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Abstract  

Model management is the task of selecting and applying appropriate analytical models by 
a Decision Support System. The selection of a model in current model management 
systems requires definitive boundaries or explicit rules and reasoning. Selection of a 
model, however, often requires examining choice attributes that have no clear definitions 
or that overlap in their applicability. The selection of a single model from among various 
alternative models may thus require components of fuzzy reasoning. In this paper, we 
examine the use of belief graphs, a fuzzy technique, to select an appropriate integer 
programming solution methodology based upon several problem formulation 
characteristics. Our prototype shows that belief graphs are effective at selecting model 
methodologies within the scope of the decision setting.  

Introduction  

A model is an abstraction of reality. Often, models provide the means of analysis during 
problem solving. As such, models are central to the concept of Decision Support Systems 
(DSS) which strive to assist a decision maker in arriving at a solution to a problem. A 
DSS uses data, models and interactive dialogues to assist a decision maker in this 
process. The feature of selecting and applying models is known as the Model 
Management System (MMS) in the DSS architecture (Sprague and Carlson, 1982). In 
practice, the MMS must function as an expert in the selection and application of models, 
much as would a consultant in the decision sciences.  

Model management is historically approached in the literature with two distinct 
categories. One category, which we will refer to as micro-model management, is 
concerned with assisting users through a single modeling technique from the formulation 
of a problem through interpretation of a solution. A sophisticated linear programming 
package or advanced spreadsheet might be considered an MMS in this domain. The other 
category, which we will call macro-model management, directs its attention to selecting 
an appropriate modeling technique or structure from among the wide variety of modeling 
techniques available. Blanning (1993) provides an excellent overview and survey of 
MMS research. Chang, Holsapple and Whinston (1993) extend the survey with the 
addition of issues and research directions, including a call for more intelligence to be 
included in the systems.  



Most MMS in the literature use a formalism that is restrictive with respect to the 
mechanics of the model selection function. Logic-based, rule-based, data-based, and 
object-based systems must conform to the theory on which they were founded. 
Enhancements to theory enable researchers to mitigate some of the rigidity. Different 
reasoning forms in an expert system allow leaps across the gaps of missing relationships 
between model components (Liu, et al., 1990). Possibility measures can be incorporated 
into expert systems that are rule or logic based (Zahedi, 1993). Objects can assume many 
properties including possibilities, values, or distributions. However, only a couple of 
proposed methods explicitly consider models as being hazy entities, where selection of a 
particular model may be based on an accumulation of evidence (Klein, et al., 1985) or 
analogy (Liang and Konsynski, 1993).  

We propose to turn to a branch of engineering that could be directly incorporated into 
most, if not all, of the suggested approaches to MMS: Fuzzy Mathematics. Fuzzy 
mathematics is an area of study that allows expression of relationships, values, logic, and 
memberships that are not clearly defined (Dubois and Prade, 1987a; Klir and Folger, 
1988; Negoita, 1985). Fuzzy studies sprang from interval analysis and includes ideas as 
fuzzy sets (Zadeh, 1965; Zimmerman, 1987), fuzzy logic (Viot, 1993), fuzzy numbers 
(Kaufmann and Gupta, 1991), and belief functions (Shafer, 1987). They are incorporated 
into expert systems (Dubois and Prade, 1987b; Negoita, 1985) and have many scientific 
and engineering applications (Bezdek, 1987).  

Several fuzzy tools exist that could be incorporated into different model management 
structures. Belief functions are used in this exploration to build a simple prototype. The 
problem domain is integer programming. The model methodologies include several 
general integer programming optimization algorithms. The selection criteria contain 
characteristics of integer programs. A prototype is developed in FuziCalc, a spreadsheet 
which allows specification of a belief function in graph form as a cell value (FuziWare, 
Inc. 1993).  

Scope of the Model Base  

A decision maker has formulated a mixed- or pure integer programming problem, 
perhaps a difficult, large-scale scheduling or manpower/manufacturing planning problem. 
A solution to this mathematical program is required. What is the best general mixed-
integer problem solver for the current formulation? The answer of course will vary 
depending upon a number of characteristics of the mixed-integer program. A good subset 
of general solvers includes Branch-and-Bound, Implicit Enumeration, Cutting Planes, 
Decomposition, and Lagrangian Relaxation. For detailed material on mixed- and pure 
integer programming problems (MILPs) and their solution procedures, see Salkin (1975), 
Garfinkel and Nemhauser (1972) and Nemhauser and Wolsey (1988).  

The methods listed above are tried and true, effective integer programming techniques. In 
addition, there have been many advances in solving MILPs with substructures such as 
networks, though we do not deal explicitly with special structures in our fuzzy model 
management system. A fast and robust implementation that incorporates the five 



methodologies we consider, with a powerful linear programming solver, will generally be 
quite sufficient for solving many real-world, mixed-integer problems that do not exhibit 
special structure.  

The characteristics of a mixed-integer program affecting selection of a solution 
methodology would include the size of the problem, measured in terms of 1) the number 
of variables and 2) the number of constraints; 3) the density of the constraint coefficient 
matrix; and 4) the fraction of pure integer variables. Based on these characteristics, an 
MMS must select the optimization methodology for the formulated program. Selection of 
an improper technique will result in unnecessary delays and for certain Decision Support 
Systems (DSS), response time is critical (e.g., for real-world scheduling problems, 
pricing problems, and stock, commodity or currency trading problems).  

Of course, many other factors could be considered when selecting an optimizer, including 
special structures, satisfaction with sub-optimality or epsilon optimality, computer 
resources available, application domain, and an evaluation of the combinatorial 
explosiveness of the formulation. However, the limited set of criteria presented will serve 
to demonstrate the use of belief functions for model selection, and serve in preliminary 
evaluation of the fuzzy technique when applied to a fairly general case.  

The System  

Belief functions have a body of surrounding theory (Shafer 1987). In a simplistic sense, 
they represent the fractional degree to which each value x in b(x) belongs to the category 
represented by the function. Belief functions need to be constructed for each cell in the 
FuziCalc spreadsheet where the intersection is the integer program method and the 
criteria of selection. For this example, there are five methods and four criteria, resulting 
in construction of twenty belief functions. Note that these twenty functions will also take 
all criteria interaction effects into account, something that simple rules or logic could not 
consider without implicit or explicit enumeration of all combinations.  

Once all twenty belief functions are defined, they are entered into the FuziCalc system. A 
sample spreadsheet appears in Figure 1 (next page). Fuzzy cells are indicated with a 
triangle to the left of the cell and the centroid of the belief function as the numeric value. 
Graphs of the belief functions are viewed on demand. For this demonstration all values 
were scaled to be from zero to one. Selection of a model is made by entering the 
characteristics of the formulation on the spreadsheet input line (Line 10). The belief 
functions (Cells B3 to E7) are converted to values (Cells B13 to E17) by taking the 
entered characteristics and looking up their corresponding belief value. The beliefs for 
each optimization technique are summed resulting in a belief score (Cells F13 to F17). 
The highest score is then selected as the optimization methodology of choice. Competing 
or close scores may indicate multiple methods are appropriate.  

The process of simple summation of belief is the most straightforward. Fuzzy procedures 
also exist for ranks, dot products, and other transforms of the belief functions that further 
research may find more appropriate in model management. Conceptually, the summation 



approach is similar to constructing value functions for each cell and using an additive 
multi-attribute value function to select the appropriate integer programming optimizer 
(Keeney and Raiffa 1976). The result for the values entered in Figure 1 are sensible, with 
Branch & Bound selected for a mixed problem with a large number of variables and 
moderate constraints and density. Many other cases were examined and results compared 
to those expected by the authors.  

Conclusion  

This paper describes a simple application of belief functions in a linearly driven Model 
Management System. The importance of this summary is that we have made an initial 
step in bringing fuzzy mathematics literature to bear upon model management. Each 
fuzzy technique has its own unique properties and the power to represent situations where 
the decisions cannot be clearly defined, as in the selection of an appropriate model. For 
the domain of the presentation, the fuzzy technique of belief functions proved to be 
robust, effective, and easy to manipulate.  

Another unique feature of fuzzy mathematics is that the aspects of fuzziness can be 
incorporated directly into other model management techniques. Fuzzy expert systems 
also hold promise as a technique for model management systems. Fuzzy logic can be a 
way to incorporate possibility concepts into logic driven systems. Objects can contain 
fuzzy sets as well as crisp sets. Relational approaches may benefit from the work already 
done in fuzzy databases (Dubois, Prade and Sessa 1994). Newer approaches may be 
derived from the use of fuzzy neural networks (Gupta and Rao 1994).  

Author's Note  

A longer version of this paper including references is available from the second author.  
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1 IP Class Pure/Mixed/Linea
r 

Numbe
r of 
vars 

No. of 
Constraint
s 

Matrix 
Densit
y 

  

2        

        

3 Cutting Plane 0.15 0.50 0.52 0.07   

4 Implicit 
Enumeration 0.00 0.29 0.78 0.53   

5 Lagrangian 
Multiplier 0.43 0.93 0.07 0.50   

6 Decompositio
n 0.32 0.30 0.50 0.43   



7 Branch and 
Bound 0.47 0.35 0.49 0.51   

8        

9  Fraction(pure=0) 
# of 
var(ma
x 200) 

# of 
con(max 
200) 

% 
dense   

1
0 Enter Values 0.40 100.00 50.00 0.40   

1
1        

1
2 

Scale to zero-
one 0.40 0.50 0.25 0.40   

1
3 

Belief for cut 
plane 0.00 1.00 0.71 0.00 1.7

1 Cut 

1
4 

Belief for 
Implicit 0.00 0.50 0.00 0.39 0.8

9 Implicit 

1
5 

Belief for 
Legrangian 0.90 0.00 0.00 0.35 1.2

5 Lagranian 

1
6 

Belief for 
Decompositio
n 

0.85 0.48 0.51 0.35 1.9
8 

Decompositio
n 

1
7 

Belief for B & 
B 0.59 0.48 0.53 0.52 2.1

2 B & B 

Figure 1 - Example of Fuzzy MMS Selection of the Branch & Bound Method  
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