Sharing. 

First, all drivers learn much faster in all three cases, indicating that the aggregating information signals 
are valuable to individual drivers. Second, we find that the drive-by signals become the most valuable to 
help drivers learn demand if we broadcast it. This is really interesting because at individual level this 
information is in fact rather noisy and not so valuable for driver learning. The reason for this policy result 
is potentially because the frequency of drive-by signals at population level is much higher than the other 
two signals. Therefore, although this information is noisy at individual level, it can become highly 
informative after we aggregate it over a large scale cross multiple companies, locations and time periods. 
Notice that not like pick-up or drop-by which can be inferred from trip record data, the set of drive-by 
information would have been hardly observed to individuals or companies, if not look into offline trace 
data. This finding reinforces one major advantage of our study, that we are able to show the value of 
aggregating information that would have been otherwise unavailable within traditional organizational 
setting to improve decision-making.  

Effective Distance of Information  
Furthermore, we are interested in the effective distance of the information value. Thus, we ran a further 
policy simulation where only the adjacent signals would be broadcasted. Here, “adjacent signals” mean 
those signals that occur in the adjacent location grids at the same time when the driver pass a location 
grid. The results are shown in Figure 4. We present the three signals separately ((4a) is for pick-up signal; 
(4b) is for drop-off signal; (4c) is for drive-by signal). The y-axis is the average discrepancy between the 
true unobserved demand and the individual perceived demand. The x-axis is date of the month. The three 
graphs consistently show that when broadcasting the information signals from all locations drivers will 
learn more quickly, compared with the case when broadcasting the signals from only the adjacent 
locations. This result indicates that information aggregated over a larger distance scale is indeed more 
valuable.  

However, interestingly only the drive-by signal (Figure 4c) shows a significant improvement in driver 
learning efficiency after adding more information beyond the adjacent locations (i.e., difference between 
the solid line and the dash line in the graph). This result implies that the value of aggregating information 
from large to even larger scale may vary for different types of information. drive-by signal is relatively 
noisy in small scale, and it can become effective when being aggregated across a considerably large scale. 
On the other hand, pick-up signal and drive-by signal are more precise in small scale. Hence, the marginal 
value of aggregating such information at large scale is low. Our findings have the potential for policy 
makers on better utilizing the value of different information to facilitate personalized information sharing 
and decision making in the market. For example, taxi companies may consider providing all the drive-by 
information in the city to individual driver (via mobile app or phone dispatch). But if they plan to provide 
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pick-up or drop-off information, they may consider only the adjacent signals to the individual driver 
instead of the overall signals to reduce the operation cost as well as drivers’ cognitive cost. 

   
  (a)  Effective Distance (Pick-up)      (b) Effective distance (Drop-off) (c) Effective Distance (Drive-by)  

Figure 4: Simulation Results on Effective Distance of Information. 

Conclusions 
The main goal this paper is to understand human behavior and decision-making by learning from the 
large sale, fine-grained, digitalized offline trace data. We instantiate our study by analyzing the taxi tails to 
understand driver learning behavior for local demand, and to recover the value of information signals 
extracted from the offline trace. We propose and estimate a structural model of heterogeneous learning at 
individual level. We validate our model using a combination of three large, unique data sets containing 
10.6 million individual trip records from 11,196 taxi drivers in a large Asian city in September 2009.  

Our empirical analyses indicate strong heterogeneity both in the value of information and in individual’s 
learning behavior towards this information. Interestingly, we find that straightforward information signal 
is not so valuable for drivers to gain competitive power. Instead, drivers with higher income benefit 
largely from the ability of learning from more complex information. Our policy simulation results show 
that by aggregating the information extracted from the offline behavior trace at large scale, we can 
significantly improve individual drivers’ decision-making efficiency. Interestingly, we find that 
information that is noisy at individual level can become most valuable after we aggregate it across various 
spatial and temporal dimensions. We also find the marginal value of aggregating large scale information 
varies among different types of information.  

Our study demonstrates the value of extracting behavior patterns from granular offline trace data to 
understand and improve human decision making. Especially, by collecting and analyzing the new source 
of offline behavior trace, we are able to leverage information that is often unavailable to individuals or 
organizations in the conventional setting. On a broader note, this work demonstrates the potential of 
combining large-scale temporal and spatial data mining together with econometric structural models and 
Bayesian statistics to understand human decision making. With the growing ubiquity of mobile and 
sensor technologies at individual level, more and more human behavioral information is digitalized and 
associated with location and time stamps. Our study can pave a path for future studies to build on and our 
methodologies can be generalized to other offline settings beyond the taxi industry (e.g., Internet-of-
Things, Uber/Lyft).  

Our paper has a few limitations which can provide potential for future research. First, it would be more 
interesting to incorporate more characteristics at individual driver level, such as past experience, family 
background, etc. Our empirical results indicate that there still exists significant unobserved heterogeneity. 
Thus, more individual-level information can help us better explain such heterogeneous variations. 
Second, our model assumes homogeneous prior belief among individuals. It would be interesting to 
release this assumption in future and allow individuals vary from the very beginning of the learning 
procedure. Besides, it would be interesting to look into demand shocks in the market and examine how 
they may affect taxi industry at individual driver level. For example, the entry of Uber and other similar 
services in U.S. and the adoption of mobile applications have largely affected the taxi markets. Our 
insights and structural methodology framework have the potential to be applied to such future areas. 
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