
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 1995 Proceedings Americas Conference on Information Systems
(AMCIS)

8-25-1995

Comparing Coding, Testing, and Migration Costs
for Two and Three Tier Client/Server
Architectures
John Gallaugher
Syracuse University

Follow this and additional works at: http://aisel.aisnet.org/amcis1995

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 1995 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Gallaugher, John, "Comparing Coding, Testing, and Migration Costs for Two and Three Tier Client/Server Architectures" (1995).
AMCIS 1995 Proceedings. 54.
http://aisel.aisnet.org/amcis1995/54

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301366112?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis1995%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis1995?utm_source=aisel.aisnet.org%2Famcis1995%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis1995%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis1995%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis1995?utm_source=aisel.aisnet.org%2Famcis1995%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis1995/54?utm_source=aisel.aisnet.org%2Famcis1995%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Comparing Coding, Testing, and
Migration Costs for Two and Three Tier

Client/Server Architectures

John Gallaugher, Syracuse University

Introduction

One can consider most end-user applications as consisting of three components:
presentation, logic, and data. An architecture for a distributed, client/server system can be
classified in terms of how these functions are split between software entities and where
functions are located on a network. Although a virtually infinite number of possibilities
exist for distributing and linking application components, research suggests most
contemporary architectures can be defined in terms of a limited subset of alternatives.
This paper focuses on issues related to the distributed logic scenario for two-tier and
three-tier client/server architectures popular in implementing database transaction-
oriented distributed systems.

Organizations with portfolios of applications containing common and possibly reusable
components would be interested in identifying the costs associated with coding, testing,
and migrating (CTM) under different distributed architectures. Recent articles in
practitioner literature have discussed the relative advantages and selection heuristics for
these architectures,,,. However, these have not operationalized cost justification for
choosing one alternative over the other. This paper begins to address this issue by
offering formulations to assess CTM costs under specific scenarios. Research is
underway to estimate the impact of this model on organizational decision making with
regard to architecture choice.

Two Tier Architecture

The two-tier, distributed client/server architecture divides presentation, processing, and
data into two distinct units - a client which executes on a PC, and a database server which
executes on another node of the network. Although some systems make it possible to
populate the DBMS with code, this paper will be concerned primarily with that code
stored on the client (workstation) side.

Three Tier Architecture

Three-tier architecture splits user interface, functionality, and data into three distinct units
or tiers. In the three tier scenario, the amount of logic in the PC clients is minimized .
When these clients evoke a business rule or access data, they send a request to a middle

tier server. The middle tier then either fulfills the request itself, sending the result back to
the PC, or more commonly, if additional resources are needed (such as data or the
calculations of another server), the middle tier server acts as a client to an additional
server. Three tier architectures are typically implemented using supporting technologies
such as Open Software Foundation's Distributed Computing Environment (OSF/DCE)
and Sun/USL's Open Network Computing. Further discussion of resource coordination
mechanisms for distributed logic can be found in and .

CASE I - Response to a Business Rule Change

Consider the case in which the business logic of an organization changes, requiring
modification of code in an organization's application portfolio.

Example 1 - Rule Modification Requires No Parameter Changes

In Example 1 we will assume the logic of a business rule, R1*, changes, but the
parameters (inputs and outputs) required to invoke the rule do not change.

Figure 1 presents the case of a two-tier architecture where three distinct applications, A1
to A3 (such as quoting, order fulfillment, and customer return processing) contain the
bulk of the application code and are affected by a change in business logic. This change
is depicted as altering business rule R1*. In this scenario the change in business rule R1*
must be coded in three distinct applications. Since the exchange parameters of the rule do
not change, the calling mechanism (procedure call or C1) required to invoke the rule does
not need to be changed. Each application must be tested separately and the applications
must be migrated to the storage devices for each client workstation (five migrations in the
case above).

Now consider Example 1 constructed in a three-tier architecture where the business logic
for Rule R1* has been split into a separate software unit executing in a distinct middle
tier (Figure 2). Each of the client applications access the common logic of R1* by
executing a Remote Procedure Call C1. The change to R1* now occurs at a single
location. Since the calling and receiving parameters of the business rule do not change,
no changes need to be made in the client applications A1 - A3. Testing and migration for
this code is similarly centralized, drastically reducing the complexity and cost of
executing the change.

The values in curly brackets in Table 1 shows the maintenance iterations required for the
changes in Example 1 for the two-tier vs. three-tier architecture. The advantage for
Example 1 in terms of iterations lies with the three-tier environment, however coding,
testing, and migration weights vary from two and three tiers. More general rules
assessing the costs associated with coding, testing, and migration are shown in Table 1
and were created by considering the following variables:

n - number of client applications containing the rule being changed
f - number of middle-tier functionality servers containing the rule being changed
d2 - cost to code the rule change in the workstation client
d3 - cost to code the rule change in the middle tier server
t2 - testing cost for the workstation component
t3 - testing cost for the middle-tier component
cd - cost to code a call to a business rule
c - number of storage devices (workstation hard disks or LAN-based application servers)
containing applications A1 through An
s - number of storage devices containing the logic for middle-tier rule
cm - cost to migrate a single client
fm - cost to migrate a single middle-tier server

In this scenario, the cost advantage may lie with the three tier environment. This
advantage would be most clear in cases where the number of applications affected by a
change and the number of client storage devices requiring migration are large.

Example 2 - Rule Modification Requires Parameter Changes

Example 2 is similar to Example 1, however assume the change to business rule R1*
requires a change to the rule's calling parameters (i.e. the addition of a variable or a
change to a data type). This requires all calls to R1* (depicted in the figures as procedure
call C1*) to be modified. Figure 3 depicts the two tier case for Example 2, Figure 4
shows the three tier case.

The changes in C1* indicate that the workstation component of each application must be
modified for both architectures. The three-tier architecture additionally requires one to
alter, test, and migrate the middle-tier logic for rule R1*. While Example 1 indicated that
the three-tier architecture had fewer maintenance iterations, the values in brackets in
Table 2 show that the iteration advantage for Example 2 lies with the two-tier
architecture.

Table 2 also shows formulae for calculating CTM costs under Example 2. For simplicity,
constant costs which are roughly equal in terms of costs and iterations between two and
three tier systems (such as database and user interface changes) are dropped from the
comparison equations. If one eliminates constant terms among the two environments it
becomes clear that the three-tier environment will always have more CTM iterations and
greater testing and migration costs in a scenario where calling parameters change. Coding
costs may also be greater, particularly in cases where d3 > d2, n is small and/or f is large.

CASE II - Changing the Workstation Client Development Tool

Gauging costs associated with migrating to a new tool is critically important given the
level of increased market instability and rapid innovation in the PC tool market. Current
client development tools are universally proprietary and as such, any code written for one
client tool can not be reused when migrating to another.

Figure 5 illustrates an example where two applications are migrated from one
development environment to another (E1*). In this case the entire investment in client-
side code must be scrapped and re-written in the new environment Code which must be
re-written is identified in italics.

Figure 6 demonstrates the savings achieved in changing client development environments
under a three tier architecture. In this scenario business rules are coded in a middle tier
which can be re-used when the client environment is switched, greatly reducing the
burden of re-development.

Table 3 lists cost formulae for comparing the re-development effort associated with
migrating to a new client tool under two vs. three tier architectures. The final deployment
of code on PC hard disks (migration) is not depicted, as these costs will be the same in
both two and three tier applications. Variables which were not defined earlier are defined
below.

r - number of business rules used by an application
c- number of times business rules are called by an application
N - number of applications whose platforms are being switched
ct - cost to test a call to a business rule

Given the equations in Table 5 it can be said that changing the client development
environment will always cost

more in a two tier environment than in a three tier environment.

Conclusions and Ongoing Research

Scenarios were presented for maintenance and platform (tool) switching which compared
costs related to coding, testing, and migration (CTM costs). In the case where
maintenance to code logic is required, but request/response calling parameters of the rule
do not change, the three tier system may have cost savings over two tier systems. These
savings are greatest in cases where the number of applications affected by a change is
large, where updated code must be migrated to many workstation storage devices, and
where the difference in coding and testing costs between two and three tier applications is
small. Three tier architectures always have higher testing and migration costs than two
tier systems when the business rule change requires a change in calling parameters. CTM
costs are also always less for three tier systems when comparing the cost of switching
from one proprietary client development tool to another.

CTM costs are only part of the total cost equation. A number of issues were not examined
including networking costs, hardware costs, response time and fault tolerance. Three tier
architectures can also facilitate the integration of disparate systems and can prevent
islands of information from forming within an organization - critical issues not fully
explored in the models presented. These issues can be equally significant in arriving at an
appropriate architectural choice for a given distributed application. Opportunities for
future research exist in testing the validity of equations presented in this paper, creating
new formulas incorporating additional costs cited, and examining opportunities for
savings in code reuse/sharing for three-tier architectures.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	8-25-1995

	Comparing Coding, Testing, and Migration Costs for Two and Three Tier Client/Server Architectures
	John Gallaugher
	Recommended Citation

	Comparing Coding, Testing, and Migration Costs for Two and Three Tier Client/Server Architectures
	John Gallaugher, Syracuse University
	CASE I - Response to a Business Rule Change
	CASE II - Changing the Workstation Client Development Tool

