
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 1995 Proceedings Americas Conference on Information Systems
(AMCIS)

8-25-1995

An Agent Based Architecture ForComponent-
Based Software Development
Pinar Kinikoglu
Texas Tech University

Surya B. Yadav
Texas Tech University

Follow this and additional works at: http://aisel.aisnet.org/amcis1995

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 1995 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Kinikoglu, Pinar and Yadav, Surya B., "An Agent Based Architecture ForComponent-Based Software Development" (1995). AMCIS
1995 Proceedings. 21.
http://aisel.aisnet.org/amcis1995/21

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis1995%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis1995?utm_source=aisel.aisnet.org%2Famcis1995%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis1995%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis1995%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis1995?utm_source=aisel.aisnet.org%2Famcis1995%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis1995/21?utm_source=aisel.aisnet.org%2Famcis1995%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

An Agent Based Architecture For
Component-Based Software Development

Pinar Kinikoglu
Texas Tech University, College of Business Administration, ISQS Area

Lubbock, TX 79409-2101 USA

Surya B. Yadav, Ph. D.
Texas Tech University, College of Business Administration, ISQS Area

Lubbock, TX 79409-2101 USA

I. Introduction

Today's companies are facing major changes in their organizations due to the changing
environment in which they operate. They have to decrease the costs, decrease time to
market, and improve quality. These imperatives have led to changes in the placement and
role of IS department in the organization (Fried, 1995). Together with the recent
advances in communication technology and powerful workstations, end-users have
become more involved with the application development. Besides, the business processes
change so fast that the traditional SDLC is too slow to keep up with these fluctuating
requirements in the application domain. The need for rapid application development to
respond to users' changing needs, among the other mentioned trends, encourages the use
of reusable software components.

In (ATP, 1995), it is stated that at the level of vertical-market products, software design
costs are generally $1 million to $10 million with near zero cost of reproducing additional
units, and the typical production quantity is one. Reusable software components help
organizations recover costs, improve quality through specialization, and develop rapidly
from existing components.

1.1 Problem Statement

Reusable software components can be a big competitive advantage for an organization if
its domain is well-understood and a systematic software reuse is employed. There are
both technical and nontechnical problems to be solved for the successful, systematic use
of reusable software components. One of the major problems is to find the component[s]
which meets the development needs of the user.

Some ad hoc lists are provided by specific systems like UNIX, or user is required to
provide a complete list of directly or indirectly used software components in some
systems (Plaice, 1993), or a cataloging schema is developed based on reusability
attributes (Chang, 1993).

Most of the current systems assume that the user has medium to high level computer and
programming experience. Moreover, the user is required to have the information about
the details of each software component. However, the trend is that users will be domain
specialists but not necessarily computer experts. Further, the end-users have become
more involved with the application development. The component based software
development will let the domain specialist end-users use domain specific components and
integrate them.

Therefore, a generic software architecture for reusable software components should be
developed to effectively design and implement such an environment.

1.2 Research Objectives

The objective of this research is to propose an architecture for the automation of
identification and integration of reusable software components. In particular;

1. The components of the architecture will be identified.
2. The functionality of each component is identified.
3. The interaction among the components will be discussed.

II. Proposed Work

In this section, we first identify the requirements of end-users for an automated reusable
component based software development system. Then we propose an architecture to
satisfy the identified end-user requirements. The components of the architecture will be
explained.

2.1 End-user Requirements

The end-user of such a system needs neither be a computer expert neither does (s)he need
to be knowledgeable about the details of software components. However, (s)he should
have medium to high level of domain knowledge. The user may develop applications as
part of a team project or may have one-time queries for some tasks. Most probably, (s)he
will be working in a distributed computing environment.

Based on this description of the user; the requirements of the user can be listed as
follows;

- transparency to the complexities of distributed system operations,
- transparency to the format, programming language, content, and location of the
software component,
- ease of defining his/her needs to the system,
- ease of locating / integrating / debugging the software components,
- evaluation of the system performance,
- security, version control, efficiency.

2.2 Proposed Architecture

Software agents are the best hope for the 90's. They will actively participate in the user
tasks. The agent technology is employed in the architecture to satisfy the specified user
requirements. The agents are not necessarily just interfaces. Agents are knowledgeable
about a process, they are specialized in a certain area. Furthermore, an agent acquires the
knowledge it needs to decide when to help the user, know what to do to help to the user
with and how to help. Although they are autonomous entities in the system, they will
work together with the user and for the user. The user feels comfortable delegating the
tasks to the agents.

In order to satisfy the user requirements listed above, the following architecture shown in
figure 1 is proposed. In the proposed architecture, each agent has three parts:

i) Attributes: They identify the agent. Among them are the specialization of the agent,
owner, success level, life duration, and implementation environment. This list is not
exhaustive.

ii) Behavior model: It specifies how the agent operates, and when it terminates. Here, the
rules for security, the relationship between the agent and the user and/or other agents are
set. These rules also determine how to evaluate the performance of the agent. The agents
are autonomous and independent. It is very important to have trustworthy agents.
Therefore, the behavior model will ensure that the only agents which are well-behaved
and useful continue to operate.

iii) Inference Engine: It operates the agent based on the behavior model.

In Figure 1;

- User interface hides the complexities of the system operations. It lets the user define
his/her one-time queries as well as long term, relatively static needs.

- User Profile KB (UPKB) represents the user's long term requirements. The information
about the user interests and needs affects which tasks the domain agent performs. It
evolves over time. It is revised continuously with the feedback from the user.

- Task Domain KB (TDKB) includes specific guidelines, principles, necessary
information about a certain task. It the user.

- Application Database keeps the software component lists of different applications
developed so that the testing, user change requests, and integration with the newer
versions can be handled.

- Domain Agent (DA) works on behalf of the user. It is responsible to represent user's
requirements in the UPKB as well as to build the TDKB based on feedback from the
user. It formulates the component specifications from the user requirements and delegates

the authority to the software component agents mediator to find the matched software
components. It evaluates the performance of software component agents mediator based
on how satisfactorily it finds the software components. Furthermore, based on the
patterns of change in the user requirements, it updates the UPKB. Finally, whenever it
needs information which is out of scope of TDKB, it communicates with other domain
agents through domain agents mediator to complete its work for the user.

- Software Components Agents Mediator (SWCAM) is an agent specialized on software
components. The idea is borrowed from Genesereth, 1995. SWCAs communicate with
each other through SWCAM. However, it has the authority to let the SWCAs talk to each
other directly if it is more feasible. SWCAM is needed since there may be
communication problems for SWCAs developed at different platforms. It also negotiates
with SWCAs to get their services. Moreover, it evaluates the performance of individual
SWCAs. When it needs the services of other SWCAs which are not available at the
software agents library, it negotiates with other SWCAMs in the system.

- Software Components Agents (SWCA) represents the reusable software components.
Software components can be written using different tools at different platforms. SWCA
will provide the services of the software component that it represents to other SWCAs
and at the same time it can request their services.

- Domain Agents Mediator provides communication service to DAs since they can be
implemented and placed in a heterogeneous distributed environment.

- Test Agent produces the test data to test the integrated components of the application
using application database and performs the integration test. It communicates the
problems with the application to the domain agent.

All of the agents should be self contained and encapsulated so that security can be
achieved to a certain extent although more security measures are needed to avoid the
unauthorized uses.

III. Conclusion

This paper proposes an agent based architecture for automated software development.
This architecture does not need experienced programmers or system developers. The
users are not required to provide a list of modules. Besides, they do not have to keep
track of all software components since the application development is automated through
the use of agents.

Selected References

Advanced Technology Program - Information Package, Information Package for
Component-Based Software, National Institute of Standards and Technology (NIST),
1995.

Chang, Yuk Fung, C.M. Eastman, "An Information Retrieval System for Reusable
Software", Information Processing & Management, Vol.29(5), pp.601-614, 1993.

Fried, Louis, Managing Information Technology in Turbulent Times, John Wiley&Sons,
Inc., 1995.

Genesereth, Micheal R., "Interoperability: An Agent-Based Framework", AI Expert,
Vol.10(3), pp.34-39, 1995.

Lashkari, Yezdi, M. Metral, P.Maes, "Collaborative Interface Agents", in Proceedings of
the National Conference on Artificial Intelligence, MIT Press, Mass., 1994.

Plaice, John, W. Wadge, "A UNIX Tool for Managing Reusable Software Components",
Software: Practice & Experience, Vol.23(9), pp.933-948, 1993.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	8-25-1995

	An Agent Based Architecture ForComponent-Based Software Development
	Pinar Kinikoglu
	Surya B. Yadav
	Recommended Citation

	An Agent Based Architecture For Component-Based Software Development
	Pinar Kinikoglu Texas Tech University, College of Business Administration, ISQS Area Lubbock, TX 79409-2101 USA Surya B. Yadav, Ph. D. Texas Tech University, College of Business Administration, ISQS Area Lubbock, TX 79409-2101 USA

