
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 1995 Proceedings Americas Conference on Information Systems
(AMCIS)

8-25-1995

Application Domain Knowledge in Computer
ProgramComprehension and Enhancement
Teresa M. Shaft
The University of Tulsa, shafttm@utulsa.edu

Follow this and additional works at: http://aisel.aisnet.org/amcis1995

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 1995 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Shaft, Teresa M., "Application Domain Knowledge in Computer ProgramComprehension and Enhancement" (1995). AMCIS 1995
Proceedings. 38.
http://aisel.aisnet.org/amcis1995/38

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301366096?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis1995%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis1995?utm_source=aisel.aisnet.org%2Famcis1995%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis1995%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis1995%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis1995?utm_source=aisel.aisnet.org%2Famcis1995%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis1995/38?utm_source=aisel.aisnet.org%2Famcis1995%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Application Domain Knowledge in Computer Program
Comprehension and Enhancement

Teresa M. Shaft
The University of Tulsa

shafttm@utulsa.edu

Introduction

Software development transforms the conceptual models of the application domain into
the formal models of the implementation (programming) domain (Blum 1989). The
application domain is where the conceptual models, which describe what is to be done
and possible approaches for a solution, are generated. These conceptual models account
for many of the "essential difficulties" in software development (Brooks 1987). Research
investigating software development, however, has focused on the implementation domain
or computing element (Glass and Vessey 1992). Recent thinking indicates that
investigations into the problems of software development must begin to consider the
application domain (e.g., Guindon 1990).

Software maintenance is one task where application domain knowledge may play an
important role. Maintenance remains important to organizations because maintenance
costs, as a percentage of software expense, are expected to remain relatively constant
(Foster 1991). Of maintenance activities, this research investigates enhancement because
it accounts for the greatest percentage of person-hours expended on maintenance (Lientz
and Soloway 1980, Abran and Nguyenkim 1991).

To enhance a computer program, programmers need to comprehend the existing program.
It is estimated that maintenance programmers devote 50%-90% of their time to
understanding the existing program, with the remaining 10%-50% spent implementing
the enhancement (Robson et al. 1991).

The present research is an experimental investigation of the role of application domain
knowledge in comprehension and enhancement. Establishing the importance of
application domain knowledge in comprehension and enhancement may provide insight
into why these tasks account for such a high percentage of software related costs.

Conceptual Model

The computer program comprehension and enhancement model used in this research is
an elaboration of Letovsky's (1986). The comprehensive process results in the
programmer formulating a mental model of the computer program, i.e., his or her
understanding of it and how it operates. The programmer uses his or her existing
knowledge base to understand a computer program. Two kinds of knowledge are of
interest to the current research, application domain knowledge and programming
knowledge.

The mental model needs to represent the numerous types of information depicted by the
computer program (Pennington 1987, Curtis et. al 1989). Part of the essential difficulty of
building and maintaining software comes from the difficulty of representing these
multiple types of information (Brooks 1987). This research uses Pennington's (1987)
approach (i.e., function, data flow, state, and control flow) because they have been used
to investigate comprehension and enhancement.

To enhance a computer program, a programmer uses his or her mental model of the
existing program, the program itself, and the enhancement specification. From this
model, the following hypothesis were developed:

Hypothesis 1: A programmer will have higher levels of comprehension when studying a
computer program from a familiar application domain.

Hypothesis 2: Enhancement tasks that affect a type of information closer to the
application domain (e.g., function) will be easier to implement if the programmer has
application domain knowledge. Enhancement tasks that affect a type of information
farther from the application domain (e.g., control flow) will not be affected by the
programmer's level of application domain knowledge.

Hypothesis 3: After conducting an enhancement task, programmers will have increased
levels of comprehension with respect to the type of information affected by the
enhancement task.

Methodology

To investigate the above hypotheses, 24 IS professionals, with an average of 10.7 years
experience, studied and enhanced computer programs from two application domains, one
familiar and one unfamiliar. Each programmer participated in a practice segment, then
segments for each domain. Each segment consisted of: 1) a study period, after which
programmers responded to a set of comprehension questions, and: 2) an enhancement
period, during which programmers worked on an enhancement task and then responded
to a second set of questions. Each question set contained 20 true/false questions, five for
each type of information.

The order of presentation of the domains was counter-balanced, as were the two sets of
equivalent comprehension questions.

COBOL was selected as the programming, language, accounting and hydrology as the
familiar and unfamiliar application domains. The study required three programs, a
practice program and one program for each domain. The accounting and hydrology
programs were of equivalent complexity based on SLOC, 417 and 416 respectively. The
DATA and PROCEDURE divisions were also comparable.

Enhancement tasks were necessary to test Hypothesis 2. For each domain, two
enhancements were developed. Based on the definitions for the four types of information

(Pennington 1987), function and control flow tasks were selected as being the "closest"
and "furthest" from the application domain. A single page specification described the
required changes. The researcher implemented each enhancement to ensure that they
resulted in programs of equivalent complexity.

Analysis and Results

Hypothesis 1. This hypothesis was investigated using programmers' responses to the first
administration of comprehension questions in an ANOVA with two within-subjects
factors (domain and type of question). Although no specific predictions concerning
question type are specified for Hypothesis 1, question type was included since it is part of
the overall experimental design. Error rates for the questions relevant to each type of
information were the dependent variable. Programmers were expected to have lower error
rates in the familiar domain and this hypothesis was supported (p = .001). Question type
was also significant (p = .001). A follow-up analysis revealed that the error rate on data
flow questions was significantly higher than state questions (51.25 v. 32.92, p < .05).

Hypothesis 2. Programmers were expected to achieve higher levels of performance on
function tasks when working in the familiar domain and on control flow tasks in the
unfamiliar domain. The hypothesis was tested using an ANOVA with one within-subjects
factor (domain) and one between-subjects factor (task type). A participant worked on the
same type of enhancement task in both domains. A score reflecting the enhancement
quality was the dependent variable.

The anticipated interaction between task type and domain was not significant (p = .65),
and the hypothesis was not supported. Domain was the only significant effect (p = .03);
programmers' scores on the enhancement tasks were higher in the accounting domain
than the hydrology domain (52.42 v. 38.96).

Hypothesis 3. Following the enhancement task, programmers were expected to have
increased comprehension of the type of information affected by the enhancement task.
The hypothesis was tested using an ANOVA with two within-subject factors (domain and
question type) and one between-subjects factor (task type).

The dependent variable was the change in error rates on each type of comprehension
question. Positive values indicate increased comprehension, negative values decreased
comprehension.

The expected interaction between task and question type was not significant (p = .31).
The effect of type of enhancement task (p = .02) was the only factor that was significant.
Programmers who conducted control flow enhancements experienced greater increases in
comprehension than those who conducted function enhancements (12.29% v. 2.92%).
The domain by question type interaction was marginally significant (p = .056). A follow-
up analysis of the interaction revealed that the only significant difference was related to
the function question type (-4.12% v. 16.67, p < .05).

Discussion

As expected, programmers' achieved higher levels of comprehension in the familiar
domain. When programmers bring more relevant knowledge (i.e., application domain) to
a task, they achieve higher levels of performance.

Hypothesis 2 suggested that programmers' application domain knowledge influences their
ability to perform different enhancement tasks. Type of enhancement task was not
significant; however, the main effect for domain was significant. Application domain
knowledge resulted in higher levels of performance regardless of the type of
enhancement task, suggesting that application domain knowledge is an important factor
in conducting software development tasks.

Hypothesis 3 examined how programmers' understanding of each program changed
following the enhancement. The type of enhancement task was significant: programmers
who conducted the control flow enhancement experienced greater increases in
comprehension. To interpret this result it is useful to consider Weiser's (1982) theory of
slicing, which argues that to debug a program, programmers identify the "slice" of the
program related to the bug. Similarly, during enhancement, programmers identify the
slice of the program related to the enhancement and build the enhancement onto that
slice.

With respect to this study, control flow tasks required the addition of a control break. The
new code is embedded in the existing control structure of the program, which creates a
fairly large slice to build on. Working with a large slice likely forced programmers to
increase their understanding of the original program. Conversely, function enhancements
required programmers to add a new capability to a program, building onto a fairly small
slice of the original program. Programmers, therefore, did not need to increase their
understanding of the existing program. Hence, the programmers who conducted the
control flow enhancement showed a greater increase in comprehension.

The other interesting result with respect to Hypothesis 3, the domain by question type
interaction, was due to changes in the error rate for function questions. Programmers
working in the familiar domain had slightly lower levels of comprehension after the
enhancement. To understand this result, recall that programmers had relatively high
levels of comprehension in the familiar domain following the study period. Therefore,
when working in the familiar domain, programmers may have focused closely the new
function and their understanding of the original program suffered.

Conclusion

Application domain knowledge had a significant influence on programmer's ability to
comprehend and enhance computer programs. Further, this research addressed program
comprehension and enhancement, tasks that are thought to reside more in the
implementation domain than the application domain. Such tasks are not generally
considered to require large amounts of application domain knowledge; programmers are

expected to rely upon their programming knowledge. However, this study demonstrates
the importance of application domain knowledge to computer program comprehension
and enhancement.

Bibliography

Abran, A. & H. Nguyenkim, "Analysis of Maintenance Work Categories Through
Measurement", Proceedings of the Conference on Software Maintenance 1991, Sorrento,
Italy, October, 1991, 104-113.

Blum, B., "Volume, Distance, and Productivity," The Journal of Systems and Software, 9
(1989), 217-226.

Brooks, F., "No Silver Bullet," IEEE Computer, April (1987), 10-19.

Curtis, B., S. Sheppard, E. Kruesi-Bailey, J. Bailey & D. Boehm Davis, "Experimental
Evaluation of Software Documentation Formats," The Journal of Systems and Software, 8
(1989), 167-207.

Foster, J., "Program Lifetime: A Vital Statistic for Maintenance," Proceedings of the
Conference on Software Maintenance 1991 , Sorrento, Italy, October 1991, 98-103.

Glass, R. & I. Vessey, "Toward a Taxonomy of Software Application Domains: History,"
Journal of Systems and Software, 17, 2 (1992), 189-199.

Guindon, R., "Knowledge Exploited by Experts During Software System Design,"
International Journal of Man-Machine Studies , 33 (1990), 323-342.

Letovsky, S., "Cognitive Processes in Program Comprehension," in Empirical Studies of
Programmers: First Workshop, E. S. Soloway & S. Iyengar (Eds.), Ablex Publishing,
Norwood, NJ, 1986, 58-79.

Lientz, B., E. Swanson & G. Tompkins, "Characteristics of Application Software
Maintenance," Communications of the ACM, 21, 6 (1978), 466-471.

Pennington, N., "Stimulus Structures and Mental Representations in Expert
Comprehension of Computer Programs," Cognitive Psychology, 19 (1987), 295-341.

Robson, D., K. Bennett, B. Cornelius & M. Munro, "Approaches to Program
Comprehension," The Journal of Systems and Software, 14 (1991) 79-84.

Weiser, M. "Programmers Use Slices When Debugging," Communications of the ACM,
25, 7 (1984), 352-357.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	8-25-1995

	Application Domain Knowledge in Computer ProgramComprehension and Enhancement
	Teresa M. Shaft
	Recommended Citation

	Application Domain Knowledge in Computer Program Comprehension and Enhancement

