
24TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2015 HARBIN)

An Incremental and Model Driven Approach for the Dynamic
Reconfiguration of Cloud Application Architectures

Miguel Zúñiga-Prieto mzuniga@dsic.upv.es
Universitat Politècnica de València
Valencia, Spain

Silvia Abrahao sabrahao@dsic.upv.es
Universitat Politècnica de València
Valencia, Spain

Emilio Insfran einsfran@dsic.upv.es
Universitat Politècnica de València
Valencia, Spain

Abstract
In incremental development approaches, the integration of new services into the actual cloud
application may trigger the dynamic reconfiguration of the cloud application architecture, thus
changing its structure and behavior at runtime. This paper presents a model driven approach that
uses the specification of how the integration of new services will change the current cloud ap-
plication architecture to obtain: i) the orchestration of services, ii) skeletons of interface imple-
mentations, and iii) the operationalization of reconfiguration actions to be applied at runtime.
This approach follows the DIARy-process, which defines the activities needed to reconfigure
dynamically the architecture of cloud services. The feasibility of the approach is illustrated by
means of a case study that uses Microsoft Azure© as a service deployment platform. WCF
Workflow services are generated and deployed for orchestration, whereas XML transformation
files are generated to update services’ binding configurations at runtime.
Keywords: software architecture, model driven development, dynamic reconfiguration, cloud
computing, SoaML.

1. Introduction
Cloud applications are distributed software systems composed of services (typically Web ser-
vices) that run on top of third-party cloud platforms, consume cloud platform resources (e.g.,
execution environment, storage, virtual machines, message queue services), and follow a pay-
per-use pricing model.

The development of a cloud application differs from that of traditional software systems
since, in general terms: i) services are developed using an incremental/iterative development
process; ii) services are highly reusable; and iii) system models with a holistic definition of all
functionalities to be produced do not necessarily exist [16]. Additionally, in an incremental
development approach, the integration of software increments (which include a set of services)
may trigger the dynamic reconfiguration of the actual cloud application architecture. A cloud
application architecture can be defined as the fundamental organization of a system, embodied
in its cloud services, their relationships to each other and the environment, and the principles
governing its design and evolution (adapted from [13]). The dynamic reconfiguration of cloud
application architectures creates and destroys instances of architectural elements and changes
their relationships at runtime, without stopping the system. Also, it is important in cloud envi-
ronments to manage the service instances on different platforms. Successful cloud adoption
thus requires guidance around planning and integrating cloud application increments.

ZUÑIGA ET AL. A MODEL DRIVEN APPROACH FOR THE DYNAMIC...

Cloud services must be highly available, signifying that some challenges must be solved in
order to support dynamic reconfiguration and minimize system disruptions during integration.
The architectural changes expected to occur during the integration should be planned before-
hand when modeling integration. Furthermore, implementation should also comply with ser-
vice-oriented principles. This is not an easy task since cloud development platforms provide
various alternatives with which to both organize source code and use their services. In addition,
cloud services are built according to cloud provider technology (e.g., programming language,
protocols, APIs usage), which very often leads to a tight coupling among them. Mechanisms
that facilitate the making of implementation decisions independently of the cloud platform are
therefore required.

We believe that Model-Driven Development (MDD) provides a good support for the dy-
namic reconfiguration of cloud application architectures. It allows us to capture technology-
independent application information, make design artifacts reusable, change reconfiguration
specifications and automate the cloud application architecture reconfiguration process. The Ser-
vice oriented architecture Modeling Language (SoaML) [3] which is an OMG standard specif-
ically designed for the modeling of service-oriented architectures, facilitates service modeling
and design activities while following an MDD approach. However, service-oriented design
concepts are not fully understood at implementation level and service-based systems are often
developed without taking into account good software engineering techniques [21].

To tackle these problems, in this paper we present a model-driven approach to support the
dynamic reconfiguration of cloud application architectures caused by the integration of cloud
service increments. We extend the expressiveness of SoaML, providing it with features that
allow us to specify how increment architectures will be integrated into the current cloud appli-
cation architecture. This specification facilitates the generation of cloud artifacts (software ar-
tifacts to be used in cloud environments) that assist in the processes of both increment integra-
tion and the dynamic reconfiguration of the current cloud application architecture. We have
followed the DIARy-process [23], which defines activities for the dynamic architecture recon-
figuration of cloud services.

The remainder of this paper is structured as follows. Section 2 discusses related works and
identify the reconfiguration needs. Section 3 presents an overview of the DIARy-process. Sec-
tion 4 describes how our reconfiguration approach helps software architects to plan the recon-
figuration actions that will occur when deploying a cloud service increment, while Section 5
presents the use of our approach to generate software artifacts that facilitate the dynamic recon-
figuration of cloud application architectures. Section 6 illustrates the use of our approach in a
case study. Finally, Section 7 presents our conclusions and future work.

2. Related Work
Breivold et al. [5] conducted recently a systematic review on architecting for the cloud. They
categorized studies that describe architectural approaches and design considerations when ar-
chitecting for the cloud. The authors identified the need for design/architectural approaches for
supporting the maintenance of cloud services.
 Over the last years, several proposals for the dynamic reconfiguration of software architec-
tures have been proposed. Despite the fact that it takes place at runtime, the way in which an
application is designed and implemented helps achieve this reconfiguration. In this section, we
analyze how researchers and practitioners support the modeling of cloud applications and the
dynamic reconfiguration of cloud software architectures.

We highlight three approaches that propose means to document design decisions in cloud
environments: CAML [2], a UML profile that enables cloud deployment topologies to be wired
with cloud providers’ specific offerings; MULTICLAPP [11], a framework for the development
of cloud applications, which includes a UML profile in order to model cloud applications as a
composition of software artifacts that can be deployed across multiple clouds; and CloudML
[4], which proposes a cloud modeling language for describing the resources that a given appli-
cation may require from existing clouds. Although these proposals provide information for
multi-cloud implementation and provisioning or deployment, they lack mechanisms to specify

ISD2015 HARBIN

the impact of integrating increments into the current cloud application architecture. This capa-
bility is relevant as cloud services are developed following an incremental process. In addition,
when modeling increment integration, software architects should be able to work with inde-
pendent models in order to describe increments, rather than being constrained to modify the
overall system model [17], and to update it by including the services to be integrated in it.

With regard to proposals for dynamic reconfiguration, the ongoing SeaClouds [6] project
proposes a platform which performs a seamless adaptive multi-cloud management of service-
based applications and dynamically reconfigures them by changing the orchestration (interac-
tion coordination) of services depending on monitoring results. The MODAClouds [1] project
is, meanwhile, ongoing research into the implementation of a framework with which to develop
and deploy applications in multi-clouds, in which monitoring triggers adaptation actions such
as the migration of system components from one cloud to another, along with the dynamic re-
deployment of the final application or its components. Despite the fact that the reconfiguration
takes place by replacing orchestration or as result of the re-deployment of components, these
proposals do not allow the specification of the architectural changes produced during reconfig-
uration. These proposals take into account alternatives as regards provisioning and deployment;
however, they do not take into account implementation alternatives that influence the obtaining
of loosely coupled services, which facilitate scalability and the re-deployment of services in
different clouds.

Finally, in the aforementioned proposals, the reconfiguration/re-deployment starts as the
result of monitoring activities, and changes are therefore made to improve quality attributes;
however, adaptive changes (e.g., software increments resulting from new functionalities) that
require architectural changes are not taken into account.

3. The DIARy-process
The integration of an increment into the current cloud application not only provides new func-
tionalities for clients, but also functionality updates and the repairing of defects. From an archi-
tectural point of view, when an increment is integrated into the current cloud application its
architectural elements update or are incorporated into the current cloud application architecture,
thus reconfiguring it. The DIARy-process (see Fig. 1) proposes activities whose aim is to facil-
itate the architectural reconfiguration caused by increment integration; its main activities are:

Fig. 1. The DIARy-process

1. Specify Increment Integration: Software architects take the architectural description of an
increment (Increment Architecture Model) as input and specify how each of its architectural
elements will change the current cloud application architecture (Current Architecture
Model). They perform this activity by following Increment Specification Guidelines and
making design decisions based on SLA terms; they then document their decisions in an
Extended Increment Architecture Model. This model includes: i) information regarding the
structure and behavior of the cloud services delivered in an increment; ii) information con-
cerning how the increment’s architectural elements collaborate to reconfigure the current
cloud application architecture, which describes the integration impact; and iii) information
regarding services that can be used to take advantage of cloud environment properties.

2. Check Increment Compatibility: Software architects participate in verifying whether the
increment’s architecture is compatible with the current cloud application architecture. If

ZUÑIGA ET AL. A MODEL DRIVEN APPROACH FOR THE DYNAMIC...

discrepancies exist between the interfaces of these architectures (e.g., different names for
methods and services, different message ordering), they apply model-to-text transfor-
mations that generate skeletons of cloud artifacts that are specific to a cloud platform and
that solve discrepancies (Cloud Adaptors). This activity requires the use of adaptation tech-
niques. Several other authors propose adaptation techniques that can be used, such as [7].

3. Reconfigure Architecture: This activity takes the following as inputs: the Extended Incre-
ment Architecture Model, which documents the specification of increment integration; the
Cloud Artifacts Model, which is a high-level description of how cloud artifacts should be
organized and which cloud platform services should be used in order to implement incre-
ment specifications; and Adaptation Patterns [10], which represent generic and repeatable
solutions that can be used to manage architectural changes in recurring architectural adap-
tation problems. Cloud developers use the inputs for this activity to apply model transfor-
mations that generate cloud artifacts which both implement architectural elements and op-
erationalize the reconfiguration actions needed to reconfigure the current cloud application
architecture at runtime (Reconfiguration Plan Specific for Cloud Provider).
For more information about the DIARy process refer to [23]. The contribution of this work

is to define the specification of the increment integration and the actual reconfiguration of the
architecture. These activities are explained in the following sections.

4. Specifying Increment Integration
We provide a modeling solution with which to specify how the increment’s architecture will be
integrated into the current cloud application architecture. This modeling solution provides:
• Support for the Partial Specification of Software Architectures: Cloud services are devel-

oped using an iterative and incremental process, in which fragments of software systems
are developed at different rates or times, and then integrated. Our proposal does not force
software architects to modify the overall system architecture model in order to include the
architectural elements of the increment in it. By avoiding this, we help them track changes
and differentiate increment architectural elements from current architecture elements.

• Support for the Specification of Integration Impact: Our proposal allows software architects
to specify the way in which each element of the increment’s architecture impacts on the
current cloud application architecture (plan ahead static changes).

• Support for the Design of Services Deployed on Cloud Environments: Decisions made dur-
ing early phases of a development process influence later implementation/provisioning/de-
ployment decisions. One of the most important properties of cloud environments is their
capacity to provide resources on demand. Our proposal allows software architects to pro-
vide information about the workload expected in a service, thus helping developers working
in later phases to make decisions that take advantage of cloud platform resources.

Architectural descriptions that use the Unified Modeling Language (UML) have gained
popularity and have been widely adopted in industry [17]. Initiatives such as [8], [15] extend
UML capabilities in order to model service architectures, the Service oriented architecture
Modeling Language (SoaML) [3] (an OMG specification) being the most widely adopted [22].
We have extended both UML2.4 and SoaML to take advantage of already existing modeling
languages, rather than starting from scratch by defining a new one. The use of UML profiles to
extend these languages will allow us: i) to specify the architectural impact of the integration
from a high-level point of view; and ii) to describe the orchestration (interaction coordination)
of services, separating the functional logic of cloud services from the integration logic, which
will help attain the architectural dynamic reconfiguration.

4.1. The DIARy-specification-profile
The profile defined in this section (see Fig. 2) extends both UML2.4 and the SoaML profile.
The main SoaML elements to be extended are:
• Participant: Plays the role of service provider, consumer, or both.

ISD2015 HARBIN

• Services Architecture: Defines how participants work together to provide and use services
which are described as Service Contracts in a Services Architecture.

• Service Contract: Represents an agreement between the participants involved regarding
how the service is supposed to be provided and consumed. Service contracts are frequently
part of one or more Services Architectures.

• Collaboration Use: Indicates explicitly how a Collaboration (Service Contract or Services
Architecture) is fulfilled by the different inner parts.
In order to avoid the situation of software architects having to work with the overall cloud

application architecture model when specifying increment integration, we extend the UML Col-
laboration element by using the stereotype «ExtendedIncrementArchitecture». Its semantics is
similar to that of the SoaML Services Architecture, but it also describes how its inner parts
collaborate to reconfigure the current cloud application architecture.

In order to support the specification of the impact of the integration of increments, we ex-
tend elements subject to change («ParticipantUse», «ServiceContractUse», and «RoleBind-
ing») by including the tagged-value architecturalImpact in them, whose possible values are:
Add, Modify, or Delete, which denote architectural changes; and Reference, which denotes ele-
ments of the current cloud application architecture that will not change but will interact with
the increment’s architectural elements. By using the tagged-value representCloudArtifact we
allow software architects to specify whether architectural changes need to be propagated to their
related cloud artifacts.

When dealing with workload changes in elastic scenarios, the use of Cloud Application
Management Patterns [19] suggests managing performance by adding or removing cloud plat-
form resources. However, in less elastic scenarios in which delaying the processing of requests
might be more effective than processing them immediately, the use of message queues is sug-
gested. We support both scenarios by extending the SoaML’s notation element «Collabora-
tionUse» with the stereotype «ServiceContractUse», and including the tagged-values elastic-
ityLevel and delayLevel in it, whose possible values are: None, Low, Medium, and High. The
assigned value will be used by cloud developers in later development phases to select imple-
mentation/provisioning/deployment alternatives, or cloud platform services that satisfy SLA
terms or other requirements.

Fig. 2.The DIARy-specification-profile

Implementation decisions may vary depending on whether services will be provided or
consumed by external participants, and we therefore extend the SoaML’s notation element
«Participant» by adding the tagged value isExternal. Finally, in order to facilitate version man-
agement, and preserve the order of the evolution process and the coherence of interactions
among instances [20], we extend the Collaboration element by including the tagged-values
version and incrementID.

5. Reconfiguring Cloud Application Architectures
In order to support the Reconfigure Architecture activity of the DIARy-process (see Fig. 1), in
this section we delineate the Cloud Artifacts Model’s metamodel and how it is used to support
this activity. This model represents concepts that are independent of cloud platform which are

«Enumeration»
ArchitecturalImpact
Reference
Add
Modify
Delete

«metaclass»
Property

«Stereotype»
ParticipantUse

 architecturalImpact: ArchitecturalImpact
 representCloudArtifact: Boolean

«metaclass»
Class

«Stereotype»
Participant

 isExternal: Boolean

«Stereotype»
Collaboration

 version: EInt
 incrementID: EInt

«Stereotype»
ServiceContract

«Stereotype»
ServicesArchitecture

«metaclass»
Collaboration

«Stereotype»
ExtendedIncrementArchitecture

«Stereotype»
RoleBinding

 architecturalImpact: ArchitecturalImpact
 representCloudArtifact: Boolean

«metaclass»
Dependency

«metaclass»
CollaborationUse

«Stereotype»
ServiceContractUse

 architecturalImpact: ArchitecturalImpact
 representCloudArtifact: Boolean
 elasticityLevel: String
 delayLevel: String

«Stereotyp...

«Stereotype»

«Stereotype»

Extend SoaML

Extend UML

UML/SoaML
notation

ZUÑIGA ET AL. A MODEL DRIVEN APPROACH FOR THE DYNAMIC...

used to describe and organize the cloud artifacts needed: to implement Extended Increment
Architecture Model elements, to invoke cloud platform services, and to provision/deploy cloud
platform resources in accordance with the decisions made during the development process.

5.1. The Cloud Artifact Model’s Metamodel
The integration of increment functionalities into the current cloud services is achieved by al-
lowing services to interoperate. Interoperability among the services deployed in cloud environ-
ments requires the orchestration of services [20]. The way in which cloud artifacts are organized
and implement architectural designs simultaneously have an influence on the obtaining of
loosely coupled services, which help support the interoperability and re-deployment of services
on different cloud platforms. Our metamodel promotes the decoupling of the logic of the or-
chestration from the logic of participant’s services, thus signifying that the orchestration of
services can be offered as a reusable cloud service and facilitating the architectural dynamic
reconfiguration by replacing either the orchestration or bindings to participants’ cloud services.

The Cloud Artifacts Model’s metamodel (see Fig. 3) allows the representation of the cloud
artifacts needed to deploy: a cloud service for each participant playing a role in a «ServiceCon-
tractUse» included in an Extended Increment Architecture Model; and a cloud service with
which to orchestrate interactions among those cloud services. The correlation between the Ex-
tended Increment Architecture Model and the Cloud Artifacts Model is achieved by mapping
architectural elements represented by DIARy Architectural Element classes with cloud artifacts
represented by Artifact classes.

Fig. 3.Cloud Artifacts Model’s metamodel

We use Projects to organize cloud artifacts and describe how their instances will use cloud
platform resources. Instances of cloud services whose related cloud artifacts are included in the
same Interaction Project or Implementation Project will share cloud platform resources and
will be hosted in the same virtual machine; organizing cloud artifacts into exclusive or shared
projects thus allows workload changes and running costs to be managed.

Interaction Projects are mapped onto Service Contract architectural elements and include
cloud artifacts corresponding to cloud services that provide orchestration; cloud artifacts that:
implement the interaction protocol (Orchestration Service); Interfaces, Message Types and
Data Types (see Table 2).

Implementation Projects are mapped onto Service Contract Uses and include cloud artifacts
corresponding to cloud services that expose the operation logic of service participants: Front
End Services that implement interfaces defined in the corresponding Service Contract; Back
End Services that use cloud platform services (e.g., message queues); Client Objects that initiate
the service execution by invoking an Orchestration Service; or Adaptors that correct incompat-
ibilities between interfaces. Finally, Deployment Projects facilitate the grouping of interac-

Artifact
representation : RepresentationType

<<enumeration>>
RepresentationType

NetWorkFlow
NetSrvContract
NetDataContract
WSDL
BPEL

ServiceDataInterfaceDynamicConfiguration

DIARyArchitecturalElement
incrementId : EInt
elementVersion : EInt
architecturalImpact : Impact

Participant

Settings

FrontEndService

BackEndService OrchestrationService
DataTypeMessageType

InteractionProjectImplementationProject

ServiceContractUse

Project
type : RepresentationType

HostedService

ServiceContract

DeploymentProject

AdaptorClientObject

Invoked

Exposed
<<enumeration>>

Impact
Add
Modify
Reference

EndPoint

RoleBinding

behavior
1

roleTypes
1..*

0..*

services 1..*

implements
1..*

0..*1..*

1..*

serviceConfiguration1

1

0..*

provisioningConfiguration
1..*

0..*

1..*

1

1
1

0..1

0..*
0..*

0..1

implementationServices
0..*

interactionServices
0..*

1 1
0..1

1..*

invoke
0..*0..*

implementedBy0..*

0..1

0..*

0..*

0..*

ISD2015 HARBIN

tion/implementation projects related to both a cloud application and a participant, which deter-
mine the cloud resources that must be provided in order to deploy the cloud services of which
the participant cloud application is made up.

The Dynamic Configuration class is used to describe configuration Settings that could
change at runtime, thus satisfying cloud design patterns for dynamic reconfiguration (e.g., [12],
[9]). The aforementioned works suggest that the configuration settings should be stored outside
the deployed service so that they can be updated without requiring the redeployment of entire
package. This paper does not include an explanation of each class in the metamodel or its at-
tributes, or the OCL validations needed to maintain a consistent model for reasons of space.

5.2. Cloud Artifacts Generation
In our approach, the Reconfigure Architecture activity uses the specification of the increment
integration to generate cloud artifacts with which to support the implementation and deploy-
ment of services. During the implementation, it is necessary to Generate Implementation Arti-
facts defining model transformations that generate cloud artifacts that decouple the implemen-
tation of the orchestration’s logic from the implementation of the services’ logic. During the
deployment, it is necessary to Generate Reconfiguration Artifacts defining model transfor-
mations that generate cloud artifacts that operationalize the reconfiguration actions.

Implementation: Generate Implementation Artifacts
In the first step, cloud developers execute model-to-model (M2M) transformations that deal
with alternative transformations which organize cloud artifacts into projects in order to gener-
ate the Cloud Artifacts Model. Alternative transformations [14] take into account both the ar-
chitectural impact and the requirements needed to manage the workload changes described dur-
ing the increment integration specification (and documented in the Extended Increment Archi-
tecture Model). Table 1 shows examples of alternatives to organize cloud artifacts into projects
applied when the architecturalImpact of a «ServiceContractUse» is Add.

Table 1. Alternatives to organize cloud artifacts into projects

Elasticity
level

Delay
level

Cloud artifacts organization

High None - An Orchestration Service in its own Interaction Project
- One Front End Service per participant in its own Implementation Project

Low High - An Orchestration Service in a shared Interaction Project
- One Front End Service per participant in a shared Implementation Project
- A Back End Service to manage the delaying of requests (e.g., message
queues) in the Implementation Project corresponding to the service provider

In the second step, cloud developers complete the Cloud Artifacts Model generated accord-
ing to the cloud platforms on which the cloud services will be deployed by: i) providing provi-
sioning and deployment information for Deployment Projects and configuration information
for Hosted Services, creating or updating Dynamic Configuration or Setting classes; ii) speci-
fying the representation of each cloud artifact (e.g., source code language). Once the model has
been updated, cloud developers execute a model-to-text (M2T) transformation which generates
cloud artifacts that are specific to a cloud platform, using the Extended Increment Architecture
Model and the implementation/deployment/provisioning decisions described in the Cloud Ar-
chitecture Model as input. Finally, cloud developers complete the cloud artifacts generated.

Deployment: Generate Reconfiguration Artifacts
In the first step, once the previously generated cloud artifacts have been deployed, cloud devel-
opers update the Cloud Artifacts Model with information regarding the EndPoints in which the
corresponding cloud services are exposed. They then select the adaptation patterns best suited
to integrating the increment’s architecture into the current cloud application architecture from

ZUÑIGA ET AL. A MODEL DRIVEN APPROACH FOR THE DYNAMIC...

the Adaptation Pattern Repository. In the following step, they execute M2T transformations in
order to generate Reconfiguration Plan Specific for Cloud Provider cloud artifacts that opera-
tionalize the selected adaptation patterns according to: the increment integration specification,
Cloud Artifacts Model and cloud platforms on which the services will be deployed. We consider
patterns in which the integration: i) changes the implementation logic of an already deployed
orchestration service; ii) requires the deployment of a new orchestration service in order to
integrate new services with already existing ones; and iii) changes the implementation logic of
an orchestration service and the services that participate in an interaction.

Finally, the Extended Increment Architecture Model is used as the input of the M2M trans-
formations that update the Current Architecture Model according to the architectural impact
described in the increment integration specification (represented in the input model).

6. Case Study
To illustrate the use of our approach, in this section we present an excerpt of a case study
(adapted and extended from [3]) dealing with shipping of products among commercial partners.
A manufacturing company wished to improve the technological support its dealers and partners
were provided with. With this purpose, it considered building and deploying cloud services in
an incremental manner. The initial version supported the fulfillment of dealers’ orders and pro-
vide dealers with cloud services that would allow them to place and manage their orders, thus
allowing a direct interaction between the customer’s IT systems and the company’s systems.
The company then needed to incorporate a shipping process, and Increment-1 therefore pro-
vided the transport partner with cloud services to manage the orders to be shipped.

An explanation of how the DIARy-specification-profile and the model defined in our ap-
proach were used to support the activities of the DIARy-process is shown below.

6.1. Supporting the Specify Increment Integration Activity
The modeling tasks required in this activity were performed by using Papyrus, an Eclipse Mod-
eling Framework (EMF) based modeling environment designed as an open source Eclipse com-
ponent. In this activity, software architects take as input the Increment Architecture Model (see
Fig. 4a) and the Current Architecture Model (see Fig. 4b), which were built by using the SoaML
profile and the DIARy-specification-profile, respectively. The firs model describe the architec-
ture of the Increment-1 by using a high-level representation of its services and their relation-
ships (see «ServicesArchitecture» in Fig. 4a). It is a SoaML model and therefore includes the
modeling of its internal components (e.g., interfaces that define a role type, interaction coordi-
nation – orchestration-, message types); these are not, however, shown in this paper for reasons
of space. SoaML also provides various approaches with which to specify service architectures;
we followed the Service Contract based approach because it is the most suitable when more
than two parties are involved in a service [3]. The Current Architecture Model (see Fig. 4b) is,
meanwhile, used to identify the architectural elements of the current architecture which, after
integration, will change or will interoperate with architectural elements of the increment.

Integration of Increment-1 replaced the service Place Order (shown in bold type in Fig. 4b)
with the service Order With Shipping (shown in bold type in Fig. 4a). The integration was
modeled by applying the DIARy-specification-profile to the Increment Architecture Model (see
Fig. 4a); the architectural element «ServicesArchitecture» Increment-1 was then tagged by us-
ing the stereotype «ExtendedIncrementArchitecture»; finally, its internal parts were tagged in
order to specify how they change the current architecture (shown in bold type in Fig. 4c). For
instance, the «ServiceContractUse» purchacse:OrderWithShipping and its related «Role Bind-
ing» were tagged with architecturalImpact = Add. Additionally, the «ServiceContractUse»
purchase:PlaceOrder and its related «RoleBinding», which are not part of the «ExtendedIncre-
mentArchitecture» element but will be replaced owing to integration, were included and tagged
with architecturalImpact = Delete (shown in bold-italics in Fig. 4c). However, the manufac-
turer: Manufacturer «ParticipantUse» already existed in the «ExtendedIncrementArchitecture»
element but its interface implementation needed to be updated to include the shipping logic,

ISD2015 HARBIN

and it was therefore tagged with architecturalImpact = Modify.
After specifying integration impact, the software architects specify how service’s workload

changes would be managed. The Order With Shipping service is expected to be a highly de-
manded service in which delays will not be allowed, and it was therefore tagged as elastic-
ityLevel=High and delayLevel=None.

Fig. 4. (a) Increment Architecture Model, (b) Current Architecture Model, (c) Extended Incre-
ment Architecture Model

The output of this activity was the Extended Increment Architecture Model. An explanation
of how this activity output was used to generate the cloud artifacts that facilitate the dynamic
architecture reconfiguration is provided in the following section.

6.2. Supporting the Reconfigure Architecture Activity
In this activity, we implemented the Cloud Artifacts Model as an Ecore model in EMF, and
defined model transformations using ATLAS Transformation Language (ATL) to generate it
(Fig. 5a). The model transformation alternative that was applied was selected according to Ta-
ble 1, taking into account that the «ServiceContractUse» purchase:OrderWithShipping (see Fig.
4c) requires elasticityLevel=High and delayLevel=None.

After generating the Cloud Artifacts Model, it was completed by using the EMF Ecore ed-
itor. Setting classes were created to specify deployment configurations (e.g., ports that must be
opened, certificates that must be installed), along with service configurations (e.g., the Role
Instances setting’s initial value was set at 2 in order to satisfy the elasticityLevel=High require-
ment). Once completed, the M2T transformations generated cloud artifacts that were specific
to a cloud platform; Table 2 shows the mapping between the Cloud Artifacts Model’s meta-
model classes and the cloud artifacts required to implement their instances in Microsoft Azure.
We chose to deploy cloud artifacts in Microsoft Azure because it is better suited to service-
oriented-architecture based applications [19]. The cloud artifacts generated were therefore
.NET/WFC-compliant (Windows Communication Foundation), while Visual Studio 2013 was
used as the development environment.

a) «servicesArchitecture»
Increment-1

«participantUse»
 : Dealer

«participantUse»
 : Manufacturer

«participantUse»
 : Shipper

«collaborationUse»
OrderWithShipping

provider

shippingProvider

consumer

«servicesArchitecture»
Dealer Network

«participantUse»
 dealer: Dealer

representCloudArtifact=true

«participantUse»
manufacturer: Manufacturer
representCloudArtifact=true

«serviceContractUse»
purchase: PlaceOrder

representCloudArtifact=true
elasticityLevel=Hig
delayLevel=None

providerconsumer

b)

c) «extendedIncrementArchitecture»
Increment-1

«serviceContractUse»
purchase: PlaceOrder

representCloudArtifact=true
architecturalImpact=Delete«participantUse»

 dealer: Dealer
representCloudArtifact=true
architecturalImpact=Reference

«participantUse»
manufacturer: Manufacturer
representCloudArtifact=true
architecturalImpact=Modify«serviceContractUse»

 purchase: OrderWithShipping
representCloudArtifact=true
elasticityLevel=High
delayLevel=None
architecturalImpact=Add

«roleBinding»
{architecturalImpact=Delete}

consumer

«roleBinding»
{architecturalImpact=Add}

consumer
«roleBinding»

{architecturalImpact=Add}

provider

«roleBinding»
{architecturalImpact=Delete}

provider

«roleBinding»
{architecturalImpact=Add}

shippingProvider
«participantUse»
 shipper: Shipper

representCloudArtifact=true
architecturalImpact=Add

ZUÑIGA ET AL. A MODEL DRIVEN APPROACH FOR THE DYNAMIC...

Table 2. Excerpt of the mapping among architectural elements, Cloud Artifacts Model’s meta-
model classes and cloud artifacts used in Microsoft Azure.

Architectural
element

Cloud Artifacts Model’s
metamodel classes

Cloud artifacts
in Microsoft Azure

Service Contract Deployment Project Azure Cloud Service Project
DynamicConfiguration ServiceConfiguration.Cloud.cscfg
Interaction Project WCF Service Web Role Project
MessageType Class decorated with [Message Contract]
DataType DataContract/Class/Enumeration
Interface Interface decorated with [ServiceContract]
OrchestrationService WCF Workflow Service
DynamicConfiguration Web.config

Web Service Description Language (WSDL) files are used to describe services and allow
interoperability between platforms. We chose to define M2T transformations to generate WCF-
compliant artifacts (classes) and employed Visual Studio to generate WSDL files from these
classes rather than define M2T transformations to generate WSDL files; however, our meta-
model supports both approaches by using the representation attribute from the Artifact class.
We did not generate WSDL files because when imported into a development environment, it
generates its own WSDL representation which differs from the original, signifying that devel-
opers still need to do additional work in order to make the tool to generate a WSDL that is able
to interact with other platforms [18]. We similarly generated WCF Workflows Services to im-
plement orchestrations rather than using the Business Process Execution Language (BPEL).

Fig. 5b shows the cloud artifacts that implement the architectural element «ServiceCon-
tract» OrderWithShipping as an orchestration service, in accordance with the cloud artifacts
organization described in the previously generated Cloud Artifacts Model (see Fig. 5a).

Fig. 5. (a) Screenshot of an excerpt of the Clod Artifacts Model corresponding to Increment-1,
(b) Screenshot of the cloud artifacts that implement the OrderWithShipping service

After deploying the artifacts generated, Invoked EndPoints in the Cloud Artifacts Model
related to the orchestration cloud service (OrchestrationServiceBehaviorOrderWithShipping)
were updated with information corresponding to the Exposed EndPoints of cloud services that
participate in the interaction. In order to allow the communication with the new orchestration
service, the Invoked EndPoint of the cloud service belonging to the participant that initiates
interaction (Dealer’s Front End Service) was simultaneously updated with information from
the Exposed EndPoint corresponding to the orchestration cloud service. Once updated, the M2T
transformations generated the cloud artifacts that make up the Reconfiguration Plan Specific
for Cloud Provider, which included some XML Document Transform (XDT) files used in Vis-
ual Studio to modify service configuration files while the deployment takes place. The follow-
ing source code is an excerpt of the XDT file generated to update the Dealer’s Front End Service
configuration, changing its binding information (EndPointPurchase) at runtime:

ISD2015 HARBIN

<ServiceConfiguration serviceName="Dealer"
xmlns:xdt="http://schemas.microsoft.com/
XML-Document-Transform">
<Role name="DealerServices">
 <ConfigurationSettings>

 <Setting name="EndPointPurchase"
 value="http://../OrderWithShipping.xamlx"
 xdt:Transform="Replace"
 xdt:Locator="Match(name)" />

 </ConfigurationSettings>
 </Role>
</ServiceConfiguration>

Finally, the M2M transformations updated the Current Architectural Model (see Fig. 6).

Fig. 6. Current Architecture Model after integration of Increment-1

7. Conclusions and Further Work
In this paper, we have presented an MDD approach with which to support the dynamic recon-
figuration of cloud application architectures caused by the integration of new cloud services.
The architectural reconfiguration is achieved by replacing the orchestration of services and
bindings to the orchestrated services at runtime.

In order to specify how the integration of new services will change the current cloud appli-
cation architecture, we extended SoaML and defined the DIARy-specification-profile. We be-
lieve that this profile will improve the current increment specification practices since it allows
software architects to: i) avoid working with the overall cloud application architecture model
when specifying the increment integration; and ii) plan the reconfiguration actions that will
occur when deploying a cloud service increment beforehand. We have also proposed the Cloud
Artifacts Model, which is a high-level description of how cloud artifacts should be organized
and which cloud platform services should be used in order to implement increment integration
specifications. This model promotes: i) the application of service-oriented principles during
implementation, organizing cloud artifacts into projects that can be deployed on various plat-
forms; ii) the decoupling of software artifacts that implement orchestration from those that im-
plement participants’ internal process, thus signifying that the orchestration of services can be
offered as a service and easing the architectural reconfiguration.

We have shown the feasibility of our proposal by applying it to a case study. We are cur-
rently working on a prototype that can be used to implement alternative transformation chains
and reconfiguration services required at runtime. As further work, we plan to abstract adaptation
patterns in order to represent prescriptions of the steps required to operationalize reconfigura-
tion actions at a cloud platform-independent level, and to provide tool support in order to inte-
grate the technologies used. We also plan to design experiments with which to validate the
effectiveness of our approach in practice.

Acknowledgements
This research is supported by the Value@Cloud project (MINECO TIN2013-46300-R); Facul-
tad de Ingeniería, Universidad de Cuenca-Ecuador; and the Microsoft Azure Research Awards.

«servicesArchitecture»

«participantUse»
 dealer: Dealer

representCloudArtifact=true

«participantUse»
manufacturer: Manufacturer
representCloudArtifact=true«participantUse»

 shipper: Shipper
representCloudArtifact=true

«serviceContractUse»
 purchase: OrderWithShipping
representCloudArtifact=true
elasticityLevel=High
delayLevel=None

shippingProvider

consumer provider

Dealer Network

ZUÑIGA ET AL. A MODEL DRIVEN APPROACH FOR THE DYNAMIC...

References
[1] Ardagna, D., Nitto, E. Di, Milano, P., Petcu, D., Sheridan, C., Ballagny, C., Andria, F.

D., and Matthews, P.2012, “MODACLOUDS : A Model-Driven Approach for the
Design and Execution of Applications on Multiple Clouds,” pp. 50–56.

[2] Bergmayr, A., Troya, J., Neubauer, P., Wimmer, M., and Kappel, G.2014, “UML-
based Cloud Application Modeling with Libraries , Profiles , and Templates,” in In
Proc. Workshop on CloudMDE, pp. 56–65.

[3] Berre, A. J.2008, “Service Oriented Architecture Modeling Language (SoaML)-
Specification for the UML Profile and Metamodel for Services,” Object Manag. Group.

[4] Brandtzæg, E., Mosser, S., and Mohagheghi, P.2012, “Towards CloudML, a Model-
based Approach to Provision Resources in the Clouds,” in ECMFA, pp. 18–27.

[5] Breivold, H. P., Crnkovic, I., Radosevic, I., and Balatinac, I.2014, “Architecting for the
Cloud: A Systematic Review,” Int. Conf. on Computational Science and Engineering.

[6] Brogi, A., Ibrahim, A., Soldani, J., Carrasco, J., Cubo, J., Pimentel, E., and D’Andria,
F.Feb. 2014, “SeaClouds,” ACM SIGSOFT Softw. Eng. Notes, vol. 39, no. 1, pp. 1–4.

[7] Cámara, J., Martin, J. A., Salaun, G., Cubo, J., Ouederni, M., Canal, C., and Pimentel,
E.2009, “Itaca: An Integrated Toolbox for the Automatic Composition and Adaptation
of Web Services,” in 31st Int. Conf. on Software Engineering, pp. 627 – 630.

[8] Ermagan, V. and Krüger, I.2007, “A UML2 Profile for Service Modeling,” Model
Driven Eng. Lang. Syst., vol. 4735, pp. 360–374.

[9] Fehling, C., Leymann, F., Retter, R., Schupeck, W., and Arbitter, P.Cloud Computing
Patterns: Fundamentals to Design, Build and Manage Cloud Apps. 2014, Springer.

[10] Gomaa, H., Hashimoto, K., Kim, M., Malek, S., and Menascé, D.2010, “Software
Adaptation Patterns for Service-Oriented Architectures,” in ACM Symposium on
Applied Computing, pp. 462–469.

[11] Guillén, J., Miranda, J., Murillo, J. M., and Canal, C.2013, “A UML Profile for
Modeling Multicloud Applicat.,” in Service-Oriented and Cloud Computing.

[12] Homer, A., Sharp, J., Brader, L., Narumoto, M., and Swanson, T.Cloud Design
Patterns: Prescriptive Architecture Guidance. 2014, Microsoft patterns & Practices.

[13] IEEE.2000, “Recommended Practice for Architectural Description of Software-
Intensive Systems,” (IEEE Std 1471-2000), IEEE Computer Society.

[14] Insfrán, E., Gonzalez-Huerta, J., and Abrahão, S.2010, “Design Guidelines for the
Develop. of Quality-Driven Model Transformations,” MoDELS, pp. 288–302.

[15] Johnston, S.2005, “UML 2.0 Profile for Software Services,” IBM Dev. http//www.
ibm. com/developerworks/rational/library/05/419_soa.

[16] Lane, S., Gu, Q., Lago, P., and Richardson, I.2013, “A Pragmatic Approach for Anal.
and Design of Service Inventories,” in Service Oriented Computing and Applicat.

[17] Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., and Tang, A.2013, “What Ind.
Needs from Architectural Languages,” IEEE Trans. Softw. Eng., vol. 39, no. 6.

[18] Mcgregor, S., Russ, T., Wilde, N., Gabes, J. P., Hutchinson, W., Duhon, D., and Raza,
A.2012, “Experiences Implementing Interoperable SOA in a Security-Conscious Env.”

[19] Muppalla, A. K., Pramod, N., and Srinivasa, K.2013, “Efficient Practices and
Frameworks for Cloud-Based Application Development,” in Software Engineering
Frameworks for the Cloud Computing Paradigm, Springer, pp. 305–329.

[20] Parameswaran, a. V. and Chaddha, a.2009, “Cloud Interoperability and
Standardization,” Infosys Technol. Limited/SETLabs Briefings, vol. 7, no. 7.

[21] Perepletchikov, M., Ryan, C., Frampton, K., and Schmidt, H.2008, “Formalising
Service-Oriented Design,” J. Softw., vol. 3, no. 2, pp. 1–14.

[22] Todoran, I., Hussain, Z., and Gromov, N.Aug. 2011, “SOA Integration Modeling: An
Evaluation of how SoaML Completes UML Modeling,” IEEE 15th Int .Enterprise
Distrib. Object Comput. Conf. Work., pp. 57–66.

[23] Zuñiga-Prieto, M., Gonzalez-Huerta, J., Abrahao, S., and Insfran, E.2014, “Towards a
Model-Driven Dynamic Architecture Reconfiguration Process for Cloud Services
Integration,” in 8th Int. Workshop on Models and Evolution co-located with MODELS.

