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Abstract Managing the response to natural, man-made,

and technical disasters is becoming increasingly important

in the light of climate change, globalization, urbanization,

and growing conflicts. Sudden onset disasters are typically

characterized by high stakes, time pressure, and uncertain,

conflicting or lacking information. Since the planning and

management of response is a complex task, decision

makers of aid organizations can thus benefit from decision

support methods and tools. A key task is the joint alloca-

tion of rescue units and the scheduling of incidents under

different conditions of collaboration. The authors present

an approach to support decision makers who coordinate

response units by (a) suggesting mathematical formulations

of decision models, (b) providing heuristic solution pro-

cedures, and (c) evaluating the heuristics against both

current best practice behavior and optimal solutions. The

computational experiments show that, for the generated

problem instances, (1) current best practice behavior can be

improved substantially by our heuristics, (2) the gap be-

tween heuristic and optimal solutions is very narrow for

instances without collaboration, and (3) the described

heuristics are capable of providing solutions for all gen-

erated instances in less than a second on a state-of-the-art

PC.

Keywords Disaster response � Decision support �
Optimization � Resource allocation � Scheduling �
Collaboration

1 Introduction

Managing risks in today’s societies has become increas-

ingly important in the light of climate change, globaliza-

tion, urbanization and growing conflicts. These trends do

not only result in rising pressure on the environment, cri-

tical infrastructures, and production systems, but also in a

growing number of shocks: natural and man-made emer-

gencies have more severe consequences than ever before

(IDDRI and IOM 2012, p. 7) due to cascading effects re-

sulting from more interlaced systems, and concentration of

population and industry. Natural disasters, including

earthquakes, tsunamis and hurricanes, have caused many

casualties and tremendous economic harm – and are pre-

dicted to cause even more in the future. It is estimated that,

between 2000 and 2009, about one million people lost their

lives and economic damage of about 1,000 billion USD

occurred due to natural disasters. According to a recent

report of the UN (UN-OCHA 2013, p. 2), ‘‘[i]nter-agency

appeals typically target 60–70 million people each year,

compared with 30–40 million 10 years ago.’’ Regarding

the economic impact for the most prominent recent ex-

ample, the Fukushima Daichi incident, assessments of di-

rect damages amount to about 211 billion USD, turning it

into the most costly natural disaster ever (Kajitani et al.

2013).
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To understand how systems and societies prepare for

and respond to disasters, the disaster management cycle is

frequently used (French and Geldermann 2005). A disaster

event triggers the response phase which comprises actions

immediately following a disaster event, such as search and

rescue, setting up field hospitals, or providing food, as well

as longer-term processes, such as education or recovery. As

communities rebuild in the aftermath of the disaster, the

cycle moves from the recovery phase again to the pre-

paredness and mitigation phase where reconstruction is

undertaken in ways that aim to reduce vulnerability and

develop more resilient infrastructures and organizations

(Comes et al. 2013a). Planning and preparedness are cru-

cial steps in the process as (1) most models and decision

support tools need to be set up a priori, and (2) col-

laboration and cooperation require trust and stable struc-

tures which can only be acquired over time and with

frequent practice (Bañuls and Turoff 2011).

In this paper, we focus on the response phase in sud-

denly striking disasters. This phase is typically character-

ized by a large set of tasks with different resource

requirements and time pressure. Therefore, information

and decision support systems that facilitate communication

as well as transparent and easily understandable decision

support tools are crucial (Comfort 2007). During the dis-

aster response, the use of information systems and decision

support tools is the basis for the execution of response

plans (Mendonça et al. 2007). The execution of plans is

typically managed by a command and control center. A

commander at the scene coordinates the activities of the

units responding to the disaster. The on-scene commander

and support staff collect and analyze data, make decisions,

and monitor their implementation and consequences. In

these situations, allocating scarce resources to specific

tasks is particularly challenging since complex decisions

need to be made within minutes.

Based on the need for decision support systems in the

phase of disaster response, our paper addresses the fol-

lowing research questions:

1. How can disaster response situations be formally

modeled by means of optimization models?

2. How can optimization models be solved efficiently?

3. To what extent can solutions obtained by proposed

methods improve current best practice behavior?

In this paper, we consider two types of disaster response

situations: (a) those where each task can be processed by a

single rescue unit, and (b) those where the collaboration of

rescue units to process particular tasks might become

necessary. As unfolded later in this paper, these situations

require different solving approaches.

The remainder of this paper is structured as follows. In

Sect. 2, we frame the discussion by providing an

introduction into the disaster response domain and by

conceptualizing our decision support problems. Section 3

suggests mathematical formulations of the decision support

problems. In Sect. 4, we present heuristics to solve the

proposed models. The fifth section shows our computa-

tional experiments and results, which are discussed in Sect.

6. Finally, we provide a summary and an outlook on future

research.

2 Framing the Discussion

In this section, we provide the foundations for the disaster

response domain and the decision support problems under

consideration: rescue unit assignment and scheduling

problems.

2.1 Disaster Response

Events that have a massive negative, large-scale impact on

people have been inconsistently named ‘‘emergency’’,

‘‘hazard’’, ‘‘catastrophe’’, ‘‘incident’’, ‘‘disaster’’, and

‘‘crisis’’ in the literature. We follow the terminology of

‘‘The International Federation of Red Cross and Red

Crescent Societies’’ (IFRC nd), which defines ‘‘disaster’’ as

follows: ‘‘A disaster is a sudden, calamitous event that

seriously disrupts the functioning of a community or so-

ciety and causes human, material, and economic or envi-

ronmental losses that exceed the community’s or society’s

ability to cope using its own resources.’’ The types of

disaster events that are covered by the above definition are

diverse and include natural, man-made, and technological

disasters. Based on the understanding of the IFRC, we

define the management of disasters as ‘‘[t]he organization

and management of resources and responsibilities for

dealing with all aspects of […] disasters, in particular

preparedness, response and recovery in order to lessen the

impact of disasters’’.

The disaster management literature shows large con-

sensus that challenges and activities can be classified into

the preparedness phase, the response phase and the re-

covery phase (Ajami and Fattahi 2009; Altay and Green III

2006; French and Geldermann 2005; Wex et al. 2014).

In the preparedness phase, tasks relate to training, early

warning, and the planning and establishment of necessary

emergency services (UN/ISDR 2005; Gasparini et al. 2007;

Svensson et al. 1996; Pollak et al. 2004; de Silva 2001).

In the response phase, rescue from immediate danger

and stabilization of the condition of survivors are essential.

Tasks include relief, emergency shelter and settlement,

emergency telecommunication, emergency health, water

and sanitation, tracing and restoring family links, as well as

logistics (IFRC nd; Kovács and Spens 2011). Various
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decision support approaches in the literature focus on the

orchestration of these efforts: First, both competitive and

cooperative mechanisms are developed (e.g., Fiedrich et al.

(2000)). Second, computational intelligence research is

applied to bridge the gap between information system de-

sign principles and decision support process architectures

(Leifler 2008; van de Walle and Turoff 2008). Third, em-

pirical investigations of past decision-making conclusions

are used to establish innovative courses of action (Faraj and

Xiao 2006). Fourth, research considers decision-making

based on either decentralized agents (Airy et al. 2009;

Falasca et al. 2009) or a centralized authority. With regard

to the former, researchers argue that distributed coordina-

tion (i.e., assignments and schedules) remains independent

of the failures of a single emergency operations center, and

communication bottlenecks evolve more seldom. Regard-

ing the latter, mathematical programming models are pro-

posed by Rolland et al. (2010) and Wex et al. (2011, 2012,

2013, 2014).

In the recovery phase, person finding, data analysis,

infrastructure repair and the provision of emergency

services are key tasks (GAO 2006; Saleem et al. 2008;

Sherali et al. 1991).

2.2 Conceptualizing the Decision Support Problems

We conceptualize two types of (deterministic) disaster re-

sponse situations as illustrated in Fig. 1. A set of incidents,

such as collapsed buildings, fires and buried people, re-

quires attention of rescue units, each of which represents a

‘‘standardised package of trained personnel and modules of

equipment, ready to be deployed at short notice’’ (IFRC

nd). We further conceptualize different types of rescue

units and incidents by providing for capabilities. In our

models, an incident i can be processed by a rescue unit k if

and only if the capabilities required to respond to i are

features of unit k.

The coordination of efforts of different teams and the

question of which tasks to assign to which team at what

time remains an obstacle to efficient and effective disaster

response (Zook et al. 2010). We study the problems of

optimally scheduling rescue units and assigning them to

Types of incidents: 

Rescue units with different capabili�es at different loca�ons

? ? 

? 

Rescue Unit Assignment and
Scheduling Problem without
collabora�on (RUASP)

Types of incidents: Combina�ons of 

Rescue units with different capabili�es at different loca�ons

? ? 

? 

Rescue Unit Assignment and
Scheduling Problem with
collabora�on (RUASP/C)

(a)

(b)

Fig. 1 Disaster response situations a without and b with collaboration. a Exemplary visualization of RUASP. b Exemplary visualization of

RUASP/C
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incidents in the immediate response to a suddenly striking

disaster. We distinguish situations without and with col-

laboration, and we refer to these problems as the Rescue

Unit Assignment and Scheduling Problem without Col-

laboration (RUASP) and Rescue Unit Assignment and

Scheduling Problem with Collaboration (RUASP/C). Our

understanding of RUASP and RUASP/C is based on our

interviews with associates from the German Federal

Agency for Technical Relief (THW).

We consider situations characterized by scarce re-

sources, i.e., in which the number of available rescue

units is lower than or equal to the number of incidents

that need to be processed. As stated above, we account

for specific requirements of incidents and different capa-

bilities of rescue units since not every rescue unit is able

to process each incident (property 1). Next, we account

for the facts that processing times are both incident- and

unit-specific (property 2) and that different rescue units

need different travel times between the locations of in-

cidents (property 3). We assume that the processing of an

incident must not be interrupted (non-preemption) (prop-

erty 4) and that a unit can handle only one incident at a

time (property 5). As proxy of overall harm, we use the

sum of weighted completion times regarding the pro-

cessing of incidents (property 6). The weighting factor

represents the factor of destruction, also referred to as

severity level, which accounts for both casualties and

damage induced over time. The completion time of an

incident is the time until which all trapped and injured

persons are rescued, fires extinguished, or other conse-

quences defused.

We show sample solutions of both RUASP and RUASP/

C in Fig. 2, with the number of rescue units being 3, the

number of incidents being 7 and 5, respectively, and the

level of severity (factor of destruction) of incidents varying

between 1 and 5.

The RUASP is related to a problem in the scheduling

literature. Wex et al. (2012, p. 19) show that the RUASP is

a generalization of the ‘‘parallel-machine scheduling

problem with unrelated machines, non-batch sequence-

dependent setup times and a weighted sum of completion

times as objective’’. This problem is classified as R/STsd/P
wjCj in the scheduling literature (Allahverdi et al. 2008,

pp. 987ff).

Rescue unit 1

Rescue unit 2

Rescue unit 3

sij
k: Travel �me it takes rescue

unit k to move from incident/ 
depot) i to incident j

wj: Factor of destruc�on of incident j
pj

k: Processing �me of incident j when
processed by unit k

s02
1=3 w2=3; p2

1=6 s24
1=3 w4=2; p4

1=3

Incident 2 Incident 4

s45
1=2 w5=2; p5

1=3

Incident 5

s01
2=2 w1=5; p1

2=7 s13
2=4 w3=2; p3

2=3

Incident 1 Incident 3

s07
3=3 w7=4; p7

3=7 s76
3=3 w6=2; p6

3=6

Incident 7 Incident 6

Rescue unit 1

Rescue unit 2

Rescue unit 3

s02
1=3 w2=3; p2

1=6 s24
1=3 w4=2; p4

1=3

Incident 2 Incident 4

s45
1=2 w5=2; p5

1=3

Incident 5

s02
2=4 w2=3; p2

2=6 s23
2=3 w3=2; p3

2=4

Incident 2 Incident 3

s05
3=2 w5=2; p5

3=10 s51
3=3 w1=1; p1

3=6

Incident 5 Incident 1

(a)

(b)

Fig. 2 Sample solution of an RUASP instance and an RUASP/C instance. a Sample solution for RUASP. b Sample solution for RUASP/C
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2.3 Discussion of Assumptions

The conceptualization of both decision support problems

proposed in the previous subsection is based on some as-

sumptions. We briefly discuss these:

• Weighting factors

The use of a weighting factor for each incident allows

to distinguish incidents in terms of severity. This

distinction is common practice; for example, the US

Department of Homeland Security uses five levels of

severity: low (1), guarded (2), elevated (3), high (4),

and severe (5) (Wex et al. 2014, p. 704). In our model,

we follow the suggestion to use five levels. However, it

should be noted that, in practice, such a classification is

applied at ordinal scale level. In our models, we use the

cardinal scale level as approximation in order to

perform arithmetics.

• Objective function

Our objective function draws on completion times,

which, we believe, are a key indicator for the overall

resulting harm. This is in line with literature on

recovery and resilience that describes the ultimate

aim of disaster response as a ‘‘bounce back’’ to a new

steady state (Manyena 2006). We thereby avoid

comparing damages and harm to people. We com-

pute a linear aggregation of the harm of single

incidents using their weighting factors. Linear

aggregation has been advocated for being under-

standable and easy to communicate (Geldermann

et al. 2009). We also agree that in practice more than

one criterion may be relevant and should be applied,

resulting in a multi-objective decision model

(MODM). However, before analyzing a more com-

plex MODM in future work, we aim at first achieving

an understanding of the single-criterion decision

(model).

• Certainty of data

In real cases, most information is likely to be

uncertain. For example, travel times may be ap-

proximations due to unclear infrastructure condi-

tions, processing times may be approximations as

the exact nature of the incident and the require-

ments to process it are not known, or the classifi-

cation of the severity of an incident may depend on

subjective assessments and linguistic uncertainty.

For the sake of simplicity and in order to develop an

initial understanding of how quantitative models

can support decision making in disaster response

situations, we do not consider any kind of uncer-

tainty in our models. We discuss future work

concerning uncertainty in the final section of this

paper.

3 Decision Support Models

In this section, we propose mathematical formulations of

the decision support problems RUASP and RUASP/C.1

Both models are presented in the form of a mixed integer

quadratic problem (MIQP). Our models use the following

notation:

• Real incidents 1, …, n and ficticious incidents 0 and

n ? 1,

• rescue units 1, …, m,

• unit capabilities/incident requirements 1, …, s,

• capabilities capi
k 2 {0, 1} for all i = 1, …, n and

k = 1, …, m, where capi
k = 1 if and only if rescue

unit k is capable of processing incident i,

• processing times pi
k C 0 for all i = 1, …, n and

k = 1, …, m, where pi
k[ 0 if and only if capi

k = 1,

• traveling times sij
k C 0 for all i = 0, …, n,

j = 1, …, n and k = 1, …, m and

• severity levels wi[ 0 for all i = 1, …, n.

Furthermore, we define the following decision variables:

• Xij
k 2 {0,1} for all i = 0, …, n, j = 1, …, n ? 1 and

k = 1, …, m, where Xij
k = 1 if and only if incident i is

processed by rescue unit k immediately before incident

j.

• Yij
k 2 {0,1} for all i = 0, …, n, j = 1, …, n ? 1 and

k = 1, …, m, where Yij
k = 1 if and only if incident i is

processed by rescue unit k before incident j.

3.1 Rescue Unit Assignment and Scheduling Problem

without Collaboration (RUASP)

With the notations presented above, the objective function

(O) represents the total weighted completion times over all

1 The situations are based on the description in earlier works but our

approaches in this work go beyond these as follows:

1. Wex et al. (2011) model the situation without collaboration by

means of a recursive optimization model. As recursion is difficult

to solve when using optimizers, we suggest here a non-recursive

model.

2. A basic and fuzzy version of our (non-recursive, crisp) model has

been suggested in Wex et al. (2012); however, we improve this

model by modifying constraints and removing redundant

constraints.

3. Wex et al. (2013) model the situation with collaboration. Again,

we improve this model by modifying and removing redundant

constraints.

4. Wex et al. (2014) draw on Wex et al. (2012) and compare

solutions obtained from applying heuristics for the model without

collaboration with lower bounds of optimal solutions.

We would like to stress that, beyond model improvements, our paper

goes beyond the cited works not only with regard to model discussion

but also with regard to computing optimal solutions.
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real incidents. The fictitious incidents 0 and n ? 1 repre-

sent the starting depot and the end depot, respectively, of a

rescue unit. The mathematical model for RUASP can be

written as shown below.

min
Xn

j¼1

wj

Xm

k¼1

Xn

i¼0

pkj þ skij

� �
Xk
ij þ

Xn

i¼1

pki þ
Xn

l¼0

Xk
lis

k
li

 !

Yk
ij

 !

ðOÞ

s:t:
Xn

i¼0

Xm

k¼1

Xk
ij ¼ 1; j ¼ 1; . . .; n ðC1Þ

Xnþ1

j¼1

Xm

k¼1

Xk
ij ¼ 1; i ¼ 1; . . .; n ðC2Þ

Xnþ1

j¼1

Xk
0j ¼ 1; k ¼ 1; . . .;m ðC3Þ

Xn

i¼0

Xk
i;nþ1 ¼ 1; k ¼ 1; . . .;m ðC4Þ

Xn

i¼0

Xk
il ¼

Xnþ1

j¼1

Xk
lj; l ¼ 1; . . .; n; k ¼ 1; . . .;m ðC5Þ

Yk
ii ¼ 0; i ¼ 1; . . .; n; k ¼ 1; . . .;m ðC6Þ

Yk
il þ Yk

lj � Yk
ij þ 1; i ¼ 0; . . .; n; l ¼ 1; . . .; n;

j ¼ 1; . . .; nþ 1; k ¼ 1; . . .m
ðC7Þ

Xk
ij � Yk

ij; i ¼ 0; . . .; n; j ¼ 1; . . .; nþ 1; k ¼ 1; . . .m

ðC8Þ
Xnþ1

l¼1

Xk
il � Yk

ij; i ¼ 0; . . .; n; j ¼ 1; . . .; nþ 1;

k ¼ 1; . . .m

ðC9Þ

Xn

l¼0

Xk
lj � Yk

ij; i ¼ 0; . . .; n; j ¼ 1; . . .; nþ 1;

k ¼ 1; . . .m

ðC10Þ

Xnþ1

j¼1

Xk
ij � capki ; i ¼ 1; . . .; n; k ¼ 1; . . .;m ðC11Þ

Xk
ij; Y

k
ij 2 f0; 1g; i ¼ 0; . . .; n; j ¼ 1; . . .; nþ 1;

k ¼ 1; . . .m

The constraints (C1) and (C2) ensure that each real in-

cident has exactly one immediate predecessor and one

immediate successor. (C3) and (C4) guarantee that each

tour begins and ends at a depot. Because of constraint (C5)

a unit which arrives at a real incident also has to depart

from there. Condition (C6) prohibits cycles. The transi-

tivity constraint (C7) means that a rescue unit k, which

processes incident i before incident l and incident l before

incident j, also processes incident i before incident j. With

constraint (C8) we claim that any immediate predecessor is

also a general predecessor. The constraints (C9) and (C10)

ensure that if a rescue unit k processes an incident i before

an incident j there has to be an incident which is processed

by k immediately before j and an incident which is pro-

cessed by k immediately after i. Constraints (C11) and (C5)

guarantee that only those rescue units can process real in-

cidents which have the required capability. Each feasible

solution of this model describes a valid schedule for the

rescue units.

While the model shown above is complete with regard

to the problem properties discussed in Sect. 2.2, it can be

simplified, which is useful in order to reduce computation

times. If we take into account constraint (C5), we see that

the constraints (C1) and (C2) as well as (C3) and (C4) are

equivalent. Furthermore, we can reformulate constraint

(C6) obtaining (C12), and we combine the constraints

(C10) and (C11) to get (C13). Overall, we yield the fol-

lowing model.

min
Xn

j¼1

wj

Xm

k¼1

Xn

i¼0

pkj þ skij

� �
Xk
ij þ

Xn

i¼1

pki þ
Xn

l¼0

Xk
lis

k
li

 !

Yk
ij

 !

s:t:
Xnþ1

j¼1

Xm

k¼1

Xk
ij ¼ 1; i ¼ 1; . . .; n

Xnþ1

j¼1

Xk
0j ¼ 1; k ¼ 1; . . .;m

Xn

i¼0

Xk
il ¼

Xnþ1

j¼1

Xk
lj; l ¼ 1; . . .; n; k ¼ 1; . . .;m

Xm

k¼1

Xn

i¼1

Yk
ii ¼ 0 ðC12Þ

Yk
il þ Yk

lj � Yk
ij þ 1; i ¼ 0; . . .; n; l ¼ 1; . . .; n; j ¼

1; . . .; nþ 1; k ¼ 1; . . .mXk
ij � Yk

ij; i

¼ 0; . . .; n; j ¼ 1; . . .; nþ 1; k ¼ 1; . . .m

Xnþ1

l¼1

Xk
il þ

Xn

l¼0

Xk
lj � 2 � Yk

ij; i ¼ 0; . . .; n;

j ¼ 1; . . .; nþ 1; k ¼ 1; . . .m

ðC13Þ

Xnþ1

j¼1

Xk
ij � capki ; i ¼ 1; . . .; n; k ¼ 1; . . .;m

Xk
ij; Y

k
ij 2 f0; 1g; i ¼ 0; . . .; n; j ¼ 1; . . .; nþ 1;

k ¼ 1; . . .m

The RUASP model has 2 � nþ 1ð Þ2�m ¼ Oðn2mÞ variables
and
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nþ mþ nmþ 1þ nþ 1ð Þ2nmþ nþ 1ð Þ2mþ nþ 1ð Þ2m
þ nm

¼ nþ 1ð Þ2nmþ 2 � nþ 1ð Þ2mþ 2nmþ nþ mþ 1

¼ Oðn3mÞ

constraints without binary conditions. If we consider, for ex-

ample, a model instance with 40 real incidents and 40 rescue

units, we get a huge instance size of 134,480 variables and

2,827,361constraints.Thus, it looks appealing to reduce instance

sizes through preprocessing, which is described in Sect. 5.2.

3.2 Rescue Unit Assignment and Scheduling Problem

with Collaboration (RUASP/C)

In contrast to the RUASP model, the RUASP/C model

needs to account for the possibility that an incident can

have more than one requirement. As a consequence, it

might be necessary for the incident to be processed by

more than one rescue unit (collaboration of rescue units).

The RUASP/C model is an extension of the RUASP

model, i.e., each RUASP instance is an RUASP/C instance at

the same time, but not vice versa. We sketch the proof as

follows: Take any RUASP instance. Then each incident has

exactly one requirement and therefore is an instance of

RUASP/C. However, take an RUASP/C instance where an

incident has more than one requirement and where this inci-

dent cannot be processed by one single unit. In this case, the

respective incident needs to be processed by more than one

rescue unit, which cannot be modeled as an RUASP instance.

In order to model this new situation, we extend the

above notation by the following elements:

• Capability indicators capkl 2 {0,1} for all

k = 1, …, m and l = 1, …, s, where capkl = 1 if and

only if unit k has the capability l and

• requirement indicators reqil 2 {0,1} for all

i = 1, …, n and l = 1, …, s, where reqil = 1 if and

only if incident i has the requirement l.

Based on the RUASP model and these definitions, we

suggest the following collaboration model:

min
Xn

j¼1

wj

Xm

k¼1

Xn

i¼0

pkj þ skij

� �
Xk
ij þ

Xn

i¼1

pki þ
Xn

l¼0

Xk
lis

k
li

 !

Yk
ij

 !

s:t:
Xnþ1

j¼1

Xk
0j ¼ 1; k ¼ 1; . . .;m

Xnþ1

j¼1

Xk
ij �min

Xs

l¼1

capkl � reqil; 1
( )

; i ¼ 1; . . .; n;

k ¼ 1; . . .;m

ðC1cÞ

Xn

i¼0

Xk
il ¼

Xnþ1

j¼1

Xk
lj; l ¼ 1; . . .; n; k ¼ 1; . . .;m

Xm

k¼1

Xn

i¼1

Yk
ii ¼ 0

Yk
il þ Yk

lj � Yk
ij þ 1; i ¼ 0; . . .; n; l ¼ 1; . . .; n; j ¼ 1;

. . .; nþ 1; k ¼ 1; . . .mXk
ij � Yk

ij; i ¼ 0; . . .; n; j ¼ 1;

. . .; nþ 1; k ¼ 1; . . .m
Pnþ1

l¼1

Xk
il þ

Pn

l¼0

Xk
lj � 2 � Yk

ij; i ¼ 0;

. . .; n; j ¼ 1; . . .; nþ 1; k ¼ 1; . . .m

Xnþ1

j¼1

Xm

k¼1

capklX
k
ij � reqil; i ¼ 1; . . .; n; l ¼ 1; . . .s ðC2cÞ

Xk
ij; Y

k
ij 2 f0; 1g; i ¼ 0; . . .; n; j ¼ 1; . . .; nþ 1;

k ¼ 1; . . .m

Constraint (C2) no longer holds as an incident can now be

processed by more than one unit. (C1c) assures that (1) for

every real incident i and every rescue unit k there can be at

most one incident that is processed by k immediately after

i and (2) a rescue unit can only process real incidents which

it is capable of. Therefore, (C1c) replaced the constraints

(C2) and (C11). The new constraint (C2c) guarantees that

each requirement of every real incident gets covered.

The RUASP/C model has 2 � nþ 1ð Þ2�m ¼ Oðn2mÞ vari-
ables as in the case of the RUASP model. The number of

constraints amounts to mþ nmþ nmþ 1þ nþ 1ð Þ2nmþ
ðnþ 1Þ2m þðnþ 1Þ2mþ ns ¼ nþ 1ð Þ2nmþ 2 � nþ 1ð Þ2m
þ2nmþ mþ nsþ 1 ¼ Oðn3mþ nsÞ without the binary

conditions. Interestingly, compared to the RUASP model, we

get only ns - n additional constraints when considering

collaboration. If we regard, for example, model instances with

40 real incidents and 40 rescue units and 8 types of capa-

bilities, we get an instance size of 134,480 variables and

2,827,641 constraints. As in the case of RUASP, we analyze

options of preprocessing in Sect. 5.2.

4 Heuristics

With regard to computational complexity, Wex et al.

(2012) show that RUASP is computationally intractable

and NP-hard. As RUASP/C is a generalization of RUASP,

the RUASP/C is even more difficult to solve and also NP-

hard. Our computational results presented in the succeed-

ing section even show that many instances of sizes up to 40

incidents and 40 rescue units cannot be solved optimally in

\10 h using an Intel Core i7-2600 CPU. However, in
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practice, decision makers need to obtain solutions after just

minutes. Therefore, we develop heuristics in order to solve

large instances within minutes. For both of our problems

we suggest a greedy heuristic algorithm and a heuristic

algorithm adapted from the scheduling literature.

The greedy heuristics implement the current best practice

behavior as we identified it in our interviews with represen-

tatives of the German THW. Applying these heuristics has

two benefits: First, when compared with optimal solution

values, the quality of best practice solutions can be measured.

Second, when compared with other heuristics, the improve-

ment of heuristics over current best practice behavior can be

measured. With regard to our second heuristic algorithm, we

draw on the literature. Wex et al. (2014) develop and test a

multitude of heuristics for RUASP, including a GRASP

metaheuristic. We decided to use that algorithm which per-

formed best among all construction heuristics and which

could hardly be improved by improving heuristics and the

GRASP metaheuristic. With regard to RUASP/C, we adapted

the scheduling heuristic to make it applicable to RUASP/C.

We provide Pseudo codes of our heuristics, which draw

on the mathematical notations used above. In addition, we

introduce the notations K :¼ f1; . . .;mg and L :¼
f1; . . .; sg:.

4.1 Heuristics for RUASP

The greedy heuristic, referred to as GREEDY, follows the

idea that incidents are assigned to rescue units in the de-

scending order of their factor of destruction. Here, each

incident i is assigned to the rescue unit k that is capable of

starting to process incident i earliest, considering assign-

ment history. The implementation of the GREEDY algo-

rithm is described below.

The scheduling algorithm, which we refer to as SCHED

in the following, is more sophisticated and considers in

each step simultaneously the factors of destruction, as-

signment history, processing times and travel times. The

implementation of the SCHED is given below.

1 Sort incidents in decreasing order of severity, i.e. 1 ≥ ⋯ ≥ .

2
Initialize the current completion time ≔ 0, the current incident ≔ 0 and the 
current schedule ≔ ∅ for every unit ∈ .

3 for = 1,… , do

4 ≔ { ∈ | = 1}

5 if ≠ ∅ then 

6 choose the unit with the lowest starting time ≔ ∈ +

7 else 

8 return infeasible

9 endif

10 update ≔ + + , ≔ and ≔ ∪ { }

11 endfor

12 return ( 1,… , ) as the list of schedules
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4.2 Heuristics for RUASP/C

The two heuristics for RUASP/C are adaptations of the

RUASP heuristics. In the GREEDY heuristic, we again

draw on the idea that incidents are assigned to rescue units

in decreasing order of their severity levels and that an in-

cident is assigned to the rescue unit which can begin to

process the incident earliest. As incidents may demand

multiple requirements, we need to track those capabilities

which have already been covered.

1 Initialize the current completion time ≔ 0, the current incident ≔ 0 and the 
current schedule ≔ ∅ for every unit ∈ . Initialize the incidents ≔ {1,… , }.

2 while ≠ ∅ do

3 set : = {( , ) ∈ × | = 1}

4 if ≠ ∅ then

5 choose the next incident ∗ and its processing unit ∗ by setting

( ∗, ∗) ≔ ( , )∈

+ +

6 update ∗ ≔ ∗ + ∗ ∗

∗

+ ∗

∗

, ∗ ≔ ∗, ∗ ≔ ∗ ∪ { ∗} and ≔ \{ ∗}

7 else 

8 return infeasible

9 endif

10 endwhile

11 return ( 1,… , ) as the list of schedules

1 Sort the incidents in decreasing order of severity, i.e. 1 ≥ ⋯ ≥ .

2 Initialize the current completion time ≔ 0, the current incident ≔ 0 and the 
current schedule ≔ ∅ for every unit ∈ .

3 for = 1,… , do

4 set ≔ { ∈ | = 1}

5 while ≠ ∅ do

6 set ≔ { ∈ |∃ ∈ : = 1}

7 if ≠ ∅ then

8 choose the unit with the lowest starting time ≔ ∈ +

9 set ≔ { ∈ | , = 1} and apply these capabilities by

≔ \

10 update ≔ + + , ≔ and ≔ ∪{ }

11 else

12 return infeasible

13 endif

14 endwhile

15 endfor

16 return ( 1,… , ) as the list of schedules
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In order to adapt SCHED to RUASP/C, we again draw

on the idea of SCHED, i.e., the next incident to process is

the one with the lowest ratio of the (shortest) completion

time to the severity level.

5 Computational Experiments

The goal of our computational experiments is to evaluate

the GREEDY heuristic and the SCHED heuristic for

both problems RUASP and RUASP/C against optimal

solutions. Thereby, we can also compare the quality of

GREEDY solutions (best practice) with SCHED solu-

tions. Where computationally feasible (in terms of

available computing resources), we determine optimal

solutions; in all other cases, we use lower bounds of

optimal solutions, which are reported by the Gurobi

optimizer based on the Branch and Cut procedure the

solver applies.

In the following subsections, we describe how we

generate RUASP and RUASP/C instances, how we re-

duce the sizes of model instances through preprocessing,

which computing environment we use, and what our

results are.

5.1 Data Generation

For our computational evaluation, we draw on artificially

generated data as real data is not available. We analyze

RUASP and RUASP/C instances of different sizes, with the

maximum number of incidents and rescue units being 40

for the following reason: Our interviews at the THW pro-

vided this figure as a realistic size of an assignment and

scheduling problem. Due to the dynamics of a disaster, new

instances (and solutions) need to be generated in an it-

erative manner, cf. Sect. 6.2. Our data generation is based

on the following assumptions:

1. The number of instances is not smaller than the

number of rescue units because of the large-scale

effects of disasters.

2. Travel times between incident locations are low

compared to processing times as most incidents during

disasters occur in urban areas. For example, it takes

much more time to extinguish a house fire or to

stabilize a collapsed building than it takes a rescue unit

to travel there. We account for this relationship by

different normal distributions for generating

1 Initialize the current completion time ≔ 0, the current incident ≔ 0 and the 
current schedule ≔ ∅ for every unit ∈ . Initialize the incidents ≔ {1,… , }.

2 while ≠ 0 for some ( , ) ∈ × do

3 : = {( , ) ∈ × |∃ ∈ : = = 1}

4 if ≠ ∅ then

5 choose the next incident ∗ and its processing unit ∗ by setting

6
( ∗, ∗) ≔ ( , )∈

+ +

7 apply the capabilities of ∗ by setting ∗ ≔ 0 for all ∈ with

∗ = 1

8 update ∗ ≔ ∗ + ∗ ∗

∗

+ ∗

∗

, ∗ ≔ ∗ and ∗ ≔ ∗ ∪ { ∗}

9 else 

10 return infeasible

11 endif

12 endwhile

13 return ( 1,… , ) as the list of schedules
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processing times, and travel and setup times. In order

to check the robustness of our results, we vary the

standard deviations of both normal distributions as

shown in Table 1.

3. The factor of destruction of an incident indicates the

level of severity: low (1), guarded (2), elevated (3),

high (4), and severe (5) harm. We select a discrete

uniform distribution for severity levels.

4. We provide for the following eight capabilities of

rescue units: policemen, fire brigades, paramedics,

locating/rescuing, debris removal, infrastructure

preservation, logistics teams, and special casualty

access teams (THW nd). Table 1 summarizes the

details of data generation. For each scenario size (e.g.,

40 incidents and 20 rescue units), we generate and

solve ten instances for each of the distribution sets 1

and 2.

5.2 Preprocessing

As discussed in Sects. 3.1 and 3.2, instance sizes of both

RUASP and RUASP/C become extremely large even for

moderate values of n and m. A substantial reduction of

model instance sizes is necessary to compute optimal so-

lutions (as benchmark for our heuristics). The heuristics

themselves, however, can be applied without this

reduction.

We apply a preprocessing procedure to each of the

generated instances in terms of reducing the number of

variables and constraints. The reduction of both the number

of variables and the number of constraints is essentially

based on the fact that each of the rescue units is usually not

capable of processing all incidents.

In the RUASP model, constraint (C11) allows for size

reduction in terms of both variables and constraints. We

assign capk0 ¼ capknþ1 ¼ 1; k ¼ 1; . . .;m, i.e., each rescue

unit is capable of processing both virtual incidents 0 and

(n ? 1). If capi
k = 0, i = 1,…,n, i.e., rescue unit k is not

capable of processing incident i, all variables

Xk
il; l ¼ 1; . . .; ðnþ 1Þ, can be set to zero and thus be

removed from the model due to constraint (C11). If we

additionally apply (C5), we can also set all variables

Xk
li; l ¼ 0; . . .; n, to zero. This holds for Yil

k , -

l = 1, …, (n ? 1) and Yli
k , l = 0, …, n likewise due to

constraint (C13). Constraint (C11) can also be removed

from the model: if capi
k = 0, all variables occurring on the

left side are set to zero and were removed; if capi
k = 1, the

constraint is redundant with (C2). Furthermore, using

constraint (C12), we can also set all Yk
ii; i ¼

1; . . .; n; k ¼ 1; . . .;m; to zero; this, in turn, allows us to

remove all Xk
ii; i ¼ 1; . . .; n; k ¼ 1; . . .;m; due to con-

straint (C8). Finally, constraint (C12) can also be removed.

For our RUASP instances, the expected number of vari-

ables that are removed in the preprocessing procedure

amounts to about 93 %.

Next, we expose how the variable reduction affects the

expected number of removable constraints. As explained

above, some of the constraints of (C11) and the con-

straints (C12) can be removed. Additionally, we can re-

move constraints from (C5), (C7), (C8) and (C13). For

our RUASP instances, the expected number of constraints

that are removed in the preprocessing procedure is about

97 %.

Similar to the preprocessing procedure described above,

we can remove both variables and constraints from in-

stances of the RUASP/C model. Constraint (C1c) allows

for size reduction in terms of variables and constraints; in

addition, many of the constraints (C2c), (C8) and (C12) can

Table 1 Details of data generation

Input

parameter

Value, range, distribution

Number of
rescue units

m 2 f10; 20; 30; 40g

Number of real
incidents

n 2 {10, 20, 30, 40}, m B n

Number of unit
capabilities

s = 8

Number of
instances per
scenario

10

Factors of
destruction

wi * U(1,5,1), i = 1, …, n

Incident
requirements
(RUASP)

Ri * U(1, 8, 1), i = 1, …, n

Unit
capabilities
(RUASP)

Cd � U 0; 1; 0:25ð Þb c; k ¼ 1; . . .;m; l ¼ 1; . . .; s

Capabilities
(RUASP)

capki :¼ Ck;Ri
2 f0; 1g; i ¼ 1; . . .; n; k ¼ 1; . . .;m

Incident
requirements
(RUASP/C)

reqil � U 0; 1; 0:25ð Þb c; i ¼ 1; . . .; n; l ¼ 1; . . .; s

Unit
capabilities
(RUASP/C)

capkl � U 0; 1; 0:25ð Þb c; k ¼ 1; . . .;m; l ¼ 1; . . .; s

Distribution set 1

Process times pi
k * N(20, 10), i = 1, …, n, k = 1, …, m

Travel times sij
k * N(1, 0.3), i = 0, …, n, j = 1, …, n,
k = 1, …, m

Distribution set 2

Process times pi
k * N(20, 6), i = 1, …, n, k = 1, …, m

Travel times sij
k * N(1, 0.5), i = 0, …, n, j = 1, …, n,
k = 1, …, m
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be removed. For our RUASP/C instances, the expected

number of variables and constraints that are removed in the

preprocessing procedure is about 88 and 95 %,

respectively.

5.3 Computational Environment

For modeling purposes, we use the system AIMMS 3.13

and apply the Gurobi optimizer (version 5.5) to solve

instances optimally or to obtain lower bounds of optimal

solutions. When solving instances optimally, we abort

the solution process after 3 h because pre-studies show

that further improvements are only marginal. All

heuristics are implemented in the programming language

of AIMMS.

For our computations we use an Intel Core i7-2600 CPU

with 3.40 GHz and 8GiB RAM.

5.4 Results

We first present the results for RUASP. For each of the

instance sizes, we evaluate the performance of both

heuristics GREEDY and SCHED against optimal solu-

tions. For each instance size, we average the ten ratios

SOL_GREEDYz/OPTz and SOL_SCHEDz/OPTz and

SOL_SCHED/SOL_GREEDY of all instances

(z = 1, …, 10), with SOL_GREEDYz and SOL_SCHEDz

being the solution values of the greedy and the scheduling

heuristic, respectively, and OPTz being the optimal solu-

tion value of instance z. For every problem size, this leads

to the values GREEDY/OPT, SCHED/OPT and SCHED/

GREEDY, respectively, which are shown in Table 2. Only

the instances with 40 incidents and 10 rescue units could

not be solved optimally within 3 h, and therefore we used

lower bounds provided by the solver in this case.

Table 2 provides the averaged ratios for RUASP, with

the coefficients of variation (ratio of the standard de-

viation to the mean) as robustness measure given in

parentheses.

The average times required to find optimal solutions of

RUASP instances are presented in Table 3, which also

includes the coefficients of variation. We do not provide

the average times of the heuristics as all of these were

below 1 s.

Analogous to the presentation of the RUASP results,

Table 4 provides our results for RUASP/C. As, in con-

trast to RUASP, our computing resources were not able

to find optimal solutions within 3 h – with the exception

of 10/10 instances –, we used lower bounds (LB) as de-

termined by our solver. Again, we also do not provide the

average times of the heuristics as all of these were below
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6 Discussion

6.1 Results

We first discuss our results regarding RUASP before we

proceed analogously with RUASP/C. Analyzing the com-

putational results, we arrive at the following findings:

1. The current best practice behavior (modeled as

GREEDY heuristic) provides schedules which lead to

an overall harm (achieved solution value) that is 29 %

to 137 % worse than the minimum harm (optimal

solution value) in distribution set 1, and 9–76 % worse

than the minimum harm in distribution set 2. Appar-

ently, the performance of the Greedy heuristic does not

only depend on the instance size but also on the

distributions used.

2. Our proposed heuristic SCHED results in an overall

harm which is only 2–6 % above the minimum harm in

distribution set 1 – we excluded the case 40/10 as we

did not get optimal solutions – and only 3–7 % above

the minimum harm in distribution set 2, with the case

40/10 being excluded again. The performance of the

heuristic is robust against changes in the distributions.

3. The heuristic SCHED improves current best practice

behavior by 19 % up to 56 % in distribution set 1 – the

case 40/10 is excluded from this consideration again –

and 5–33 % in distribution set 2, with the case 40/10

excluded again. For the distributions used, the extent to

which SCHED improves the current best practice

behavior only depends on the performance of the latter.

4. The robustness (in terms of coefficients of variation) is

much higher for SCHED/OPT compared to GREEDY/

OPT. For both ratios, we did not find substantial

differences between the coefficients of variation in

distribution set 1 and distribution set 2.

To sum up, in the tested cases the proposed SCHED

heuristic comes close to the optimum and improves the

current best practice behavior substantially. The case

40/10, which shows an averaged SCHED/OPT ratio of

48 % in distribution set 1 and 55 % in distribution set 2, is

more difficult to interpret. We see two possible explana-

tions for the substantially higher figure compared to other

ratios: First, it seems possible that the gaps between the

computed lower bounds and the optimal solution values are

high so that the averaged ratio of 48 % in distribution set 1

(55 % in distribution set 2) is due to this gap and conse-

quently does not indicate an inferior quality of the

heuristic. Second, it could be that the aforementioned gap

is low, which would indicate a poor performance of the

scheduling heuristic in the case 40/10. Although we do not

know which of the two explanations is true, we assume that

explanation no. 1 is more likely because even in the case

30/10, which is the closest to the case 40/10 in terms of the

ratio of incident numbers to the number of units, the av-

eraged SCHED/OPT ratio is as low as 3 % in both distri-

bution sets, which shows a good performance of the

scheduling heuristic.

Runtimes show that the SCHED heuristic needs only

less than a second in all tested cases and is thus very ap-

plicable in practice. In contrast, as our simulations show,

the time required to find optimal solutions averages 39 min

(63 min) with a high coefficient of variation of 64 %

(74 %) in case 30/10 with distribution set 1 (distribution set

2). Over all simulation instances, it amounts to more than

167 min2 in the worst case (case 30/10, distribution set 2).

Furthermore, computation times vary substantially between

the two distribution sets, which increases the difficulty of

predicting computing time. These figures show the infea-

sibility of determining optimal solutions in real-case si-

tuations. Even worse, the computing times for obtaining

optimal solutions are likely to increase substantially with

instances that are larger than the tested ones, especially

when the ratio of incidents to rescue units increases.

With regard to RUASP/C, we have only lower bounds

available. As a consequence, the calculated ratios are upper

bounds for the ratios of heuristic solution values to optimal

solution values. Based on the computational results, we

arrive at the following findings:

1. The GREEDY heuristic provides solutions which are

49–239 % above the lower bounds in distribution set 1

and 25–195 % above the lower bounds in distribution

set 2. As in the case of RUASP, the performance of the

Greedy heuristic does not only depend on the instance

size but also on the distributions used.

2. The SCHED heuristic shows values of 10–149 % in

distribution set 1, and 9 % up to 146 % in distribution

set 2. In some cases, for example in the cases (10/10),

(20/20), (30/30) and (40/40), the solutions provided by

SCHED are at most 10 % (9 %), 22 % (23 %), 28 %

(40 %) and 25 % (36 %) above the optimal solutions,

with the first value referring to distribution set 1 and

the second one referring to distribution set 2. In

contrast to RUASP, these figures are high but they

provide at least ‘‘acceptable’’ upper bounds of solution

quality. For most of the instance sizes, we observe a

robustness of results with regard to the distribution set

used.

3. While the ratio of heuristic solutions and optimal

solutions cannot be precisely determined, the ratios of

2 The average runtime for the instance size 30/10 is about 39 min

with distribution set 1 and about 63 min with distribution set 2. Three

out of ten instances even required more than 90 min in distribution set

1, and four out of ten instances required more than 85 min in

distribution set 2.
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solutions provided by the suggested heuristic SCHED

and the GREEDY heuristic do not depend on the gaps

between optimal solution values and lower bounds.

These ratios show that the SCHED heuristic improves

the quality of GREEDY solutions by 25–58 % in

distribution set 1 and by 10–35 % in distribution set 2,

resulting in a substantial improvement of current best

practice behavior. Similarly to the case of RUASP, for

the distributions used, the extent to which SCHED

improves the current best practice behavior largely

depends on the performance of the latter.

4. As in the case of RUASP, the SCHED heuristic shows

a higher robustness (in terms of coefficients of

variation) than the GREEDY heuristic. However, the

extent of the difference depends on the distribution set

used.

5. As the SCHED heuristic can be executed in less than a

second, it is very applicable in practice. In contrast,

yielding optimal solutions was not possible within 3 h

(with the exception of the case (10/10)). This time

period is far too long for being acceptable in practice.

Our computational results show that the application of

the suggested SCHED heuristics substantially improves

current best practice behavior for both distribution sets

used while providing solutions close to the optimum in

RUASP instances regardless of the used distribution (high

robustness). In addition, as for each instance the SCHED

heuristic requires an execution time of less than a second,

we recommend that they are included in decision support

systems of Emergency Operations Centers. We deliberately

argue that the heuristics be applied as a tool of decision

support rather than one of decision making for two reasons:

First, it must not be excluded that the scheduling and res-

cue plan is not recommendable or even infeasible for un-

foreseeable circumstances, which are known to human

decision makers but not to the algorithms applied. Second,

we assume that the chance of adoption is higher when

decisions of experts are supported rather than substituted.

6.2 Static Models in a Dynamic Decision Environment

The suggested decision support models RUASP and

RUASP/C consider static situations, in which we assume

that the incidents, available rescue units and their charac-

teristics are known. However, in practice, the decision si-

tuation is dynamic as, for example, new incidents occur,

the relative severity level or the processing times of inci-

dents may change, rescue units and their capabilities may

change, and travel times may vary due to changing in-

frastructure conditions. These dynamics can be considered

through the generation and solving of a sequence of (static)

RUASP or RUASP/C instances: at some point of time, a

rescue organization needs to make a first decision on the

allocation and scheduling of rescue units based on the

current status quo of information, even if it knows that

conditions are likely to change in the near future. At some

future points of time, the organization then will need to

update their previously made decisions based on new in-

formation (re-scheduling).

From a conceptual perspective, this update is imple-

mented through the generation of a new instance of

RUASP or RUASP/C. This instance includes new infor-

mation and has to account for the fact that some of the

known incidents have already been or are being processed.

Accordingly, rescue units may have been already assigned

and sent to incidents at the time that information changes.

When this is the case, the model prohibits assigning busy

rescue units until they have finished their jobs (non-pre-

emption). Non-preemption seems to be realistic under

different practical and ethical considerations. Regarding

future work, it may be interesting to relax the non-pre-

emption assumption depending on the level of severity of

incidents. To sum up, a sequence of dependent instances

and solutions is iteratively generated during the disaster

response phase. The frequency with which the rescue or-

ganization wishes to generate and solve new instances

depends on the frequency with which new information

becomes available.

7 Summary and Outlook

In this paper, we address the operational task of Emergency

Operation Centers to assign rescue units to incidents during

the response phase of a disaster. We suggest optimization

models for two situations, with and without collaboration

of rescue units. As both problems are proven to be NP-hard

and solutions of problem instances need to be available in

practice within minutes, we suggest heuristics. Our com-

putational validation of these heuristics shows that (1)

current best practice behavior can be improved substan-

tially by drawing on our heuristics, (2) the gap between

heuristic solutions and optimal solutions is very low for

instances without collaboration, and (3) our heuristics are

capable of providing solutions for all generated instances

of all problem sizes in less than a second on a state-of-the-

art PC.

While our findings contribute to advances in both the

academic literature and practical applications, we admit

that there are some limitations, which at the same time

provide avenues for further research.

First, our models are based on the assumption that the

processing of an incident must not be interrupted (non-

preemption). However, in chaotic situations, such as dis-

aster response situations, the level of severity of incidents

123

G. Schryen et al.: Resource Planning in Disaster Response, Bus Inf Syst Eng 57(4):243–259 (2015) 257



can be estimated only vaguely and they can change over

time, also new incidents may occur. Under these conditions

it may seem desirable to interrupt the processing of inci-

dents in favor of addressing more severe incidents. For

example, it seems reasonable to interrupt the process of

extinguishing a fire in favor of rescuing injured people. It

might also become necessary to add time window con-

straints to the model, which can be done straightforward.

Second, our current objective function models the sum

of completion times of incidents weighted by their severity

levels. This implies that the quality of a decision is judged

exclusively on the basis of temporal aspects. Cost, quality

of resolving tasks, success rates etc. are neglected. Thus,

other objective functions might apply. If they are consid-

ered simultaneously, this will lead to a multi-criteria de-

cision making problem. This is particularly useful when a

consensus must be built and conflicts between different

value judgments need to be resolved (Comes et al. 2013b).

Third, our computational validation is based on in-

stances that have been generated artificially due to the

unavailability of empirical data. A key task for future re-

search is the acquisition of real data and the re-evaluation

of our heuristics. This task also includes the validation of

the appropriateness of our test bed in terms of used prob-

ability distributions and parameter values.

Fourth, our computing resources are limited. We ana-

lyzed the robustness of our simulation results with regard

to distributions and parameter values only for those shown

in Table 1. Similarly, having more computing resources

available would enable researchers to simulate more than

ten instances per instance size and to subsequently conduct

a statistical analysis of the results. Finally, more computing

power could help to solve RUASP/C instances optimally

rather than drawing on lower bounds of optimal solutions.

Fifth, data is prone to uncertainty. For example, pro-

cessing times and travel times are difficult to assess pre-

cisely, and the availability and the applicability of rescue

units may change over time. As a consequence, uncertainty

modeling applies. From our perspective, this task is par-

ticularly challenging as addressing it requires selecting

appropriate uncertainty theories, such as one of several

probability theories or fuzzy set theory. It also requires

appropriate parameterization, i.e., probability functions in

the case of probability theory and membership functions in

the case of fuzzy set theory. This, in turn, requires the

access to empirical data. The application of uncertainty

modeling would also alter the solution procedures to be

applied.

Sixth, the applicability of the proposed methodologies in

real-world situations would need to be discussed with

rescue organizations, such as the German THW.

Finally, when multiple organizations are involved,

centralized planning may need to be substituted or

complemented by means (e.g., models, information flows)

of inter-organizational coordination. We do not follow this

approach as the occurrence of multiple autonomous parties

requires decision support models which vary substantially

from the proposed centralized models.
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