
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 1995 Proceedings Americas Conference on Information Systems
(AMCIS)

8-25-1995

Design Reusability and Learning in CABSYDD
(Case-Based System for Database Design)
W. Amber Lo
Millersville University

Joobin Choobineh
Texas A&M University

Follow this and additional works at: http://aisel.aisnet.org/amcis1995

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 1995 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Amber Lo, W. and Choobineh, Joobin, "Design Reusability and Learning in CABSYDD (Case-Based System for Database Design)"
(1995). AMCIS 1995 Proceedings. 67.
http://aisel.aisnet.org/amcis1995/67

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301366125?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis1995%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis1995?utm_source=aisel.aisnet.org%2Famcis1995%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis1995%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis1995%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis1995?utm_source=aisel.aisnet.org%2Famcis1995%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis1995/67?utm_source=aisel.aisnet.org%2Famcis1995%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Design Reusability and Learning in
CABSYDD (Case-Based System for

Database Design)
W. Amber Lo

Department of Business Administration
Millersville University

Joobin Choobineh
Department of Business Analysis and Research

Texas A&M University

1. Introduction

A database is a collection of related data that represents some relevant reality. The
database design process consists of four steps: Requirements Collection and Analysis,
Conceptual Database Design, Logical Database Design, and Physical Database Design.
Recently, knowledge-based computer-aided design tools have been introduced. A list of
them can be found in Lo (1994). None is empowered with machine learning to improve
its permanent knowledge base or inference abilities. This research applies case-based
reasoning to Conceptual Database Design. Section 2 reviews related theories. Section 3
discusses design and implementation of the application. Lastly, section 4 is the
conclusion.

2. A Review of Related Theories

Section 2.1 describes the Enhanced Entity Relationship Model. Section 2.2 discusses
case-based reasoning.

2.1 The Enhanced Entity-Relationship

Model The Enhanced Entity-Relationship (EER) Model of Elmasri and Navathe (1989) is
the data model used in this research. The three basic constructs are entity type, attribute,
and relationship type. An entity type (ET) is a group of objects that have the same kind of
properties, e.g., ET BOOK-CIR is all the books for regular circulation in a library.
Clusters of subclass ETs can be defined from a superclass ET. The superclass at the
highest level is the "root-level" ET, and, if taken with all its subclasses at different levels,
it is called "a chunk of entity types" (Lo 1994). Two descriptions are used to provide
information on an ET. The entity type role describes the role that an ET plays in
organizations of the same industry (Lo 1994). For example, ET USER in a library plays
the role "MEMBERS." The entity type domain describes its scope (Navathe et al. 1986).
For example, HOLDING, with domain "ALL HOLDINGS" covers all library materials.
An attribute (ATTR) is a property of an entity type or a relationship type. The three basic

attribute domains are string, numeric, and logical. Each attribute has a cardinality ratio
which denotes the minimum and maximum numbers of possible values for that attribute
(Batini and Lenzerini 1984). The key attribute value identifies each particular instance of
an ET. A relationship type (RT) is an association among ETs. For example, "a user
checks out a book for regular circulation" is the activity statement of the RT CHECKS-
OUT-C between USER and BOOK-CIR. All RTs are restricted to be binary here as in
Storey and Goldstein (1988).

2.2 Case-Based Reasoning and Case- Based Systems

Case-based reasoning is the process of solving a problem by retrieving the solution of a
previously solved problem and adapting it to that of the problem under study. Past
experiences are used to avoid having to start from scratch every time. This new solution
along with the problem statement (together called a "case") can be saved and properly
indexed in a case base for future use. Multiple solutions to a problem form a category of
cases. The process of case-based reasoning can be divided into four major steps as shown
in Figure 1 (Kolodner and Riesbeck 1990, Riesbeck and Schank 1989): Problem
Description, Base Case Searching and Retrieval, Base Case Adaptation and New Solution
Evaluation, and Learning. The Problem Description step obtains the index values of the
problem. Then, the Base Case Searching and Retrieval step tries to find and retrieve the
closest case to serve as the base case. The search involves going through and measuring
the usefulness of all relevant cases and the one with the highest score is chosen. The Base
Case Adaptation and New Solution Evaluation step adapts the chosen base-case solution
and evaluates the result until a satisfactory new solution is derived. Evaluation methods
and standards are specific to individual problem domains. The last step, Learning, retains
useful experiences to increase future problem solving power. Case-based learning often
results in changes in the knowledge base. Various case-based expert systems have been
implemented (Kolodner 1993). No attempt has been reported in using this approach for
database design. The next section discusses such application.

3. Design and Implementation of the Case-Based Database Design System

The concept of maintaining a schema library was first proposed by Di Battista et al.
(1989). A case-based database design tool can further take over the human activity of
selecting a base case and help transform it into the desired schema. Section 3.1 describes
the case base, section 3.2 discusses case-based conceptual design, and section 3.3
describes implementation.

3.1 The Case Base

As functional departments in enterprises of the similar industries share many common
objects and associations among objects, conceptual schemata defined at this level should
be highly reusable. A case is a complete and stand-alone conceptual schema for one
particular functional department. They are classified by industry according to the
Standard Industrial Classification Manual (1987). As shown in Figure 2, the case base
has four levels of primary indexes: division, major group, industry group, and functional
department with cases at the lowest level. Each department is created as a new conceptual
schema is stored as the first case for that department. All cases of a department of a
particular industry group form a category of cases. If there are more than one case in a
category, secondary indexes (acquired through learning) will become necessary below
the departmental level. Each secondary index is a root-level ET name of some case in that
category. The term "index" here refers to a single element and not a list. An index value
of "y" (meaning "yes") for a case states the fact that this case has that ET. A value of "n"
(meaning "no") states that the ET is not needed by this case. Each case has to be defined
by all secondary indexes of that category. For example, in Figure 2, there are three cases

in the "library" category with their own values for the three secondary indexes: 1) locker,
2) study-room, and 3) special-program.

3.2 The Process of Case-Based Conceptual Design

Following the process of case-based reasoning shown in Figure 1, case-based conceptual
database design consists of four steps. This paper concentrates on the learning of new
cases and secondary indexes. Further details of the first three steps are in Lo (1994).

The schema to be defined is called the new case. The first step, New Case Description,
describes this new case in terms of the relevant indexes of the case base. A value should
be supplied for each index. The second step, Base Case Searching and Retrieval, is
carried out in a best-first search manner. The corresponding category should be reached
by following a branch according to the division, major group, industry group, and
department to which this new case belongs. There are three possible outcomes of this
search. First, if there is only one case in the category, this only case will be retrieved for
deriving the conceptual schema of the new case. Second, if there are more than one case
in the category, the case with the most matching secondary index values will serve as the
base case. If there is a tie, then one case will be chosen randomly. Third, if the category
of this new case is not in the case base, then a case for the same functional department
has to be found among other industry groups in the same major group. Each category
may have its own set of secondary indexes to be searched. The one case with the highest
final score will become the base case. If no industry group in the same major group has
this departmental case, then this new schema will be defined from first principles.

The third step, Base Case Adaptation and New Schema Evaluation , follows an
interactive parameter adjustment strategy (Kolodner and Riesbeck 1990). In order to
transfer constructs in an orderly fashion and to maintain the consistency of ET roles and
domains, adaptation is performed in an old-to-new system-initiated manner. The
procedure first selects an old ET according to a set of priorities and then transforms it to

the equivalent new construct. It continues until all the ETs of the new case have been
derived. The same procedure is then applied to RTs. Besides maintaining consistency as
the new schema evolves, overall evaluation also includes the detection and elimination of
dangling entity type chunks and unnecessary subclasses.

Learning occurs when a new case and any new secondary indexes are added into the
case base. With more indexes in the case base, the system has more knowledge about
classifying schemata. Secondary indexes are specific to a category because each one
records a difference in a root-level ET among all the cases. The decision of adding a new
case and its justification depends on the observed structural differences between the base
and the new cases. A new index is automatically created at the first discovery of the
difference and the corresponding index values of all cases are also automatically
determined by the system.

The very first case (either defined from scratch or from a neighboring case) to be added
to a new category does not need any secondary index as there is no other case to which it
is compared. Any secondary index of a neighboring base case is not transferred as it does
not denote a structural difference of this category.

If both the base and the new cases belong to the same category, then the new case is
added only if it causes the creation of one or more new secondary indexes in either of the
two situations: (1) the base case is the only existing case with no secondary index and (2)
there are more than one existing cases and some secondary indexes and both the base and
the new cases have exactly the same set of secondary index values. There are two ways in
which new secondary indexes are created. First, any root-level ET not transferred to the
new view (not yet used as a secondary index) is used as a new secondary index with the
exact ET name as the index name. All existing cases have an index value of "y" and the
new case has an index value of "n." Second, similarly, any new root-level ET defined
from scratch for the new case is used as a new secondary index. All existing cases have a
value of "n" and the new case has a value of "y."

If a new case has partially matching secondary index values in its own category, then it is
retained because there is no other case in that category with the same set of secondary
index values. The creation of any new index is the same as described above.

3.3 Implementation

The prototype "CABSYDD" is implemented in the expert system shell Clips (Version
6.0). It aids a designer in performing external view definition either through case-based
reasoning or from scratch (through a subsystem called SYDD) if no relevant case is
available. SYDD implements a step-by-step conceptual design methodology from first
principles (Lo 1994).

4. Conclusion

This research was the first in considering past experiences for database design. This
research demonstrated the feasibility of applying case-based reasoning to conceptual
database design through the development of the prototype, CABSYDD. It increases its
own knowledge with experiences. Evaluation, which includes system validation and
verification, has also been performed (Lo 1994). References and the full version of this
abstract are also available upon request.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	8-25-1995

	Design Reusability and Learning in CABSYDD (Case-Based System for Database Design)
	W. Amber Lo
	Joobin Choobineh
	Recommended Citation

	Design Reusability and Learning in CABSYDD (Case-Based System for Database Design)
	1. Introduction
	2. A Review of Related Theories
	2.1 The Enhanced Entity-Relationship
	2.2 Case-Based Reasoning and Case- Based Systems

	3. Design and Implementation of the Case-Based Database Design System
	3.1 The Case Base
	3.2 The Process of Case-Based Conceptual Design
	3.3 Implementation

	4. Conclusion

