
24TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2015 HARBIN)

A Monitoring Infrastructure for the Quality Assessment of Cloud

Services

Priscila Cedillo icedillo@dsic.upv.es
Department of Computer Systems and Computation, Universitat Politècnica de València

Valencia, Spain

Javier Gonzalez-Huerta gonzalez_huerta.javier@uqam.ca
Départment d’Informatique, Université du Québec à Montréal

Montreal, Canada

Silvia Abrahao sabrahao@dsic.upv.es
Department of Computer Systems and Computation, Universitat Politècnica de València

Valencia, Spain

Emilio Insfran einsfran@dsic.upv.es
Department of Computer Systems and Computation, Universitat Politècnica de València

Valencia, Spain

Abstract

Service Level Agreements (SLAs) specify the strict terms under which cloud services must be

provided. The assessment of the quality of services being provided is critical for both clients

and service providers. In this context, stakeholders must be capable of monitoring services

delivered as Software as a Service (SaaS) at runtime and of reporting any eventual non-

compliance with SLAs in a comprehensive and flexible manner. In this paper, we present the

definition of an SLA compliance monitoring infrastructure, which is based on the use of

models@run.time, its main components and artifacts, and the interactions among them. We

place emphasis on the configuration of the artifacts that will enable the monitoring, and we

present a prototype that can be used to perform this monitoring. The feasibility of our proposal

is illustrated by means of a case study, which shows the use of the components and artifacts in

the infrastructure and the configuration of a specific plan with which to monitor the services

deployed on the Microsoft Azure© platform.

Keywords: Model Driven Engineering, Models@run.time, Quality Assessment, Cloud

Services, Service Level Agreement, Software as a Service.

1. Introduction

Software-as-a-Service (SaaS) is a an emerging software deployment model that makes

software available entirely through the use of a web browser, while hiding the details

regarding where the software is hosted or its underlying architecture [1]. SaaS is increasingly

being used by web-based applications owing the benefits it provides for both users and

service providers [2]. The terms under which a SaaS application is provided must be

expressed by using Service Level Agreements (SLAs). Each service is typically accompanied

by an SLA that defines the minimal guarantees that the cloud provider offers to its customers

[3] (e.g. ensuring the availability of a service at least 99.5% of the time). Service providers are

becoming interested in monitoring cloud services in order to assess compliance with the SLA,

thus avoiding possible penalizations and improving service quality [4]. On the customer side,

service monitoring provides information and Key Performance Indicators (KPIs) that are

useful in the decision-making process [5].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301367116?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AUTHOR ET AL. A MONITORING INFRASTRUCTURE FOR THE QUALITY...

Traditional monitoring technologies are restricted to static and homogeneous

environments, and cannot therefore be appropriately applied to cloud environments [6]. Cloud

computing has led to the emergence of new issues, challenges, and needs as regards

measuring quality (e.g. elasticity, scalability, adaptability, timeliness) [5]. Moreover, when

compared with other distributed systems such as Grid Computing, the monitoring of a cloud

is more complex because of the differences in both the trust model and the view of

resources/services presented to the user [7], in addition to the presence of multiple layers and

service paradigms [5]. Unfortunately, existing cloud and general purpose monitoring solutions

have several limitations, as reported by Muller et al. [8]: the SLAs they support are not

sufficiently expressive to model real-world scenarios. They couple the monitoring

configuration with a given SLA specification, the explanations of the violations are difficult

to understand and even potentially inaccurate, and some proposals either do not provide an

architecture or the cohesion of their elements is low. Furthermore, it is important to have

flexible quality monitoring infrastructures that will allow service providers to modify the non-

functional requirements (NFRs) to be monitored, based on SLAs variations.

We believe that Model Driven Engineering (MDE) may be a solution as regards

providing the flexibility required to monitor infrastructures. However, establishing all the

NFRs to be monitored when designing the monitoring infrastructure is not always possible

(e.g., owing to SLA renegotiations, the addition of new NFRs to be monitored, changes in the

cloud platform). In this context, Baresi and Ghezzi [9] advocate that future software

engineering research should be focused on providing software with intelligent support at

runtime, thus breaking across the current rigid boundary between development-time and

runtime. It is therefore necessary to define approaches that will allow cloud services to be

monitored and will also permit the addition of new requirements or the modification of

existing ones at runtime without interrupting the service execution. This challenge can be

confronted by using models@run.time [9].

In a previous paper, we presented the definition of a monitoring process for cloud services

by using models@run.time [10], in which we established the tasks involved in the monitoring

process. In this paper, we extend that work by presenting the monitoring infrastructure that

using models@run.time is able to: i) retrieve data from the cloud services during their

execution; ii) calculate derived metrics based on these data; and iii) report any eventual SLA

violations. The contribution of this paper is therefore the definition of a monitoring

infrastructure, its main components (i.e. Monitoring Configurator and Monitoring

Middleware) and the artifacts used by the Monitoring Configurator (i.e., quality meta-models

with which to generate the Requirements Quality Model, the SaaS Quality Model and the

Runtime Quality Model), along with the interactions among them. The feasibility of our

proposal is illustrated by means of a case study, which shows the use of the components and

artifacts involved in the infrastructure and the configuration of a specific monitoring plan for

the Microsoft Azure© platform.

The paper is structured as follows: In Section 2, we discuss the existing solutions used to

monitor cloud services. In Section 3, we present the monitoring infrastructure, its components

and artifacts, in addition to describing the meta-models that support the definition and

generation of the model@run.time. In Section 4, we present a case study performed to

illustrate the feasibility of the proposed monitoring infrastructure, focusing on the monitoring

configuration. Finally, in Section 5, we present our conclusions and discuss future work.

2. Related Work

Several studies whose aim has been to analyze the monitoring tools and approaches that are

available (e.g., [10], [5]) and their weaknesses and needs have appeared over the last few

years. Fatema et al. [10] report the results of a survey in which they analyze cloud and general

purpose monitoring tools. They identify practical capabilities that an ideal monitoring tool

should possess in order to fulfill the objectives of both cloud providers and customers in

different cloud operational areas. They conclude that most general purpose monitoring tools

were not designed with the cloud in mind, signifying that most monitoring capabilities (e.g.

ISD2015 HARBIN

multi-tenancy, scalability, non-intrusiveness) are improved using cloud based monitoring

tools. However, one of the drawbacks of cloud monitoring tools is their portability. This

reinforces the fact that many cloud specific monitoring tools are commercial and vendor

dependent, which makes the tools less flexible and portable and means that their results are

neither extensible nor comparable to other platforms. Aceto et al. [5] analyze and discuss the

properties of a monitoring system for the cloud. They conclude that cloud monitoring tools

should have quality characteristics (e.g., scalability, elasticity, adaptability) that will enable

them to tackle the challenges that cloud monitoring implies. However, they also conclude that

current solutions still require considerable effort if desirable characteristics are to be attained.

Many public cloud providers currently offer their customers the ability to monitor cloud

services using the monitoring tools available for CPU, storage and network [11]. These tools

are closely integrated with their own cloud solutions. They are only concerned with

monitoring the quality of the service attributes for the hardware resources (CPU, storage, and

network) and lack the ability to monitor application-specific QoS parameters and SLA

requirements (i.e., latency, performance). In addition, the majority of these commercial tools

(e.g., CloudWatch, LogicMonitor) are not sufficiently flexible to allow service providers to

extend the QoS parameters provided in order to monitor the fulfillment of SLAs.

Various approaches have also been proposed in academic environments. For instance,

Emeakaroha et al. [12] propose an application monitoring architecture named Cloud

Application SLA violation Detection architecture (CASViD). This architecture monitors and

detects SLA violations on the application layer, and includes tools for resource allocation,

scheduling, and deployment. Although their approach provides a good solution, it does not

have a flexible means to change the NFRs and metrics to be monitored at runtime. Katsaros et

al. [13] present a monitoring system that facilitates on-the-fly self-configuration in terms of

both the monitoring time and the monitoring parameters. They propose the use of scripts to

collect data; however, they do not specify how NFRs are matched with raw data gathered

from scripts and how they interact with cloud services. Müller et al. [8] designed and

implemented SALMonADA, a service-based system with which to monitor and analyze SLAs

in order to provide an explanation of violations. They describe SLAs using a Monitoring

Management Document (MMD) to be consumed by the monitoring infrastructure; however,

the platform does not support those users who wish to choose alternative means to measure

quality requirements. Smit et al. [14] present and implement an architecture using stream

processing to provide service monitoring. They emphasize that their infrastructure is intended

be used to monitor hybrid clouds and two tiered cloud architectures working on streaming

data. The possibility of gathering information therefore depends on the information that can

be provided by other solutions. Montes et al. [15] propose a cloud monitoring taxonomy,

which is used as the basis to define a layered cloud monitoring architecture. They implement

GMonE, a general-purpose cloud monitoring tool, which is claimed to cover all aspects of

cloud monitoring by specifically addressing the needs of modern cloud infrastructures.

Similarly, Povedano-Molina et al. [16] propose DARGOS, a distributed architecture for

resource management and monitoring in clouds, which ensures an accurate measurement of

physical and virtual resources in the cloud in an attempt to keep overheads down. However,

the latter two approaches confront the provision of only physical and virtual resources and do

not emphasize the specific quality aspects of SaaS. In summary, to the best of our knowledge

commercial tools are mostly tightly coupled with certain cloud platforms, support the

monitoring of specific NFRs, and have pre-established low-level metrics; they are therefore

not sufficiently versatile to support the modification of NFRs or the customization of their

operationalizations1 at runtime. There are other proposals that allow the verification of SLA

compliance, but they are not sufficiently flexible to support different operationalizations

needed according to the specific cloud platform involved.

1 Operationalizing a measure consists of establishing a mapping between the generic description of the measure

and the concepts that are represented in the software artifacts to be measured [28].

AUTHOR ET AL. A MONITORING INFRASTRUCTURE FOR THE QUALITY...

3. Monitoring Infrastructure

In this section, we present the Monitoring Infrastructure that has been designed to support the

monitoring process defined in [17] (see Figure 1). This infrastructure allows: i) the

specification and configuration of NFRs to be monitored; ii) an interaction with cloud

services to assess their quality at runtime; iii) and the generation of reports containing any

eventual SLA violations. In order to achieve these goals and provide the required degree of

flexibility when defining NFR metrics, in addition to supporting different means to gather

information from cloud services, we have defined a set of components and artifacts that

conform to the monitoring infrastructure by using models@run.time.

The Monitoring Infrastructure has two main components: the Monitoring Configurator

and the Monitoring & Analysis Middleware. The Monitoring Configurator uses the

Monitoring Requirements Model and the SaaS Quality Model to configure the monitoring of

services and obtain the Runtime Quality Model. The Monitoring & Analysis Middleware uses

this Runtime Quality Model and relies on two engines: the Measurements Engine, which

permits cloud service monitoring through the use of the raw service quality data gathered

from cloud services and takes the measurements, and the Analysis Engine, which compares

the expected values with the monitored values and can generate the SLA violations report.

The details of each process and artifact are detailed in the following subsections.

Fig. 1. Monitoring Infrastructure

3.1. Monitoring Configurator

The Monitoring Configurator is a component of the Monitoring Infrastructure (see Figure 1)

and has a front-end which is used by stakeholders to configure the monitoring directives. It

allows the high level NFRs to be monitored that are included in the Monitoring Requirements

Model and the raw service quality data retrieved from cloud services to be matched. This

matching is supported by the SaaS Quality Model, which acts as a guide that allows the

selection of appropriate operationalizations for metrics. When the matching is done by

stakeholders, the Runtime Quality Model is generated and can be consumed by the Monitoring

& Analysis Middleware. A detailed description of the artifacts involved in the Monitoring

Configurator and the interactions among them is shown below.

Monitoring Requirements Model

This model specifies the NFRs to be monitored in a way that can be comprehended by the

Monitoring Infrastructure. It is compliant with the WSLA Language Specification [18] in

order to represent NFRs in a standardized manner. Moreover, in our solution, the model is

extended to support additional NFRs that are not part of SLAs but which may be of interest to

stakeholders. Figure 2 shows the monitoring requirements meta-model, which incorporates all

the SLA sections. The SLA specifies the parties, which are divided into signatory parties and

supporting parties. On the one hand, signatory parties, namely service provider and service

customer, are assumed to “sign” the SLA, while on the other, supporting parties are sponsored

by signatory parties to provide service measurements and audits. The meta-model includes the

SLAParameter meta-class, which represents the NFRs to be monitored and the Metrics used

Cloud Services

Monitoring & Analysis
Middleware

Monitoring Configurator

Monitoring

Requirements

Model

Raw Data

Counters

SaaS Quality

Model

Runtime

Quality Model

Analysis Engine

Measurements Engine

Raw Service
Quality Data

Monitoring Infrastructure

List of Raw Data
Counters

NFRs Violations
Report

SLA+Additional
NFRs

ISD2015 HARBIN

to perform measurements. A Service Object is the abstraction of a service, whose quality

characteristics and attributes are relevant as regards defining the SLA’s terms. Characteristics

and attributes are specified as SLAParameters. Each SLAParameter can be measured by using

metrics. The SLAParameter meta-class has an attribute named isSLATerm, which

differentiates an SLA term from an NFR that is not included in the SLA. The Obligation

meta-class contains two types of obligations: i) a Service Level Objective, which is a

guarantee of a particular state of SLA parameters in a given time period. (e.g. the average

response time must be 5 ms) and ii) The Action Guarantee, which specifies the provider’s

commitment to doing something in a specific situation [21] (e.g. if a violation of a guarantee

occurs, a notification is sent specifying a penalty). The values used as thresholds are obtained

from the Action Guarantee meta-class (e.g. the response time must be less than 0.7 unless the

transaction rate is greater than 1000). In this meta-model, a metric can be measured by using

the formula agreed by the parties. A more detailed specification of the WSLA used to define

the meta-classes, along with examples, can be found in [18].

Fig. 2. Monitoring Requirements Meta-model

SaaS Quality Model

This model is aligned with the ISO/IEC 25010 standard (SQuaRE) [19]. Figure 3 shows the

meta-model used to define the SaaS Quality Model. This model allows the definition of the

whole set of Characteristics, Sub-characteristics, Attributes, their Impact (i.e., the

relationships among attributes), and Metrics that specify how NFRs should be measured to

assess the quality of cloud services. Each metric can be operationalized in different ways. A

metric Operationalization can be considered at different Cloud Levels (i.e., SaaS, PaaS, IaaS).

This is useful owing to the fact that there are a number of quality requirements (e.g.,

scalability, elasticity, security) that need to be monitored for different levels of service

provision [5]. Moreover, it is important to specify the stakeholder that will use the monitoring

information; for example, if the stakeholder is a service provider, it may be interesting to

know the average number of users requesting a service at a particular time. The purpose of

having Perspectives associated with each operationalization is to express whether a given

operationalization is stakeholder-specific.

This information is useful during the processes of contrasting, improving measurements, or

choosing different formulas with which to measure each NFR. The DirectMetricOpera-

tionalization meta-class represents a measure of an attribute that does not depend upon any

other measure, whereas the IndirectMetricOperationalization meta-class represents measures

that are derived from other DirectMetricOperationalizations or IndirectMetricOperationali-

zations. The Platform and MeasurementMethod meta-classes have been added to the SaaS

Quality Model to maintain a list of raw data counters, which are platform dependent, and

Parties

description : EString

SupportingParty

rol : RolType
SignatoryParty

sigType : SignatoryType

SLADocument

name : EString

ServiceDefinition

name : EString

Obligation

nameObligation : EString

logicExpression : LogicExpression

ServiceObject

name : EString

SLAParameter

name : EString

unit : EString

isSLATerm : EBoolean

Metric

name : EString

type : DataType

metricURI : EString

metricMacroName : EString

MeasurementDirective

name : EString

measurementURI : EString

resultType : DataType

Function

name : EString

resultType : DataTypeServiceLevelObjective

validity : EString

ActionGuarantee

name : EString

Guarantee

nameGuarantee : EString

Party

name : EString

<<enumeration>>

SignatoryType

serviceProvider

serviceCustomer

Schedule

name : EString

periodStart : EString

periodEnd : EString

intervalHours : EDouble

intervalMinutes : EDouble

Trigger

name : EString

time : EString

Action

name : EString

type : EString

file : EString

soapBindingName : EString

soapOperationName : EString

Unit

name : EString

Operand

name : EString

OperationDescription

name : EString

base : EString

ContactInformation

address : EString

city : EString

Constant

name : EString

type : DataType

value : EString

<<enumeration>>

DataType

float

string

integer

double

long

byte

boolean

time

<<enumeration>>

SlaParComType

source

pull

push

SLAParameterCommunication

type : SlaParComType

Operation

name : EString

ObligationGroup

name : EString

<<enumeration>>

LogicExpression

predicate

and

or

not

implies

0..1

2

0..*

1

1..2

1

0..*

0..*

0..*

1..*

0..1

0..*

0..*

1

0..*

0..*

0..*

1..*
1

1

1

1

1

1

1

0..*

1

0..*

0..*

0..1

1

0..*

1

1

0..*

0..*1

0..*

0..1

0..1
1

3

0..1

0..*

0..1

0..*

0..*

0..*

0..1

1

1

0..*

0..*

0..1

0..1

0..*

1

0..*

0..1

0..1

0..*0..1

0..*

1

AUTHOR ET AL. A MONITORING INFRASTRUCTURE FOR THE QUALITY...

because they facilitate the retrieval of information from a specific platform. Finally, the meta-

model includes particularities of each operationalization, such as the Unit meta-class, which

expresses the magnitude related to a particular quantity. The Scale meta-class represents a set

of values with continuous or discrete properties that are used to map the operationalization.

Fig. 3. SaaS Quality Meta-model

Runtime Quality Model

This is a model@run.time, which specifies the monitoring requirements, metrics,

operationalizations, and configurations that will be used during the monitoring. Lehmann et

al. [20] argue that meta-models at runtime must provide modeling constructs that will enable

the definition of: (a) A prescriptive part of the model, specifying what the system should be

like; (b) A descriptive part of the model specifying what the system is like; (c) Valid model

modifications of the descriptive parts, executable at runtime; (d) Valid model modifications of

the prescriptive parts, executable at runtime; (e) Causal connection, which is in the form of an

information flow between the model and the entity being monitored. Figure 4 shows the

Runtime Quality Meta-model, which is an extension of the SaaS Quality Model. It has many

of the meta-classes included in the SaaS Quality Model described previously, plus meta-

classes that represent the prescriptive part, the descriptive part, and the characteristics of the

cloud platform that allow the causal connection.

Fig. 4. Runtime Quality Meta-model

The CloudService meta-class also describes the service to be monitored. The prescriptive

part of the model thus includes the Threshold, which can be a SLATerm threshold, obtained

from the obligations part of the SLA, or an AdditionalNFR threshold set by the stakeholder.

The descriptive part of the model is formed of the RawDataInstance meta-class, which

contains the values captured directly from the cloud, and the CalculatedMetric meta-class,

SaaSQualityModel

name : EString

Attribute

name : EString

definition : EString

Operationalization

level : CloudLevel

perspective : Perspective

Metric

name : EString

description : EString

DirectMetric

name : EString

IndirectMetric

name : EString

Scale

scaleName : EString

Impact

description : EString

levelImpact : LevelImpact

sign : EString

MeasurementFunction

description : EString

formula : EString

MeasurementMethod

parameter : EString

Platform

name : EString

<<enumeratio...

CloudLevel

SaaS

PaaS

IaaS

<<enumeration>>

LevelImpact

high

medium

low

MeasurementFunctionPlatfo rm

description : EString

formula : EString

<<enumeration>>

Perspective

serviceProvider

serviceConsumer

broker

carrier

all

Characteristic

name : EString

Unit

name : EString

1

0..*

1

0..*

1

0..*

0..*

0..1

0..*

0..*

0..*

1 0..*

0..*1

0..*
0..*

1

1

0..*

0..*

1

1

0..*

0..1

1

0..*

0..*

1

0..*0..1

0..*

0..1
0..*

1

1

0..*

0..*

1

QualityRuntimeModel

name : EString

description : EString

Characteristic

name : EString

Attribute

name : EString

definition : EString

CloudService

name : EString

isProper : EString

sLARef : EString

Metric

name : EString

description : EString

Operationalization

description : EString

level : CloudLevel

pers : Perspective

Scale

name : EString
Unit

name : EString

Indicator

name : EString

IndirectMetricOp

name : EString

DirectMetricOp

name : EString

AnalysisModel

name : EString

DecisionCriteria

name : EString

Threashold

name : EString

action : EString

satisfied : EBoolean

tolerance : EFl oat

SLATerm

penalty : EFloat

AdditionalNFR

description : EString

RawDataInstance

description : EString

value : EString

timeStamp : EString

MeasurementFunction

name : EString

formula : EString

<<enumeration>>

CloudLevel

SaaS

PaaS

IaaS

ConfigurationFile

address : EString

contract : EString

binding : EString

securityKey : EString

storageConnection : E String

Impact

name : EString

levelImpact : LevelImpact

sign : EString

CalculatedMetric

description : EString

value : EString

timeStamp : EString

<<enumeration>>

LevelImpact

high

medium

low

NFR

name : EString

description : EString

nFRReference : EString

MeasurementMethod

parameter : EString

<<enumeration>>

MeasurementMethodType

directPlatformParameter

customPlatformParameter

wrapperOrAPI

<<enumeration>>

Perspective

serviceProvider

serviceConsumer

broker

carrier

all

1

0..*

1

1

0..1

0..* 0..1

1

1

0..*

1 0..*

0..*

0..1
0..*

1

0..*1

0..*

1
0..*

1

0..*

1

0..11

1

1

0..11

1

0..*

1

0..*

1
0..*

0..*

1

0..*0..1

0..*

0..*

1

0..*

0..*

0..*

1

0..*

1

0..*

0..1

Causal Connection Prescriptive Part

Descriptive Part

ISD2015 HARBIN

which contains the measurement results of the calculated metrics. The ConfigurationFile

meta-class therefore contains specific information for each platform that allows an interaction

to take place between the monitoring infrastructure and the cloud service. It can therefore be

considered as the class that is used to attain the causal connection between the monitoring

infrastructure and services when a change needs to be reflected. Finally, the Indicator meta-

class represents a measure that is derived from the other measures using an Analysis Model as

a measurement approach [21]. In conclusion, the Runtime Quality Model allows our proposal

to obtain the desirable characteristics related to flexibility and maintainability, since changes

in the Runtime Quality Model can be easily reflected in the monitoring infrastructure.

Interaction Among Models

Figure 5 shows the interactions among the models. The first interaction (1) occurs between

the SaaS Quality Model and the Monitoring Requirements Model. Stakeholders can use the

SaaS Quality Model, which contains a standardized classification of characteristics, sub-

characteristics, metrics, and attributes, as support in order to define the Monitoring

Requirements Model. The second interaction (2) then occurs between the Monitoring

Requirements Model and the Runtime Quality Model. Here, the stakeholder uses the

Monitoring Configurator Interface to capture the NFRs and metrics included in the

Monitoring Requirements Model to define the Runtime Quality Model. Finally, the third

interaction (3) occurs between the Runtime Quality Model and the SaaS Quality Model. This

interaction allows the means used to gather information from cloud services to be specified.

In this scenario, the SaaS Quality Model is useful as regards matching the high level attributes

contained in the Monitoring Requirements Model with raw service quality data. Here, the

SaaS Quality Model enables a choice to be made from among many equivalent

operationalizations with different measurement methods, thus providing our approach with

flexibility. Once the interaction has been completed, the Runtime Quality Model can be used

by the Monitoring & Analysis Middleware.

Fig. 5. Interaction between Models

3.2. Monitoring & Analysis Middleware

The Monitoring & Analysis Middleware consists of the Measurements Engine, which uses the

Runtime Quality Model obtained as result of the configuration as input, and this applies

metrics with which to measure the quality of services. There is also the Analysis Engine,

which permits the analysis of quality and reports SLA violations. A detailed description of the

Monitoring & Analysis Middleware components will be addressed in future work, since the

scope of this paper is mainly focused on the monitoring configuration.

4. Case Study

An exploratory case study was performed following the guidelines presented in [22] in order

to analyze the feasibility of the configuration task. The stages of the case study are: design,

preparation, collection of data, and analysis of data, each of which is explained below.

Metric

name : EString

type : DataType

metricURI : EString

MetricMacroName : EString

Function

name : EString

resultType : DataType

Unit

name : EString

Operand

Constant

name : EString

type : DataType

value : EString 1

1

0..*

1

1

0..*

0..*1

1

0..*

Operationalization

Persp : Perspective

Metric

name : EString

DirectMetricOperationalization

name : EString

IndirectMetricOperationalization

name : EString

MeasurementFunction

name : EString

formula : EString PlatformParametersAccess

parameter : EString

Platform

name : EString

MetricDefinition

Description : EString

0..*

0..1

0..*

1
0..*

1..*

0..*

0..*

0..1

1 0..*

0..1

1..*

1..*

0..1

1

0..1

Operationalization

name : EString

pers : Perspective

IndirectMetricOp

DirectMetricOp

MeasurementFunction

name : EString

formula : EString

0..*

0..*

1

AUTHOR ET AL. A MONITORING INFRASTRUCTURE FOR THE QUALITY...

4.1. Design of the Case Study

The case study was designed by considering the five components proposed in [22]: purpose of

the study, underlying conceptual framework, research questions to be addressed, sampling

strategy, and methods employed.

The purpose of this case study is to analyze the feasibility of configuring the monitoring

of services by means of the Monitoring Configurator, and to use these configurations to

generate the Runtime Quality Model. The Monitoring & Analysis Middleware will take this

model as input to monitor the cloud services. The conceptual framework that links the

phenomena to be studied is based on the Monitoring Process [17] and an infrastructure that

supports this process (i.e., components, artifacts). The research questions to be addressed

are: a) is the strategy of configuring and matching the NFRs with quality raw data retrieved

from cloud services to obtain the desired monitoring information useable and effective?; b)

what are the limitations of the monitoring configurator?

Here, the sampling strategy is based on monitoring configuration tests carried out by a

subject who is an IT professional with programming skills and who has been working as a

Cloud Provider Service Specialist for two years. In accordance with Lethbridge et. al [23], we

have applied the second degree of data collection techniques, in which the researcher directly

collects raw data without interacting with the subject during the data collection.

In order to collect the monitoring information, we have developed a prototype of the

Monitoring & Analysis Middleware, which allows the collection of raw runtime data through

the use of the Runtime Quality Model generated in the configuration task. The monitoring

configuration was carried out as follows: the subject used the Monitoring Requirements

Model to match NFRs with quality parameters and instructions that gather information from a

service running in the cloud. The technique used to obtain feedback regarding the feasibility

of the monitoring configuration performed was an analysis of the monitoring results obtained

using a prototype of the Monitoring Engine in order to obtain the data needed to prove

whether the values gathered were those expected by the subject.

4.2. Preparation of the Case Study

The context of this case study, was a test scenario in which the subject carried out the

monitoring configuration. The SaaS Quality Model was used to support the matching between

the NFRs to be monitored and the platform information. Once this information had been

matched, it was possible to generate the Runtime Quality Model, which was then used by the

Monitoring & Analysis Middleware to gather, measure and analyze quality data obtained

from cloud services. The services used in this case study were implemented in compliance

with an Open Reference Case (ORC) proposed in [18], which was used as an open source

demonstrator to highlight the achievements of the European research project SLA@SOI. The

ORC is an extension of the CoCoMe implementation [24], which provides a service oriented

retail solution that can be used in a supermarket trading system to handle the sales and

stocking process [25]. The set of services defined by ORC was deployed as a SaaS on the

Microsoft Azure© platform. We considered the actions (i.e., create, read, update, and delete

operations) related to the inventory service and the sales service. The objective was to

configure the monitoring infrastructure in order to perform quality evaluations of cloud

services. The NFRs to be monitored were reliability and latency.

Figure 6 presents an excerpt of an instance of the Monitoring Requirements. It shows the

service, its operations (e.g NewItemInventory) and the NFRs (SLAParameters). The NFRs to

be monitored are the reliability and latency of the inventory and sales cloud services.

Reliability is defined as “the ability of an item to perform a required function under stated

conditions for a stated time period” [26]. Customers and suppliers often measure service

reliability as Defective operations Per Million attempts (DPM) [27]. In this case study, the

SLA term included the following clause: “the service could have a maximum of ten defective

operations per million” (i.e., “99.999% service reliability”). Service latency was, meanwhile,

defined as “the time that has elapsed between a request and the corresponding response”

[27], and thus “the maximum service latency is 130 ms”. The Monitoring Requirements

ISD2015 HARBIN

Model includes the DPM metric which measures reliability. It was then necessary to select the

DPM equivalent operationalization, which allows the measurement of the reliability NFR in

cloud services deployed on the Microsoft Azure © platform.

Fig. 6. Monitoring Requirements Model

Our SaaS Quality Model contains three equivalent metric operationalizations (i.e. DPM1,

DPM2, and DPM3). The subject had to select one of them depending on the Monitoring

Requirements Model and the Raw Service Quality Data enabled it to be retrieved from cloud

services. The operationalizations included in our SaaS Quality Model to calculate DPM are:

 (1)

 (2)

 (3)

The subject can select an equivalent operationalization by considering the advantages and

disadvantages of the selection (e.g. overheads, ease of gathering information). Once the

Runtime Quality Model has been generated, the Monitoring & Analysis Middleware is able to

collect information, measure data, and report SLA violations. Here, data is captured by using

the Azure Diagnostics Service. However, this could change depending on the facilities of

each cloud platform. Diagnostics contains different counters with which to obtain data from

cloud services. Here, the subject was able to use one of the three equations (1), (2), (3) to

match that selection with Diagnostics counters. Finally, the matched formula was used for the

Monitoring & Analysis Middleware using Diagnostics counters. We have developed the

Monitoring Configurator, shown in Figure 7, which allows the monitoring configuration.

Fig. 7. Model@run.time Configurator Interface

DPM 1=
OperationsAttempted - Operations Successful

Operations Attempted
* 10 6

DPM 2=
Operations Failed

Operations Attempted
* 10 6

DPM 2=
Operations Failed

OperationsSuccessful + OperationsFailed
* 10 6

AUTHOR ET AL. A MONITORING INFRASTRUCTURE FOR THE QUALITY...

4.3. Collection of Data

The data was collected in two stages: (1) when the subject carried out the configurations

depending on the NFRs specified in the Monitoring Requirements Model and matched these

NFRs with raw platform-specific data counters to generate the Runtime Quality Model using

the SaaS Quality Model; (2) when the monitoring engine gathered and measured information

provided by cloud services based on the Runtime Quality Model.

A prototype of the Monitoring & Analysis Middleware was implemented as a Microsoft

Azure cloud service, which used the Runtime Quality Model to capture the raw data from the

cloud, make measurements and store the results in a data base. Finally, Figure 8 shows the

storage table containing the metrics calculated from the cloud service.

Fig. 8. Metrics calculated by using the Monitoring Infrastructure

4.4. Analysis of Data

The monitoring configuration was analyzed so as to address our research questions. The

subject used the Monitoring Requirements Model, which contained the NFRs to be

monitored, and their metrics and thresholds. The subject then matched the metrics with the

appropriate operationalizations specific to the platform. In order to illustrate the process used

to monitor the reliability, the other NFRs were monitored following analogous steps. The

reliability threshold was 99.999%, and we the considered operationalization (1) which was set

up by matching formula (4) with the following Azure Counters:

 OperationsAttempted=@"\ASP.NET Applications(_Total_)\ Requests Total

 OperationsSuccessful=@"\ASP.NET Applications(_Total_)\ Requests Succeeded"

 DPM =
RequestsTotal−RequestsSucceded

RequestsTotal
 (4)

The RuntimeQuality Model should therefore include Formula (4). When checking whether the

monitoring infrastructure would be able to monitor the behavior of the cloud services by using

the runtime quality model generated, we intentionally introduced exceptions into the ORC

services’ source code in order to generate problems as regards reliability and latency.

It was necessary to determine whether the configuration gathers the expected information

from the cloud services by using the Runtime Quality Model and to find possible limitations

or inaccurate results. Here, we have concluded that the Runtime Quality Model produced the

expected values shown in the table presented in Figure 8, in which the exceptions introduced

were reflected in the monitoring results (the reliability offered was 99.999% and the actual

Reliability was 93.0595% for the inventory service, signifying that the SLA was violated).

Case Study Conclusions and Lessons Learned

With regard to the first research question stated for this case study, we provide support to help

the configuration of NFRs to be monitored using our approach and that the configuration was

effective as regards monitoring Azure cloud services. Moreover, the suitability of this

approach is shown by the fact that it is feasible to use the Monitoring Configurator to match

the NFRs included in the Monitoring Requirements Model with the raw service quality data

gathered from the cloud service and provide the expected information. With regard to the

second research question, the Monitoring Infrastructure is able to detect SLA violations from

a wide range of NFRs. However, it is important to take into account that not all the NFRs can

ISD2015 HARBIN

be monitored owing to the restriction of the infrastructure that provides the raw service

quality data from the services. One solution to this issue would be to use wrappers for

services in order to capture the information required in a customized manner, which

constitutes one of the next steps in our research.

As lessons learned this case study has allowed us to observe the potentialities and limitations

of our proposal. The monitoring configurator allows a wide variety of operationalizations and

platform counters to be matched. However, it depends on the facilities used to provide raw

service quality data. During the execution of the case study, several aspects related to how the

configuration can be facilitated have been discovered. For example, the SaaS Quality Model

provides a simple means to choose the operationalizations and it is possible to add

operationalizations to the SaaS Quality Model, which represents a knowledge base that saves

efforts and minimizes possible mistakes when the configuring task is being carried out.

5. Conclusions and Future Work

In this paper, we have presented a monitoring infrastructure for cloud services, which allows

data to be retrieved from cloud services in order to calculate monitoring metrics and

eventually report non-compliance with the SLA. The monitoring infrastructure uses the

Runtime Quality Model, which is generated by using two additional models: the Monitoring

Requirements Model and the SaaS Quality Model. The feasibility of the approach has been

illustrated by means of a case study which shows the monitoring of services deployed on the

Azure platform.

The use of models@run.time provides flexibility and eases maintainability when the SLA

and additional NFRs to be monitored change. Moreover, the facility of changing the model

and not the monitoring infrastructure makes it easy for users to operate and understand in the

case of their not being familiar with the middleware implementation.

As future work, we plan to deliver our Monitoring & Analysis Middleware in other

platforms (e.g. Amazon AWS, Google) to be able to monitor and analyze services deployed

in these platforms. We also plan to carry out a systematic review of the quality characteristics,

sub-characteristics, attributes, and metrics of cloud services. The findings will be included in

the SaaS Quality Model in order to study the monitoring mechanisms provided by other

commonly used cloud platforms such as Google App Engine or Amazon AWS. Moreover, we

plan to study generic means to encapsulate the raw data collected from the cloud services in

order to obtain common interfaces for many platforms (e.g., APIs, proxies, plugins,

wrappers). Finally, we plan to improve the efficiency of the proposal by taking in account

issues such as overheads, security, etc. and to empirically validate the approach using

controlled experiments.

Acknowledgments

This research is supported by the Value@Cloud project (TIN2013-46300-R), the ValI+D

fellowship program (ACIF/2011/ 235), Scholarship Program Senescyt-Ecuador, University of

Cuenca-Ecuador, NSERC (Natural Sciences and Engineering Research Council of Canada)

and Microsoft Azure for Research Award Program.

References

[1] Sriram, I., Khajeh-Hosseini, A., "Research Agenda in Cloud Technologies," in 1st

ACM Symposium on Cloud Computing, SOCC, 2010, vol. cs.DC, pp. 1–11.

[2] Song, J., Han, F., Yan, Z., Liu, G., Zhu, Z., "A SaaSify tool for converting traditional

web-based applications to SaaS application," 4th Int. Conf. CLOUD pp. 396–403, 2011.

[3] Baset, S. A., "Cloud SLAs : Present and Future," ACM SIGOPS Oper. Syst. Rev., vol.

46, no. 2, pp. 57–66, 2012.

[4] Hassan, M., Song, B., Huh, E.-N., "A market-oriented dynamic collaborative cloud

services platform," Ann. Telecommun., vol. 65, no. 11–12, pp. 669–688, 2010.

[5] Aceto, G., Botta, A., de Donato, W., Pescapè, A., "Cloud monitoring: A survey,"

AUTHOR ET AL. A MONITORING INFRASTRUCTURE FOR THE QUALITY...

Comput. Networks, vol. 57, no. 9, pp. 2093–2115, Jun. 2013.

[6] Shao, J., Wei, H., Wang, Q., Mei, H., "A Runtime Model Based Monitoring Approach

for Cloud," in IEEE 3rd Int. Conf.on Cloud Computing (CLOUD), 2010, pp. 313–320.

[7] Foster, I., Zhao, Y., Raicu, I., Lu, S., "Cloud computing and grid computing 360-degree

compared," in Grid Computing Environments Workshop(GCE), 2008, pp. 1–10.

[8] Muller, C., Oriol, M., Franch, X., Marco, J., et al, "Comprehensive Explanation of SLA

Violations at Runtime," Serv. Com. IEEE Trans., vol. 7, no. 2, pp. 168–183, 2014.

[9] Baresi, L., Ghezzi, C., "The Disappearing Boundary Between Development-time and

Run-time," Workshop on Future of Soft. Eng. Research FSE/SDP, 2010, pp. 17–22.

[10] Fatema, K., Emeakaroha, V. C., Healy, P. D., Morrison, J. P., Lynn, T., "A survey of

Cloud monitoring tools: Taxonomy, capabilities and objectives," Journal of Parallel

and Distributed Computing, vol. 74. pp. 2918–2933, 2014.

[11] Alhamazani, K., Ranjan, R., Mitra, K., Rabhi, F., Jayaraman, P. P., Khan, S. U.,

Guabtni, A., Bhatnagar, V., "An overview of the commercial cloud monitoring tools:

research dimensions, design issues, and state-of-the-art," Computing, pp. 1–21, 2014.

[12] Emeakaroha, V. C., Ferreto, T. C., Netto, M. A. S., Brandic, I., De Rose, C. A. F.,

"CASViD: Application Level Monitoring for SLA Violation Detection in Clouds," in

36th Computer Software and Applications Conf. (COMPSAC), 2012, pp. 499–508.

[13] Katsaros, G., Kousiouris, G., Gogouvitis, S. V., Kyriazis, D., Menychtas, A.,

Varvarigou, T., "A Self-adaptive hierarchical monitoring mechanism for Clouds," J.

Syst. Softw., vol. 85, pp. 1029–1041, 2012.

[14] Smit, M., Simmons, B., Litoiu, M., "Distributed, application-level monitoring for

heterogeneous clouds using stream processing," Futur. Gener. Comput. Syst., vol. 29,

no. 8, pp. 2103–2114, 2013.

[15] Montes, J., Sánchez, A., Memishi, B., et al., "GMonE: A complete approach to cloud

monitoring," Futur. Gener. Comput. Syst., vol. 29, no. 8, pp. 2026–2040, 2013.

[16] Povedano-Molina, J., Lopez-Vega, J. M., Lopez-Soler, J. M., Corradi, A., Foschini, L.,

"DARGOS: A highly adaptable and scalable monitoring architecture for multi-tenant

Clouds," Futur. Gener. Comput. Syst., vol. 29, no. 8, pp. 2041–2056, 2013.

[17] Cedillo, P., Gonzalez-Huerta, J., Insfrán, E., Abrahao, S., "Towards Monitoring Cloud

Services Using Models@run.time," in 9th Workshop on Models@run.time, 2014.

[18] Ludwig, H., Keller, A., "Web Service Level Agreement (WSLA) Language

Specification," pp. 1–110, 2003.

[19] ISO/IEC, "ISO/IEC 25010 Systems and Software Quality Requirements and Evaluation

(SQuaRE) -- System and software quality models." 2011.

[20] Lehmann, G., Blumendorf, M., Trollmann, F., Albayrak, S., "Meta-modeling Runtime

Models," in Int. Conf. on Models in Software Engineering, 2010, pp. 209–223.

[21] García, F., Bertoa, M. F., Calero, C., Vallecillo, A., Ruíz, F., Piattini, M., Genero, M.,

"Towards a consistent terminology for software measurement," Information and

Software Technology, vol. 48. pp. 631–644, 2006.

[22] Runeson, P., Höst, M., "Guidelines for conducting and reporting case study research in

software engineering," Empir. Softw. Eng., vol. 14, no. 2, pp. 131–164, Dec. 2009.

[23] Lethbridge, T. C., Sim, S. E., Singer, J., "Studying software engineers: Data collection

techniques for software field studies," Empir. Softw. Eng., vol. 10, pp. 311–341, 2005.

[24] Herold, S., Klus, H., Welsch, Y., Deiters, C., Rausch, A., Reussner, R., Krogmann, K.,

Koziolek, H., Mirandola, R., Hummel, B., Meisinger, M., Pfaller, C., "CoCoMe - The

Common Component Modeling Example," 2008, pp. 16–53.

[25] Wieder, P., Butler, J. M., Theilmann, W., Yahyapour, R., Eds., Service Level

Agreements for Cloud Computing. New York, NY: Springer New York, 2011.

[26] "Quality Excellence for Suppliers of Telecommunications Forum (Quest Forum), TL

9000 Quality Management System Measurements Handbook 5.0," 2012.

[27] Bauer, E., Adams, R., Service Quality of Cloud-Based Applications, vol. 18. Hoboken,

New Jersey, USA: John Wiley & Sons, Inc., 2013.

[28] Fernandez, A., Abrahão, S., Insfran, E., "A Web Usability Evaluation Process for

Model-Driven Web Develop.," 23rd Int. Conf. Adv. Inf. Syst. Eng., pp. 108–122, 2011.

