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1. Introduction 

Hypertext is an approach that allows authors to manage information relationships by creating links within 
or across small chunks of information (nodes or documents). Links represent an author's perception of 
inter-relationships among information. Hypertext allows readers to easily and rapidly browse the nonlinear 
information network in the order most appropriate to the reader's task by activating links.  

What benefit do users gain from providing information systems with hypertext support? Users can find it 
difficult to understand and take advantage of the myriad of inter-relationships in a information system's 
knowledge base (data, processes, calculated results, reports). Hypertext helps by streamlining access to and 
providing rich navigational features around related information, thereby increasing user comprehension of 
information and its context [BK95]. Augmenting an information system with hypertext support results in 
new ways to view and manage the information system's knowledge, by navigating among items of interest 
and annotating with comments and relationships (links) [BV97].  

The overall goal of this paper is to provide hypertext functionality through the WWW to hypertext-unaware 
dynamically-mapped information systems (DMIS) with minimal changes to DMISs. DMISs dynamically 
generate their contents and thus require some mapping mechanism to automatically map the generated 
content to hypertext constructs (nodes, links, and link markers) instead of hypertext links being hard coded 
over static content. DMISs include spreadsheets, statistical analysis systems, database management systems 
(DBMS), geographic information systems, expert systems and decision support systems. This paper uses 
DBMS as a sample domain. Web database development is a hot new field. Most database applications 
handle queries and generate HTML from query results without inferring links. Those database applications 
do not meet our definition of integration with DMISs since they do not allow users to access other aspects 
of database objects. (e.g., metainformation of database tables ).  

The WWW has radically increased the awareness of the concept of hypertext. The WWW is mainly used to 
browse predefined HTML files. However, the WWW has the opportunity to integrate hypertext support 
into information systems. There are many potential approaches for integrating Web servers with 
information systems: traditional CGI, server API (e.g., Netscape's NSAPI and Microsoft's ISAPI), applets, 
etc. No systematic approach exists, however, for moving an analytical information system to the WWW 
and giving users direct access to its interrelationships. This research contributes a systematic dynamic-
mapping mechanism and a set of guidelines for DMIS integration on the WWW.  

Web search engines do perform mapping using simple mapping rules to map the query result to a 
dynamically-generated Web page with links underlying the "URL address" and "page title" for each hit. 
The search engine has a simple dynamic mapping mechanism. In this paper, we propose general guidelines 
for building more generic mapping rules. First we show an architecture for implementing them on the 
WWW.  
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2. System Architecture 

In this section, we propose a conceptual architecture with seven logical components. This architecture 
emphasizes the integration of Web servers with DMISs, providing hypertext functionality to each. Note 
that actual architectures may physically implement the functionality in different modules than those shown 
here. Since the Web browser and server are normal Web components, we just describe the functionality of 
other components.  

1. The Master Handler coordinates schema mapping and message passing among different DMIS domains, 
thus aiding DMIS-to-DMIS integration.  

2. A DMIS handler translates and routes messages between its DMIS and the Web server. It also provides 
its DMIS's mapping rules. A comprehensive DMIS handler will allow us to integrate an existing DMIS 
with few or no changes.  

3. A DMIS is an application system with which users interact to perform some task, which dynamically 
produces output content for display.  

1. A knowledge base stores commands for accessing various relationships on DMIS objects and 
information that can not be accessed directly from DMISs (e.g., relationships in E-R diagrams).  

1. A linkbase stores user-created annotations (e.g., comments). We have created a prototype 
of an editable browser extending Sun's 1.0 alpha3 release of the HotJava browser. This 
browser allows users to create and store comments in local or remote linkbases.  

Note that the master handler and DMIS handlers can be implemented using CGI scripts, Java applets, 
server APIs, etc.  

 
3. Building Mapping Rules 

In this section, we are going to discuss the process of analyzing dynamically-mapped information systems 
(DMISs) and building mapping rules. We divide the process into four steps. These rules would reside in 
and become invoked by the DMIS handler. We explain each by using a relational DBMS as the target 
DMIS.  

Step 1. Identify Objects 

This step is to identify data objects in which we are interested. In the database application, objects include 
(1) database: a collection of tables, (2) table: a collection of records (or fields), (3) record: each record 



represents a collection of related data values, (4) field: a property that describe some aspect of an entity (5) 
value: each value represent the fact describing an entity or a relationship instance [W96].  

Step 2. Identify Relationships 

Bieber and Vitali [BV97] identify several types of relationships for system objects, including those below. 
Identifying explicit and implicit relationships forces developers to consider which information users are 
interested in and then build mapping rules to access this. (When identifying a relationship, the developer 
also should identify the commands used in step 3 to implement the link representing it.)  

Each of the following relationships gives the user easy access to some aspect of an object.  

• Schema Relationships  

Access to the kind of domain-specific relationships one finds in a schema or application design. In a 
database application, this includes relationships captured in the entity-relationship diagram.  

• Operational Relationships  

Direct access to information about DMIS objects using operational commands supported by the DMIS. In 
the database application, this includes SQL commands over specific objects.  

• Structural Relationships  

Access to related objects based on the application's internal structure. In a DBMS these include "contains" 
links among databases, tables, records, fields and values.  

• Metainformation Relationships  

Access to attributes of and descriptive information about DMIS objects. In a DBMS, these include its 
database size (numbers of tables), table size (number of fields or records), field type, etc.  

• Occurrence Relationships  

Access to all manifestations of a given object. In a DBMS, for example, we might want to access other 
tables that have the same key.  

• Annotative Relationships  

Relationships declared by users instead of being inferred based on system structure. All users should be 
able to annotate objects even when without direct write access. A linkbase will store user-created 
comments.  

Sometimes meaningful relationships can not be accessed directly from DMISs so developers have to 
declare those relationships and store them in the knowledge base.  

Step 3. Identify Commands for Accessing Relationships on DMIS Objects 

Commands underlie the links that give users direct access to various relationships on DMIS objects. After 
identifying its implementation commands, we can then build a relationship's mapping rules. Table 1 lists 
some of these commands for database table relationships. The actual system commands will vary among 
DBMS implementations. The DMIS handler should pass the actual system commands to the DMIS. 



Object  Relationships Commands 
table schema list related tables 
table operational insert record 
table structural list fields 
table metainformation describe table 
table occurrence list tables having the same key 
table annotative create comment 

Table 1. Commands underlying database table relationships. 
Step 4. Build Mapping Rules 

The main purpose of mapping rules is to infer useful links from the output dynamically generated by a 
DMIS (e.g., DBMS) and commands for operating on DMIS objects. Note that one set of mapping rules can 
serve all instances of a DMIS. We identify two types of mapping rules: Command_Rule and Object_Rule. 
Bieber and Wan [W96] implemented mapping rules (or bridge laws) using Prolog. However, for clarity we 
discuss mapping rules in terms of functional procedural calls. Command rules are invoked when the user 
selects a link anchor. Object rules are invoked when the user selects a command link and DMISs display 
documents.  

1. Command_Rule(Owning_Sys, Object_Type): This rule infers commands for operating upon the 
selected object. This rule has two parameters: Owning_System and Object_Type. As figure 1 shows, a Web 
server can integrate with multiple DMISs so we need the "Owning_System" parameter to discriminate 
among different DMISs.  

This rule should provide the following functions:  

• Search the knowledge base for commands accessing various relationships on the selected DMIS 
object.  

• Map commands to links  
• Form a HTML document that includes mapped links and sends the document to the Web server.  

For example, Command_Rule("DBMS", "Table") will execute the aforementioned functions and create the 
following HTML document. To conserve space, we just list the first command (list fields) here. In reality 
the system would present all commands (or a filtered subset). Some available commands are listed in table 
1.  

<HTML><BODY>Select one of the following commands:<A href="http://www.rutgers.edu/cgi-
bin/masterhandler?Owning_System=DBMS&Object_ID=Goods%2Cvendor&Object_Type=Table&Command=list 
fields">list fields</A>. . . .</BODY></HTML>  

In this HTML document, we make the following assumptions: (1) The "Goods" database contains the 
"Vendor" table. (2) The master handler is a CGI application called "masterhandler."  

2. Object_Rule(Command, Owning_System,  

Object_ID, Object_Type): This rule should be included in the DMIS handler. It has four parameters. The 
object identifier (Object_ID) is the key to determine which object of the given system the command should 
operate on. The following table lists possible identifiers for database objects. The Object_ID, 
,Goods,Vendor', means the "Vendor" table of the "Goods" database.  

Type Object_ID Object_ID Example 
Database Database "Goods" 

Table Database,Table "Goods,Vendor" 



Field Database,Table,Field "Goods,Vendor,Name" 

This rule should provide the following functions:  

• Map commands to actual DMIS commands.  
• Send actual commands and other parameters to the DMIS.  
• Receive display output from the DMIS.  
• Infer links from the output generated by the DMIS.  
• Create the HTML document with inferred links and send the document to the Web server .  

Here is an example in which the command accesses a structural relationship (from step 2). 
Object_Rule("list fields", "DBMS", "Goods,Vendor", "Table") will execute the five aforementioned 
functions and send the following HTML document to the Web server. To conserve space, we just list the 
field called "Name".  

<HTML><BODY>The table, Vendor, has the following fields:<A href="http://www.rutgers.edu/cgi-
bin/masterhandler?Owning_System=DBMS&Object_ID=Goods%2CVendor%2Cname&Object_Type=Field">Name</A>. 
. . .</BODY></HTML>  

4. Conclusion 

The WWW presents a way to integrate hypermedia into information systems and information spaces. We 
believe that integrating the WWW with information systems and DMISs in the business world should 
constitute a major thrust for the WWW research. This will go a long way toward making applications more 
understandable. When reengineering applications for the WWW, dynamic relationship mapping could 
prove an effective way to add additional hypermedia links. This should help counteract the danger that new 
Web applications (especially DMISs) will have no hypertext in them [BV97]. We hope this paper will start 
people thinking about mapping rules for better integrating the WWW and analytical information systems.  
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