
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 1997 Proceedings Americas Conference on Information Systems
(AMCIS)

8-15-1997

A Genetic Programming Approach for Distributed
Queries
Karen S.K Cheung
skare@msmail.is.cphk.hk

Nabil Kamel
iskame@cityu.edu.hk

Follow this and additional works at: http://aisel.aisnet.org/amcis1997

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 1997 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Cheung, Karen S.K and Kamel, Nabil, "A Genetic Programming Approach for Distributed Queries" (1997). AMCIS 1997 Proceedings.
16.
http://aisel.aisnet.org/amcis1997/16

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301366275?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis1997%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis1997?utm_source=aisel.aisnet.org%2Famcis1997%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis1997%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis1997%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis1997?utm_source=aisel.aisnet.org%2Famcis1997%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis1997/16?utm_source=aisel.aisnet.org%2Famcis1997%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

A Genetic Programming Approach for Distributed Queries
Karen S.K. Cheung Nabil Kamel

E-mail: iskare@msmail.is.cphk.hk E-mail: iskame@cityu.edu.hk
Tel: (852) 2788-8476 Tel: (852) 2788-8697

Abstract With the emergence of relatively inexpensive and advanced communication technology,
Distributed Database Management Systems (DDBMS) have become an integral part of many computer
applications. Efficient query processing is one of the most important issues in distributed database systems.
In a distributed environment, it is common that queries extract data from different sites. It is important to
limit the amount of data transfer across different sites. Semijoin is a way to reduce the cost of expensive
joins between various sites. A key issue in query optimization based on semijoin reduction is to find a good
sequence of semijoins that reduce the relations referenced in a given query before the joins are performed.
This paper proposes a new approach, based on Genetic Programming (GP), to improve the process of
database query in Distributed Database Systems. A longer version of this paper is available.

1 Introduction

The objectives of query optimization is to ensure that either the total cost or the total
response time for a query are minimized. When a query is presented to the system, it is
essential to use the best possible way to search for the answer and respond to the user. As
the difference in the computation cost between a good and a bad search strategy may be
huge, the use of an efficient method for searching the required data is of utmost
importance. Among the various methods that have been proposed for distributed query
optimization, those based on semijoin to reduce the referenced relations have received
considerable attention. A key issue in query optimization based on semijoin reduction is
to find a good sequence of semijoins that reduce the relations referenced in a given query
before the joins are performed. This paper proposes a new approach, based on Genetic
Programming (GP), to improve the process of database query in Distributed Database
Systems. Genetic Programming, which contains a probabilistic element, mimics
Darwinian evolution to tackle search problems. The paper is organized as follows.
Section 2 describes the search problem in distributed database. Section 3 gives a brief
review on the prior work.

Section 4 introduces Genetic Programming (GP) and discusses how GP can be applied to
perform the search in distributed query optimization. Computer simulation and a brief
conclusion are included in Section 5.

2 The Search Problem

Let us use an example to illustrate. There are two relations located at Site 1 and Site 2
respectively, as shown in Figure 1. A user at Site 1 submits a query to prepare a class list
of each course. It is apparent that a join of the two relations is required. Before
performing an expensive join operation, semijoin () is used to reduce the size of a relation
that needs to be transmitted.

mailto:iskare@msmail.is.cp.hk
mailto:iskame@cityu.edu.hk

STUDENT Site 1
Student_ID Student_Name
95111234 Peter Wong
95122345 Nancy Ma
95133456 May Tam
95144567 Christina Ng
95155678 Desmond Kwok
95166789 Leslie Chan
95177890 Candy Lee
95188901 Maria Lam
95199012 Benny Tsui
95100123 Ronald Li
REGISTRATION Site 2
Student_ID Course_ID
95111234 IS3001
95144567 IS3002
95144567 IS3006
95188901 IS3003
95199012 IS3001

Figure 1. STUDENT and REGISTRATION relations

The following are the steps of performing semijoin operation:

1. Project REGISTRATION on Student_ID and get a temporary result, A.

A Student_ID
 95111234
 95144567
 95188901
 95199012

2. Transmit A to Site 1, perform a join and get the following result, B.

B Student_ID Student_Name
 95111234 Peter Wong
 95144567 Christina Ng
 95188901 Maria Lam
 95199012 Benny Tsui

The semijoin is a reduction operator; STUDENT REGISTRATION can be read as the
reduction of STUDENT by REGISTRATION. Note that the semijoin operation is not
symmetric, i.e., the result will differ if we reverse the order. In addition, different
sequences of semijoins have different cost. It is not difficult for us to use semijoin to join
relations between two sites. However, suppose we have a query which involves joining
more than, say, eight sites, the situation will then become more complicated because the
sequence of semijoins will greatly affect the communication costs.

3 Prior Work

Many algorithms have been proposed to find a good semijoin sequence for different type
of tree queries. One of earliest research approaches in distributed query processing was
developed by Wong [5]. This algorithm was further enhanced and implemented in the
SDD-1 system. The SDD-1 algorithm addressed simple queries and used a hill-climbing
approach to find as many semijoins as possible. However, due to the use of hill-climbing
approach, the SDD-1 algorithm can only obtain a local optimum solution. Apers et al.
introduced two query optimization algorithms, PARALLEL and SERIAL, that derived
optimal solution for the class of simple queries. These algorithms were further improved
in [1], which was called GENERAL algorithm to address general queries. Unlike simple
queries, general queries are queries which involve relations containing multiple joining
attributes. In GENERAL algorithm, a separate semijoin program is constructed for each
relation. Though GENERAL is considered to be efficient, it can derive only quasi-
optimal solution. Regarding chain queries, Chiu in [2] proposed to use a dynamic
programming approach to find an optimal semijoin sequence. The dynamic programming
approach can guarantee to get an optimal solution. However, since this method needs to
compare all the semijoin sequence programs, it results in a high computation effort. Yu et
al. in [7] used a dynamic programming approach to consider tree queries. Dynamic
programming was also used in [4] for which joins and semijoins are included. Yoo and
Lafortune [6] presented a new method, A* algorithm, to navigate the space of the
semijoin sequences to return an optimal solution. A* performs efficiently in average less
than five percent of the search space is searched before an optimal solution is found.
However, five percent of a search space in complex queries still represents a substantial
computational effort.

4 Application of Genetic Programming (GP) to Optimize the Search

According to the evolution theory of Darwin, biological structures that are more
successful in grappling with their environment survive and reproduce at a higher rate.
This principle is used in Evolutionary Algorithms, for which Genetic Algorithms and
Genetic Programming are two of its major classes. Genetic Algorithm (GA) operates on
populations of strings of binary digits, called chromosomes, with the strings encoded to
represent individual chromosomes. Three processes, namely, selection, crossover, and
mutation are applied to the string populations to create new ones. Reproduction takes
place on a single chromosome and allows fitter chromosomes to reproduce more.
Crossover, the sexual recombination, creates different chromosomes in the offspring by
combining materials from the chromosomes of the two parents. Mutation causes the

chromosomes of biological offspring to be different from those of their biological
parents. Genetic Programming (GP), proposed by John Koza, is an extension of Genetic
Algorithm [3]. Although both GP and GA are mimicking Darwinian evolution for
tackling search problems, they differ in the problem and solution representations in actual
implementation while GA encodes the problem with flat string for further manipulation,
GP adopts a hierarchical tree-structured representation.

The structures undergoing adaptation in GP are a population of individual computer
programs from the search space. These computer programs are generally hierarchically
organized and of dynamically varying size and shape. In our case, an individual consists
of a specific sequence of semijoin operations. The individuals in the population are any
possible sequences of semijoin operations. In our work, we maintain the search space,
i.e., population size to 20, which are chosen from all possible different sequences of
semijoin operations.

There are five preparation steps in order to apply GP, in our case, to find a semijoin
sequence [3].

1. Determining the set of terminals

The first step is to identify a set of terminals that is used in the individual computer
programs in the population. The terminals are the inputs, i.e., information that will be
processed, for a problem. In our case, the terminals are the relations locating at different
sites.

2. Determining the set of functions

The second step is to identify a set of functions that will be applied to the set of terminals,
i.e., the inputs. The functions, in our case, are the semijoin operations.

3. Determining the fitness measure

The third step is to evaluate how good each solution of the problem at hand is. Fitness
can be measured in different ways. The most common types of fitness used are the error
measure and payoff value [3]. We consider the communication costs to be the fitness
measure in our work.

4. Determining the parameters and variables for monitoring the run

The fourth step involves selecting the values of parameters to control the runs. GP is
controlled by 19 parameters. Population size and maximum number of generations to be
run are the two major parameters that should be specified, while the 17 minor parameters,
which are used to control the process, can be neglected in most applications, including in
this paper [3]. The population size is chosen according to the complexity of a problem.
Generally, the larger the population, the better. In our work, the population size is set
according to the problem size. Thus problems with more sites will offer a larger number

of semijoin sequences, and the number of generations is limited by the amount of time
available for the problem.

5. Determining the method of designating a result and the criterion for terminating
a run

The final step is to specify the criterion for designating a result and for terminating a run.
The method of result designation assigns the best individual that ever appeared in any
generation of the population (i.e., the best-so-far individual) as the result of a run of
genetic programming. The best-so-far individual is then reported as the result of the
entire run when the run eventually terminates according to the termination criterion. The
run of genetic programming terminates when the termination criterion is satisfied.
Usually, we terminate a run either when the prespecified number of generations has been
reached, or when the success predicate has been satisfied. In our work, the success
predicate is satisfied if the best solution obtained meets a certain prespecified threshold.

6. Computer Simulation and Conclusion

Computer simulation is conducted to demonstrate the feasibility of applying genetic
programming to find a semijoin sequence that solves the query at lowest cost. To address
this problem, we have implemented a prototype of our genetic programming approach in
Common Lisp and perform a number of simulations. We will then compare the quality of
the solutions proposed by the GP approach with the other existing approaches.

References

1. Apers, P.M.G., Hevner, A.R. and Yao, S.B. Optimization Algorithms for Distributed
Queries. IEEE Transactions on Software Engineering. January 1983, Vol. 9, No. 1, pp.
57-68.

2. Chiu, D. M., Bernstein, P. A. and Ho, Y.C. Optimizing Chain Queries in a Dist.
Database System. SIAM Journal on Computing, February 1984, Vol. 13, No. 1, pp. 116-
134.

3. Koza, J.R. Genetic Programming: On the Programming of Computer by Means of
Natural Selection. (MA: The MIT Press, 1992).

4. Lafortune, S. and Wong, E. A State Transition Model for Distributed Query
Processing. ACM Transactions on Database Systems, September 1986, Vol. 11, No. 3,
pp. 294-322.

5. Wong, E. Retrieving dispersed data from SDD-1: A system for distributed databases.
Proceedings of 2nd Berkeley Workshop Distributed Data Management and Computing
Networks, May 1977, pp. 217-235.

6. Yoo, H and Lafortune, S. An Intelligent Search Method for Query Optimization by
Semijoin. IEEE Transactions on Knowledge and Data Engineering, June 1989, Vol. 1,
No. 2, pp. 226-237.

7. Yu, C.T., Ozsoyoglu, Z.M. and Lam, K. Optimization of Distributed Tree Queries.
Journal of Computer and System Sciences, 1984, Vol. 29, pp. 409-445.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	8-15-1997

	A Genetic Programming Approach for Distributed Queries
	Karen S.K Cheung
	Nabil Kamel
	Recommended Citation

	A Genetic Programming Approach for Distributed Queries

