
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 1997 Proceedings Americas Conference on Information Systems
(AMCIS)

8-15-1997

A Data warehouse within a Federated database
architecture
Anand V.J
National University of Singapore, sundar1@ix.netcom.com

Follow this and additional works at: http://aisel.aisnet.org/amcis1997

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 1997 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
V.J, Anand, "A Data warehouse within a Federated database architecture" (1997). AMCIS 1997 Proceedings. 7.
http://aisel.aisnet.org/amcis1997/7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301366266?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis1997%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis1997?utm_source=aisel.aisnet.org%2Famcis1997%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis1997%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis1997%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis1997?utm_source=aisel.aisnet.org%2Famcis1997%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis1997/7?utm_source=aisel.aisnet.org%2Famcis1997%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

A Data warehouse within a Federated database
architecture

Anand, V. J.
Dept. of Decision Sciences, National University of Singapore

Email: sundar1@ix.netcom.com

Introduction
Research in heterogeneous databases [Sheth & Larson 90] have provided methods to
integrate disparate databases into a single unifying architecture - the federated database
model. But they are limited in as much as: 1) The federated schema is non-materialized,
which means that queries will have to be evaluated in the individual databases, resulting
in slower response time, and 2) Data from external sources are not integrated within the
federated schema. We propose to extend the federated architecture to include a data
warehouse [Inmon 94, Kimball 96] modeled as a materialized view [Hanson 87] of the
underlying federated schema. In addition, we employ view maintenance techniques to
maintain the data warehouse against changes in the underlying operational sources. We
adopt a deferred view maintenance [Colby et al 96] approach, rather than immediate
approach adopted by Stanford WHIPS project [Hammer et al 95]. This approach is
preferred, because a great deal of decision-making may not require current data, but for
those that require them, the model provides a mechanism to obtain them without adding
too much overhead. For example, a data warehouse at a central office of a large chain of
stores would like to have access to current inventory levels at individual stores, before
deciding on a promotion. Similarly, access to both historical and current data of stock
prices help an investment company to re-create point-in-time snapshots to help predict
movements in stock prices.

This approach provides the following advantages:

• A unified architecture that ties the data warehouse to multiple heterogeneous
databases.

• Provides a method of maintaining the data warehouse as an integrated
materialized view of the underlying data sources.

• Provides flexible access to current data residing in the data sources.
• Ease of maintenance against any change to the schema in the data source or

warehouse.

The Integrated Data Warehouse Model (IDWM)
IDWM integrates a data warehouse into a tightly coupled federated database architecture
(Figure 1). This provides a three tier architecture: operational data sources and data
warehouse forms the bottom and top respectively, while the interface layer provides the
access methods between the two. When access to the current data is required, it is
retrieved transparently from the operational data sources by accessing the interface layer.

mailto:sundar1@ix.netcom.com

In the model, a component database (CDB) refers to an operational data source. Data that
is of interest is first represented uniformly through the export schema - filters and
combines data defined in the component database into meaningful views. After
reconciling, integrating and removing semantic heterogeneity between various export
schemes, these are then integrated along with the external data into an integrated data
schema (IDS) depicted near the top of Figure 1.

Here, the distinction between IDS and the data warehouse schema is that the former
provides a consistent and reconciled view of all the data existing in the enterprise
including external data, while the later is a subset of IDS and tailored to the personalized
needs of a user. The interface layer provides accessing methods between the component
databases and the data warehouse. This layer consists of software modules that
implements utilities to generate differential files, mapping routines between the various
schemes, communication sub-systems and message handlers.

IDWM does not assume on any specific data model adopted by the underlying data
sources although data warehouse is assumed to be a non-legacy database. But for the
purposes of illustration and developing mechanisms, we consider component databases
and the data warehouse to be relational providing support for trigger mechanism, and
view definitions. We emphasize that these assumptions do not in any manner make the
model less generic.

IDWM maintains the warehouse as a materialized view over the component databases.

Figure 1: The Integrated Data Warehouse Model

In order to maintain the views the model uses the deferred method for propagating
incremental changes. This method allows the materialized view and base tables to be out-
of-sync for a period of time, which is tolerable in the warehousing scenario. But
additional efficiency is gained by batching several updates together, and keeping the
transaction and communication overhead to the minimum. The method used in this model
consists of applying a set of propagation rules to a materialized view defined as select,
project, join or any combination thereof. The rules [Colby et al 96] compute the tuples

that need to be deleted and inserted into the materialized view by accessing the base
tables and its transaction logs alone, without referencing the materialized views in the
data warehouse.

Global View Management System (GVMS), and the Local View Manager (LVM)
implement the view management functions in IDWM. LVM provides the interface
between operational database and data warehouse through the GVMS. Also, it provides
utilities to generate differential files and specific mapping utility between the export and
local schema. In addition, it periodically sends update from the operational source to the
warehouse. GVMS provides similar functionalities to the data warehouse as LVM to the
operational databases. In addition, it services request for data from the warehouse and
coordinates LVMs during the periodic updates. During update propagation GVMS first
propagates the change to the materialized export views, before propagating to the
warehouse views.

Local View Manager
This is a software module that provides the interface between a component database and
the data warehouse. Generally, there may not be a direct mapping between the local and
export schemes, e.g., a table in the export schema can be a view defined by a join
between tables. Therefore, a comprehensive catalog is maintained which provides
mapping information. Moreover, it makes it easier for the local administrator to maintain
the catalog for any change in the local schema. The other major functionality of LVM is
to generate differential files for the views defined in the export schemes. The
implementation of this function depends on the individual component database. For a
database that support views and trigger mechanism LVM generates a transaction file for
each table. At the time of propagation a differential file is generated for every view.

Global View Management System
GVMS is a software module that provides similar functionalities to the data warehouse as
LVM provides to the component databases. But the GVMS is a global master that
coordinates the LVMs and determines the next refresh cycle.

Functionally, GVMS provides:

• A utility to map IDS to the warehouse schema, and also IDS to the export schema
of component databases.

• Algorithm to generate differential files for updating the data warehouse schema.
• Coordination of propagation of differential files from LVMs.
• Requests to LVMs to propagate differential files for ad-hoc data.

GVMS consists of various software modules that perform different functions. The
Mapper transforms the warehouse schema to the underlying export views by interacting
with IDS. The Assembler consolidates results and propagates updates to materialized
views, and it also implements the view maintenance algorithm in GVMS. Coordination

between these modules is performed by the Coordinator, while Monitor provides
interface between GVMS and LVMs. For ad-hoc queries the coordinator passes the
definition to the mapper in order to find relevant export views that fulfill the request.
Next, the mapper passes the site addresses of the relevant export views to the monitor to
retrieve the differential files. These are buffered until all requests are obtained by the
monitor, and passed on to the assembler which then assembles them according to the
query definition, and submits the result to the coordinator. For periodic update
propagation from the component databases the monitor has an elaborate tracking
mechanism, through which it ensures that all the differential files are received by the
warehouse, before the assembler begins propagating. In the event of a network failure the
monitor requests the corresponding local view manager to re-send the differential files.

Conclusions
A great deal of work has been carried out in heterogeneous databases, view maintenance
and data warehousing, but only recently have there been some research in integrating
them. Our aim is to develop a model and define interfaces required to integrate these
methods into a unified architecture. In this process many open and challenging issues that
require further investigations were brought to focus, such as: (1) View maintenance
algorithms for updating aggregates - there are not many generalized algorithms to handle
these operations, (2) We assume warehouse as an append only database, but what about
those that can have updates as well, e.g., to enable error-correction and schema changes,
(3) Expiring data from the warehouse. We are presently working on extending the various
functional modules that have been defined in the IDWM to include non-relational
databases. Further we are working on defining a high level operator that performs drill-
down from consolidated warehouse data to include most recent data from the component
databases.

Reference

1. Colby, S. L., T. Griffin, L. Libkin, I. S. Mumick, H. Trickey, Algorithms for
Deferred Maintenance, Proceedings of the ACM-SIGMOD International
Conference on Management of Data, (Inderpal Singh Mumick, ed.) pp. 469-479,
1996.

2. Hammer, J., H. Garcia-Molina, J. Widom, W. Labio, Y. Zhuge, The Stanford
Data Warehousing Project, Data Engineering Bulletin, Vol. 18, 2, pp. 41-48,
1995.

3. Hanson, E. N., A Performance Analysis of View Materialization Strategies,
Proceedings of the ACM-SIGMOD International Conference on Management of
Data, (Umeshwar Dayal & Irving L. Trniger, eds.), pp. 440-453, 1987.

4. Inmon, W. H., Building the Data Warehouse Second Edition, New York, John
Wiley, 1994

5. Kimball, R., The Data Warehouse ToolKit, New York, John Wiley, 1996.
6. Sheth, A. P., J. A. Larson, Federated Database Systems for Managing Distributed,

Heterogeneous and Autonomous Databases, ACM Computing Surveys, Vol. 22, 3,
pp. 183-236, 1990.

Acknowledgment

The author wishes to thank the referees for their suggestions.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	8-15-1997

	A Data warehouse within a Federated database architecture
	Anand V.J
	Recommended Citation

	Introduction
	The Integrated Data Warehouse Model (IDWM)
	Local View Manager
	Global View Management System

	Conclusions

