
 Moderate Variation in Software Development Routines are Valued

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 1

Diversity in Software Development Routines
are Attractive: A Preliminary Analysis of

GitHub Repositories

Full Paper

William N. Robinson
Georgia State University

wrobinson@gsu.edu

Tianjie Deng
University of Denver

tdeng1@student.gsu.edu

Abstract

Free, libre, open-source software projects (FLOSS) are known for their chaotic development style and
unique collaboration model. How does such chaotic development produce high quality software and
attract users and developers? To provide insight into this conundrum, this study explores the roles of
diversity and change in design routines. It investigates the relationship between routine diversity and
change on project attraction to users and developers. Various sequence-mining techniques such as motif
analysis and hidden Markov models (HMM) are applied to examine design routines of 88 FLOSS projects
on GitHub.com. Regression analysis reveals that development processes with high routine-diversity and
relatively low change-magnitude attract more users and developers.

Keywords

open-source software, design routines, project attraction.

Introduction

This study looks at design routines in the context of open source software development, showing a
relationship between design routine diversity and changes with project attraction.

Open Source Software Development

Open source software projects (FLOSS) are known for their chaotic development style (Mockus et al.
2002). Several significant characteristics of FLOSS development are the following:

 Work is self-assigned: contributors choose what they want to undertake (Crowston et al. 2007;
Crowston et al. 2008).

 There is a lack of coordination mechanisms, which are observed in traditional development
settings—there are few formal “plans, system-level design, schedules, and defined processes”
(Crowston et al. 2007; Herbsleb et al. 1999; Mockus et al. 2002, p.310).

 Multiple different processes are performed by contributors simultaneously (Christley et al. 2007).

Those chaotic processes produce high quality software. A Six Sigma or CMM perspective would not agree
that chaos produces good quality, consistently. This raises the question: how does a seemingly chaotic
system produce good software? As it turns out, FLOSS does have technical and managerial mechanisms
for coordination(Mockus et al. 2002). These mechanisms affect the way developers produce software—
the design routines they use, when they change their routines, and how dramatic those changes are.
Design routines affect software qualities, including how valued the software is. In this study, we found
that some FLOSS projects moderately vary their design processes over time, which may help them to
maintain the interest of their developers and users in the face of a fast-changing environment.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301366042?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Moderate Variation in Software Development Routines are Valued

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 2

Design Routines

According to Gaskin et. al., “a design routine as a sequence of (design) tasks, which transform some
representational inputs into a set of material and representational outputs, leading ultimately to a
generation of a design artifact that offers a set of functions for a community of users. Unlike other
routines, such as payroll, that perform highly standardized tasks with clearly defined inputs, outputs and
transformation rules, design routines are fluid. They often deal with unknown inputs and outputs due to
changing requirements that result from learning and environmental volatility” (Gaskin et al. 2011).

In the context of open source software development, design routines are the activities that take place in a
programmer’s editor (e.g., Eclipse), the repository (e.g., GitHub), and the associated project management
tools (e.g., Atlassian). These different contexts represent different levels of design routines. Within an
editor, programming patterns and classic Design Patterns are applied(Gamma et al. 1994). Within a
repository, coordination and community actions take place, such as forking (i.e., copying) a project to
begin a new project variant(Duc et al. 2014). Within project management tools, developers coordinate and
plan long-term actions and conduct multi-project management. The study described herein is concerned
with the middle level of abstraction—the repository activities.

This study

Design routine research can be difficult because practices often differ from stated actions(Feldman 2000).
Consequently, research studies typically analyze a single site, manually encoding mid-level design
routines over a year of data, for example. Larger multi-site, multiyear studies review design routines at an
abstract, strategic level. The study described herein is a multi-site, multiyear analysis of design routines
within repository activities—the data are detailed events over 88 projects. We draw the conclusion that
higher routine diversity implies attractiveness, while dramatic changes in routines may adversely affect its
attractiveness. This result is consistent with previous research that attempts to reconcile the seemingly
inconsistent conclusions of related research: (1) change is good, and (2) stability is good. The result drawn
here is most consistent with Klarner et al.—regular, moderate change in design routines is good (Klarner
et al. 2012).

In support of our research on design routines, we apply a process theory methodology (Van de Ven 2007).
Data mining, especially sequence mining, provides the means to acquire and analyze the thousands of
design routine sequences from hundreds of projects (Abbott 1990).

Next, we present related research to describe the concepts of our variance model, which is summarized in
the following section. Subsequently, we describe our multi-site, multiyear study. The final section
presents a brief discussion.

Theoretic Background

Definitions

The literature on routines uses some key terms, mostly associated with variations, in a variety of ways.
Therefore, we first define some common terms, which we rely on in our analysis. First, we consider
variation within a type, of types, and configurations of types. Page used the term diversity to define these
three concepts (Page 2010):

 Diversity within a type, or variation. This refers to differences in the amount of some attribute
or characteristic, such as the height of giraffes.

 Diversity of types and kinds, or species in biological systems. This refers to differences in kind,
such as the different types of foods kept in a refrigerator.

 Diversity of composition. This refers to differences in how the types are arranged. Examples
include recipes and molecules.

We will use Page’s three kinds of differences: (1) variation within a type, (2) diversity of types, and (3)
compositions. These definitions can be applied to the context of routines:

1. Routine variation occurs when the arguments (values) differ between routines of the same type.

 Moderate Variation in Software Development Routines are Valued

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 3

2. Routine diversity occurs when different types of routines observed.
3. Routine composition diversity occurs when different configurations of routines types are

observed.

These definitions build on each other. For example, in analyzing a design history, one might observe
routine composition diversity (different configurations) with great routine diversity (many different
types) with great routine variation (where each routine type was instantiated with unique arguments).
These differences can be considered from a combinatorics perspective, where total design space is the
cross product of all routine arguments, routine types, and their configurations. We will use the generic
term, routine diversity, to mean all three kinds of diversity, except when the context requires us to be
more precise.

Entropy is another term that often arises in the analysis of design routines. Shannon’s information

entropy definition is most widely applied(Shannon 2001); it is calculated as Η = - Σ P(xi) ln P(xi) where
P(xi) is the probability of event xi. We rely on Shannon’s classic entropy definition, which is the amount of
uncertainty in a variable. We will refer to these basic definitions, as we review related theory on routines.

Requisite Variety Theory

Organizational routines have been considered from a theoretical perspective. Their variety derives from
what we term the routine composition diversity—that is, the differences of configurations, types, routine
arguments as the human-computer system executes.

From a theoretical perspective, Ross Ashby formulated the law of Requisite Variety, which states “when
the variety or complexity of the environment exceeds the capacity of a system (like an organization) to
create the corresponding variety of answers, the environment will dominate and ultimately destroy that
system” (Ashby 1956). This formulation compares an organization’s variety of responses to it
environment. To retain control, the organization must have sufficient variety to respond to the
environment conditions. In our terms, if the environment has a great diversity of conditions and the
organization has a lower diversity of responses, then the organizational actions will be relatively simplistic
and ineffective. Therefore, effective organizations must have high routine diversity. In practice, there is
little concern that designers have inadequate routines to control systems. However, this theoretical view
shows the importance of routine diversity. We anticipate that FLOSS projects with higher routine
diversity and some change routines will better be able to address the needs imposed by their dynamic
environments.

Routines

Organizational routines have been empirically studied. Pentland et. al., for example, studied changing
routines. They found that change depended “… on the experience level of the humans. In particular,
automation can increase the variety of approval routines when it occurs in conjunction with less
experienced users…. In other situations, where the boundaries between steps are less rigidly structured
and enforced, it seems plausible that variation, selection, and retention of microlevel patterns could
initiate changes in the higher-level patterns. ” (Pentland et al. 2011). They went on to speculate that, “If
the mechanism of change is variation and selective retention, as hypothesized by Feldman and Pentland
(2003), then greater variety is a prerequisite for change. Variation has long been recognized as a
foundation for learning in general (Campbell 1965, Weick 1979) and for learning in routines in particular
(Levitt and March 1988).” In summary, from their analysis of invoice processing in four organizations,
Pentland et. al. note that routines change over time, in part because of less experience users, but also
because of the allowed variability by the system and potential for exploration by users. This environment
is like FLOSS because of the collaborative workflow environment leads to changing routines. However,
FLOSS is more like their speculative, less rigidly structured environment, in which lower-level patterns
(e.g., programming patterns) lead to changes in higher-level patterns (e.g., repository patterns). Pentland
et. al., provides a variety of reasons to anticipate design routine changes in FLOSS development.

Given the occurrence of changing routines, Salvato finds that ordinary activities are more likely to cause
routine changes, than management intervention. An analysis of the design process for a home-furnishing
firm revealed five kinds of changes to routines. Salvato’s data mostly “portrays an organization whose core

 Moderate Variation in Software Development Routines are Valued

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 4

routines and capabilities develop more as a result of everyday, mundane activities than of managerial
cognition” (Salvato 2009). The everyday techniques discovered by Salvator are consistent purposeful
activities recommended for innovation (Jantsch 1967). They are consistent with FLOSS in that
distributed, loosely coordinated members perform, and change, different routines simultaneously
(Christley et al. 2007).

As a final illustrative empirical study, consider Klarner and Raisch’s analysis of rhythms of strategic
change in insurance companies as identified from annual reports (Klarner et al. 2012). In particular,
change frequency refers to strategic changes. This is a high-level, abstract view of firms over nine years.
They discovered four distinct rhythms of change. They found that “Companies that change regularly
outperform those that change irregularly” (Klarner et al. 2012). Moreover, a “stability periods' initially
positive effect on subsequent change gradually turns negative the longer the stability period lasts”
(Klarner et al. 2012). It’s worth noting that Klarner and Raisch’s found that where there is high
environmental dynamism, the temporarily switching strategy also had a positive effect on performance.
FLOSS too has sought regularized change, now commonly associated with scrum, but also older methods
like Microsoft’s sync-and-stabilize (Ambler et al. 2012). Consequently, we anticipate routine diversity and
changing routines in FLOSS.

The stability-change paradox in organizations has raised long-lasting debates (Feldman et al. 2003; Leana
et al. 2000; March 1991). One group of scholars has advocated the benefits of fast-paced change in
organizations (Adler et al. 1999; Brown et al. 1997; Burgelman et al. 2007; D’Aveni et al. 2007; Hannan et
al. 1977; Hannan et al. 1984). There are two key supporting arguments: (1) change can prevent
organizations from being too inflexibility; and (2) fast-paced change can establish routines for change
(Adler et al. 1999; Nelson et al. 2009). Conversely, other scholars argued for the benefits of stability
(Dierickx et al. 1989; Nelson et al. 2009). Some of them point out that periods of stability are needed to
establish organizational routines, which require time to develop(March 1981). Another reason is that fast-
paced change can result in information overload, which may have adverse effect on firm performance
(Dierickx et al. 1989; Hambrick et al. 2005). By considering periods of change, Klarner and Raisch’s
research addresses some of the inconsistency between these different positions. In summary, regular
change in routines improves a firm’s performance. In dynamic environments, bouts of additional of
change may be helpful. In this context, much FLOSS development is considered a dynamic environment.
Thus, we anticipate that regular, and occasionally irregular, change in routines improves FLOSS
development on some performance measures.

Open Source Routines

Through observations, interviews, and analysis of repository histories an interesting view of open source
development emerges. First, it is worth noting that open source development does have managers, who
specify policies of software development(Crowston et al. 2005; Mockus et al. 2002; Scacchi 2004; Scacchi
et al. 2006). Such policies can be strictly enforced by imposing a workflow over the development tools—
for example, as provided in IBM TeamConcert. Nevertheless, developers do vary from the specified
policies—changing routines is common practice(Feldman 2000). For example, code forking is
discouraged because it creates a variety of problems (e.g., divergent and redundant code)1. Yet, forking is
a common practice, which solves problems such as schedule constraints, technical variations, and
organizational differences(Duc et al. 2014). More generally, dependencies among development artifacts
require coordination. This includes the coordination of module development, because of interface
dependencies. It also include ancillary artifact coordination, such as test cases, design documents, user
manual, FAQs, etc., all of which are consistent with the code base, ideally. While these dependencies can
be mitigated through a good technical architecture, often the developers must address problems through
adapting their design routines(Mockus et al. 2002). This experimental adaptation and learning of
routines is consistent with organizational research on routines (Levitt et al. 1988; Pentland et al. 2011;
Salvato 2009).

1 A code fork is a copy (a clone) of a code repository that has subsequent development independent of the
original project (Robles et al. 2012).

 Moderate Variation in Software Development Routines are Valued

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 5

Direct analysis of design routine activities in open source is limited. Lindberg conducted a case study on
the Rubinius open source project to investigate the co-evolution relationship between coding practice and
communities(Lindberg 2013). A review of 18 months of repository event data revealed a positive
relationship between activity entropy and new forks. The study used entropy to measure the variety of
coding practice structures (i.e., design routines), and used the number of new forks as proxy for inflow of
new developers to the community. “To describe the evolution of coding practices, we measure the
distribution of event types (i.e., ratio of push vs. pull vs. issue events) for each month of the 18 month
period. We also measure the entropy of activity distributions in each time period….Understanding
entropy is important, because it is an indication of the variety of practice structures in a given time period.
A period dominated by a single activity (e.g. PushEvents) will have low entropy, whereas a period
characterized by diverse activities will have high entropy.” Open source development appears to be similar
to other design processes, where design routines are diverse and changing. More study is needed;
however, it appears that as the complexity of the task or team increases, the diversity of the design
routines increase.

Moderating change

The prior discussion emphasizes changing routine diversity. However, not all kinds of change are good.
There is some evidence that process consistency improves performance. This view is not necessarily
inconsistent with the need for change.

Consider the philosophies of Six Sigma and the capability and maturity model (CMM) as applied to
software development. As an organization improves on the CMM scale, there appears to be a “decrease in
variability of schedule and cost performance”(Diaz et al. 1997), higher product quality, and increased
development effort(Harter et al. 2000). The best CMM organizations seek to reduce process variation so
as to provide statistical predictability, and thereby improve performance(Ahern et al. 2004). Reduced
process variation does not mean limiting routine diversity. Each new development effort necessitates new
routine diversity, differing from prior projects. Moreover, routine diversity can be regularized, as suggest
by (Klarner et al. 2012). Thus, the micro-level patterns can change, even regularly, while the macro-level
measures of quality, schedule, and effort remain consistent.

Six Sigma shares the CMM philosophy of reducing process variability(Murugappan et al. 2003; Schroeder
et al. 2008). In Six Sigma, process variation is defined as deviation from process mean. Building on this
concept, in their 1999 paper, Frei and his colleagues investigated the relationship between service process
variation and firm performance in retail banking industry(Frei et al. 1999). They found that process
variation was negatively related to firm performance. To reduce variability, they identify natural causes
and special causes of variation and then attempt to mitigate the special causes—for example, fixing quality
failures by lengthening schedules, which reduce rework and thereby improve quality(Murugappan et al.
2003). Reduced variability in project measures, such as quality, schedule, and effort, determine if the
process has achieved its goals(Montgomery et al. 2008). Thus, routine diversity is consistent with
philosophies of Six Sigma of CMM. The micro-level patterns of regular design-routine change, and in
dynamic environments, occasional irregular change, can produce consistently the macro-level quality of
good performance for a firm.

 Moderate Variation in Software Development Routines are Valued

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 6

Project Attractiveness

FLOSS projects need to attract users and developers to keep a FLOSS project active and successful (Arakji
et al. 2007; Koch 2004; Krishnamurthy 2002; Von Krogh et al. 2003). Important success factors include,
developer motivation and interest to participant (Bonaccorsi et al. 2003; Crowston et al. 2002; Fang et al.
2009; Hertel et al. 2003; Krishnamurthy 2006; Roberts et al. 2006), and user interest(Subramaniam et
al. 2009). Projects also have a self-reinforcing effect of attractiveness (Santos et al. 2013). Santos et. al.
also confirmed the following factors that form users’ and developers’ perception on FLOSS projects’
attractiveness: contextual factors of the project (e.g. license choice and application domain), visibility of
the project, and the work activities performed towards software maintenance and improvement(Santos et
al. 2013). The study herein uses fork rate and star rate to directly measure project attractiveness.

Model Development and Hypotheses

Having introduced related research conceptualizing and supporting routine diversity and change, we now
present our model and hypotheses.

Relationship between Routine Diversity and Project Attraction

Routine diversity in FLOSS development attracts participation in these ways:

1. It accommodates change in complex systems, e.g., (Klarner et al. 2012; Page 2010).

2. It enhances innovation, e.g., (Jantsch 1967; Salvato 2009).

3. It enhances developer contributions, e.g., (Lindberg 2013).

4. It enhances learning, which is an important motivation of FLOSS participation (Bonaccorsi et al.
2003; Lerner et al. 2002).

Therefore, a FLOSS project with more routine diversity is likely to attract more users and developers. We
use fork rate (daily numbers of new forks of a project) and star rate (daily number of new stars of a
project), to measure project attraction to users and developers. A user or a developer can create a fork of
a repository to experiment with changes to the repository, without affecting the original repository. A user
or developer can also star a project to show his or her appreciation to the repository. Therefore, daily
number of forks and daily number of stars show how much attraction a project obtained from users and
developers. This leads to our first two hypotheses:

Hypothesis 1a: Deign routine diversity is positively associated with fork rate.

Hypothesis 1b: Design routine diversity is positively associated with star rate.

Relationship between Routine Change and Project Attraction

A regular rhythm of moderate change in routines is associated with good firm performance, whereas more
random or dramatic change is not(Klarner et al. 2012). Dramatic changes in design or design routines
increases design and development complexity, which in turn hinders participation(Cant et al. 1995;
Robbins et al. 1996; Subramanyam et al. 2003). Therefore, a FLOSS project with more dramatic routine
changes is likely to attract fewer users and developers. This leads to our second proposition.

Hypothesis 2a: Design routine change magnitude is negatively associated with fork rate.

Hypothesis 2b: Design routine change magnitude is negatively associated with star rate.

Figure 1 presents the propositions in the proposed research model.

 Moderate Variation in Software Development Routines are Valued

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 7

Project Attraction

H1a

H1b

H2a

H2b

Control Variables
 Project Age

 Event Size

 Number of Actors

Routine Change

Magnitude

(HMM Difference)

Routine Diversity

(Entropy)

Star Rate

Fork Rate

Figure 1 Research Model

Research Design

Data Collection

We collected data from 103 FLOSS projects from GitHub, the most popular open-source code repository
site. Founded in 2008, GitHub had over 3 million users and over 5 million repositories as of January
2013. To obtain a sample with variation along the dependent variables, we used a stratified sampling
strategy to sample projects with different level of popularity. The GitHub metrics, number of stars and
number of forks, are proxies for the level of popularity to users and developers. We selected 30 projects
from each of the following sets:

1. >= 10,000 stars and >= 1,000 forks
2. 5,000 >= stars < 10,000, and 750 >= forks < 1,000
3. 1,000 >= stars < 5,000 and 500 >= forks < 750
4. 1,000 > stars and 250 > forks and in Java

We distinguished Java (in set 4) to investigate if language plays a role in projects’ development patterns.
(Most GitHub projects are scripting languages, like JScript, rather than traditionally complied languages.)
The initial 120 projects were reduced to the final 88 because some projects lacked sufficient data.

Data Preparation

Each project is represented as a sequence of development activities. Of the 18 Git repository activities, we
focused on six, which are most closely associated with development teamwork, as shown in Table 5 of the
Appendix.

The activity sequences were organized into work motifs, (aka design routines). The concept of motif has
been used in different domains, such as biochemistry, to represent “a recurring theme or pattern”
(Altarawy et al. 2009). Our work motif is a recurring sequential pattern of development activities.

 Moderate Variation in Software Development Routines are Valued

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 8

The work motifs are operationalized in a rule-base system, but are summarized here as regular
expressions:

1. (IssueEvent | PullRequestEvent) .*
2. (Reopen (of #1)) .*

As indicated above, a work motif begins with either an IssueEvent or PullRequestEvent, followed by
events that reference the initiating event. This reflects the way that developers think about their work—
either as a new issue (#1) or as the reopening of a prior issue (#2). When either an IssueEvent or
PullRequestEvent is reopened, it is consider a new instance of the second motif pattern.

We obtained a total of 92,988 work motifs. (Summary statistics of these motifs is provided in Table 6 in
the Appendix.) In our initial set of work motifs, different instantiations of the same work motif present
different levels of collaboration. For example, in an IssueEvent->CommentEvent->PushEvent work motif,
the level of collaboration would be different between an instantiation in which the same actor performed
all the activities, and an instantiation in which three different actors performed the three activities.
Distributed cognition (DCog) theory, which considers how team members collaborate through social
distribution and structural distribution, provides a basis to interpret these data(Hutchins et al. 1996). We
used this theory to differentiate instantiations of work motifs based on collaboration attributes. For each
project, we applied k-means to classify work motifs into 50 clusters based on 8 DCog dimensions: type of
open event, open actor and close actor (same or different), duration, final state (open or closed), result
(merged or not), number of unique actors, number of comments, and total number of events in a work
motif. Thus, each work motif has an associated DCog cluster, or type, ranging from 1 – 50.

Measurement

After the initial preparation, the 88 project datasets were processed to provide values for the variables
presented next.

Dependent variables

Many different measurements of FLOSS success have been utilized. Crowston and his colleagues have
conducted three studies to define OSS success and measures (Crowston et al. 2003; Crowston et al. 2004;
Crowston et al. 2006). They categorized measurements of FLOSS performance and success into three
types: measurements concerning the process, project output, and outcomes for project members. Among
them, we are focusing on the measurements that are related to project attraction. For example, user and
developer satisfaction(Crowston et al. 2006; Lee et al. 2009) has been used commonly. Another
commonly used measurement is user interest, often operationalized as number of downloads(Crowston et
al. 2002; Grewal et al. 2006; Méndez-Durón et al. 2009), number of page reviews(Crowston et al. 2002),
and number of subscribers(Sen et al. 2012; Subramaniam et al. 2009). Because users’ interest can be
change over time, some studies have measured the change of number of subscribers over time(Stewart et
al. 2006).

In this study, we use fork rate (daily numbers of new forks) and star rate (daily number of new stars), as
dependent variable to measure project attraction to users and developers. Forks show the popularity of a
project with users or developers. Creating a star for a project, allows the user to “create a bookmark for
easier access (to the project) and show appreciation to the repository maintainer for their work”. In either
case, a star shows the user’s interest or satisfaction. Many of GitHub's repository rankings depend on the
number of stars a repository has. For example, repositories can be sorted and searched based on their star
count.

Independent variables

Two variable constructs measure process diversity and process change:

1. Entropy, measures the uncertainty of different activity types; it indicates the diversity of the
design routines.

2. ΔHMM, measures the magnitude of change in transition probabilities; it indicates the degree of
design routine change.

 Moderate Variation in Software Development Routines are Valued

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 9

Average entropy is an independent variable for each project. We used Shannon-Wiener index (Shannon
2001), a commonly used diversity index, to measure the average process diversity in a project. Shannon’s
index has been used to calculate entropy, which has been defined as a transversal distribution of
activities(Gabadinho et al. 2011). In our context, entropy is the distribution of different work motifs. A
data window dominated by a single type of work motif will have low entropy, whereas a window
characterized by diverse work motifs will have high entropy. After some preliminary analysis, we choose
four-weeks for our data window size—it contains sufficient data and represents a common unit of work for
open source development methodologies. Entropy is calculated for each window to provide a sequence of
project entropies over time—their average is used for the regression.

Average Hidden Markov Model (HMM) difference is an independent variable for each project. Given data
containing sequences, a common task is to find transition probabilities. That is, given an observed event
A, what is the probably that the next event observed with be B or C? A hidden Markov model (HMM) can
solve this problem by building a probability model from observed event sequences(Rabiner 1989). For
each data window, an HMM (λi) is created representing the work motif transition probabilities. Consider
two HMMs in sequence, λ1 and λ2. Model differencing characterizes the change: dλ/dt = (λ2- λ1) / (t2 – t1).
This gives the magnitude of change in the transition probabilities, for a sequence of data windows —their
average is used for the regression. This is generally interpreted as behavioral change over time(Robinson
et al. 2014); here, it indicates the magnitude of design routine change.

Control variable

A variety of characteristics can affect the popularity of a FLOSS project. For example, the longer a project
has existed, the more likely that it will be widely known and consequently obtain forks and stars. Number
of contributors may also increase forks and stars. Therefore, we control for project age, average number of
actors per motif, and average number of events per motif. The control variable definitions are provided in
Table 1 and the dataset descriptive statistics is provided in Table 2.

Table 1 Variables and Description

Variable
Name Definition

Dependent Variables
Fork Rate Number of forks per day

Star Rate Number of stars per day

Independent
Variables

Entropy

Average uncertainty of event distribution in a given time
period

 ΔHMM Average HMM difference of the project

Control Variables

Project Age Project age

Event Size Average number of events per motif of the project

Number of
Actors Average number of actors per motif of the project

 Moderate Variation in Software Development Routines are Valued

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 10

Table 2 Description Statistics

Variable Mean Std. Dev. Min Max

1. Star Rate 8.22 0.68 0.68 32.4

2. Fork Rate 1.54 0.22 0.22 5.51

3. Event Size 4.42 1.06 1.06 11.17

4. Number of Actors 2.22 1.03 1.03 3.53

5. Project Age (day) 1,058.2 210 210 2342

6. ΔHMM 1.61 0.13 0.13 3.1

7. Entropy 1.83 0.18 0.18 3.52

Data Analysis

We applied ordinary least-squares (OLS) regression to estimate the two dependent variables: daily forks
and daily stars. Before completing our analysis, we checked assumptions of the multiple linear regression
model for the ordinary least squares method (i.e., normality and multicollinearity among independent
variables). Diagnostic checks on residuals were conducted to ensure the assumptions of normal
distribution of residuals are not violated. We also examined the multicollinearity among explanatory
variables.

Research Results

Table 3 presents the regression results. As can be observed, number of daily forks, is positively and
significantly associated at the 0.001 significance level with entropy. Number of daily forks, is negatively
and significantly associated at the 0.01 significance level with ΔHMM. A similar pattern arises from the
other dependent variable, number of daily stars; it is positively and significantly associated at the 0.001
significance level with entropy. Number of daily stars, however, was not significantly associated with
ΔHMM. Thus, there is strong statistical support for design routine diversity and change with outcomes of
project attraction. Additionally, variables that significantly affect daily forks and daily stars include event
size, number of actors, and project age. A summary of results obtained for the proposed hypotheses is
presented in Table 4.

Table 3 Estimation Results

Variable
Fork Rate Stars Rate

(adj R2=0.53) (adj R2=0.57)

Constant 1.60*** 6.89**

Event Size -0.23* 0.05*

Number of Actors 0.87* 4.89**

Project Age 0.00*** -0.01***

Design Routine Diversity (Entropy) 0.50*** 2.71***

Design Routine Change Magnitude (ΔHMM) -0.38** -0.84

Note: *: P ≤ 0.05. **: P ≤ 0.01. ***: P ≤ 0.001

 Moderate Variation in Software Development Routines are Valued

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 11

Table 4 Results of Hypotheses

Hypothesis Estimation results

H1a Supported

H1b Supported

H2a Supported

H2b Not supported

Discussion

In the context of FLOSS development routines, entropy measures routine diversity, while ΔHMM
measures the magnitude of change. The results reveal that when a project has a diversified set of routines,
it attracts more developers and users. On the other hand, when a project experiences dramatic routines
changes, it becomes less appealing to developers. Furthermore, it would seem that active developers are
more sensitive to both measures, while more passive people (e.g., users and occasional developers) are
less sensitive. People that only occasionally interact with a project may not even notice the change. Taken
to the extreme, an uncontrolled, chaotic project with wild swings in routine diversity may be recognized
by active developers as a failure, which then causes a drop in daily forks; yet, those less aware or affected
by the apparent pending doom do not significantly alter their daily stars. This line of reasoning
rationalizes the findings of Table 4. These findings will contribute to both researchers and practitioners.
With the insights provided by this study, FLOSS participants can better steer their projects to attract more
developer participation. The study also contributes to literature both in FLOSS development and routines.

To extend the discussion, we illustrate a speculation about projects types according to the two dimensions
of entropy and ΔHMM in Figure 2. Chaotic, floundering projects, commonly termed thrashing (or death
march(Yourdon 2003)), are illustrated in the upper right of Figure 2. A maintenance project, with its
simple, occasional updates, is the opposite. Regular moderate change indicates an innovative, successful
project(Klarner et al. 2012). While frequent changes that have little lasting effect on routine diversity may
indicate ineffective management interventions(Salvato 2009). Future research is necessary to understand
how these dimensions affect project type.

 Moderate Variation in Software Development Routines are Valued

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 12

Figure 2 Hypothesized projects types.

 Moderate Variation in Software Development Routines are Valued

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 13

REFERENCES

Abbott, A. "A primer on sequence methods," Organization Science (1:4) 1990, pp 375-392.

Adler, P.S., Goldoftas, B., and Levine, D.I. "Flexibility versus efficiency? A case study of model changeovers in the

Toyota production system," Organization science (10:1) 1999, pp 43-68.

Ahern, D.M., Clouse, A., and Turner, R. CMMI distilled: a practical introduction to integrated process improvement

Addison-Wesley Professional, 2004.

Altarawy, D., Ismail, M.A., and Ghanem, S.M. "MProfiler: A profile-based method for dna motif discovery," in:

Pattern Recognition in Bioinformatics, Springer, 2009, pp. 13-23.

Ambler, S., and Lines, M. Disciplined Agile Delivery: A Practitioner's Guide to Agile Software Delivery in the

Enterprise IBM Press, 2012.

Arakji, R.Y., and Lang, K.R. "Digital consumer networks and producer-consumer collaboration: Innovation and

product development in the digital entertainment industry," System Sciences, 2007. HICSS 2007. 40th

Annual Hawaii International Conference on, IEEE, 2007, pp. 211c-211c.

Ashby, W.R. "An introduction to cybernetics," An introduction to cybernetics.) 1956.

Bonaccorsi, A., and Rossi, C. "Why open source software can succeed," Research policy (32:7) 2003, pp 1243-1258.

Brown, S.L., and Eisenhardt, K.M. "The art of continuous change: Linking complexity theory and time-paced

evolution in relentlessly shifting organizations," Administrative science quarterly) 1997, pp 1-34.

Burgelman, R.A., and Grove, A.S. "Let chaos reign, then rein in chaos—repeatedly: Managing strategic dynamics

for corporate longevity," Strategic management journal (28:10) 2007, pp 965-979.

Cant, S., Jeffery, D.R., and Henderson-Sellers, B. "A conceptual model of cognitive complexity of elements of the

programming process," Information and Software Technology (37:7) 1995, pp 351-362.

Christley, S., and Madey, G. "Analysis of activity in the open source software development community," System

Sciences, 2007. HICSS 2007. 40th Annual Hawaii International Conference on, IEEE, 2007, pp. 166b-

166b.

Crowston, K., Annabi, H., and Howison, J. "Defining open source software project success," ICIS 2003

Proceedings) 2003, p 28.

Crowston, K., Annabi, H., Howison, J., and Masango, C. "Effective work practices for software engineering:

free/libre open source software development," Proceedings of the 2004 ACM workshop on

Interdisciplinary software engineering research, ACM, 2004, pp. 18-26.

Crowston, K., and Howison, J. "The social structure of free and open source software development," First Monday

(10:2) 2005.

Crowston, K., Howison, J., and Annabi, H. "Information systems success in free and open source software

development: Theory and measures," Software Process: Improvement and Practice (11:2) 2006, pp 123-

148.

Crowston, K., Li, Q., Wei, K., Eseryel, U.Y., and Howison, J. "Self-organization of teams for free/libre open source

software development," Information and Software Technology (49:6), 6// 2007, pp 564-575.

Crowston, K., and Scozzi, B. "Open source software projects as virtual organisations: competency rallying for

software development," IET, 2002, pp. 3-17.

Crowston, K., and Scozzi, B. "Bug fixing practices within free/libre open source software development teams,")

2008.

D’Aveni, R.A., and Gunther, R. "Hypercompetition. Managing the dynamics of strategic maneuvering," in: Das

Summa Summarum des Management, Springer, 2007, pp. 83-93.

Diaz, M., and Sligo, J. "How software process improvement helped Motorola," IEEE software (14:5) 1997, pp 75-

81.

Dierickx, I., and Cool, K. "Asset stock accumulation and sustainability of competitive advantage," Management

science (35:12) 1989, pp 1504-1511.

Duc, A.N., Mockus, A., Hackbarth, R., and Palframan, J. "Forking and coordination in multi-platform development:

a case study," Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement, ACM, 2014, p. 59.

Fang, Y., and Neufeld, D. "Understanding sustained participation in open source software projects," Journal of

Management Information Systems (25:4) 2009, pp 9-50.

Feldman, M.S. "Organizational routines as a source of continuous change," Organization science (11:6) 2000, pp

611-629.

Feldman, M.S., and Pentland, B.T. "Reconceptualizing organizational routines as a source of flexibility and change,"

Administrative Science Quarterly (48:1) 2003, pp 94-118.

 Moderate Variation in Software Development Routines are Valued

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 14

Frei, F.X., Kalakota, R., Leone, A.J., and Marx, L.M. "Process variation as a determinant of bank performance:

evidence from the retail banking study," Management Science (45:9) 1999, pp 1210-1220.

Gabadinho, A., Ritschard, G., Mueller, N.S., and Studer, M. "Analyzing and visualizing state sequences in R with

TraMineR," Journal of Statistical Software (40:4) 2011, pp 1-37.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns Elements of Reusable Object-Oriented

Software Addison-Wesley, 1994.

Gaskin, J., Thummadi, V., Lyytinen, K., and Yoo, Y. "Digital Technology and the variation in design routines: a

sequence analysis of four design processes,") 2011.

Grewal, R., Lilien, G.L., and Mallapragada, G. "Location, location, location: How network embeddedness affects

project success in open source systems," Management science (52:7) 2006, p 1043.

Hambrick, D.C., Finkelstein, S., and Mooney, A.C. "Executive job demands: New insights for explaining strategic

decisions and leader behaviors," Academy of management review (30:3) 2005, pp 472-491.

Hannan, M.T., and Freeman, J. "The population ecology of organizations," American journal of sociology) 1977, pp

929-964.

Hannan, M.T., and Freeman, J. "Structural inertia and organizational change," American sociological review) 1984,

pp 149-164.

Harter, D.E., Krishnan, M.S., and Slaughter, S.A. "Effects of process maturity on quality, cycle time, and effort in

software product development," Management Science (46:4) 2000, pp 451-466.

Herbsleb, J.D., and Grinter, R.E. "Splitting the organization and integrating the code: Conway's law revisited,"

Proceedings of the 21st International Conference on Software Engineering, ACM, 1999, pp. 85-95.

Hertel, G., Niedner, S., and Herrmann, S. "Motivation of software developers in Open Source projects: an Internet-

based survey of contributors to the Linux kernel," Research policy (32:7) 2003, pp 1159-1177.

Hutchins, E., and Klausen, T. "Distributed cognition in an airline cockpit," Cognition and communication at work)

1996, pp 15-34.

Jantsch, E. Technological forecasting in perspective: A framework for technological forecasting, its technique and

organisation; a description of activities and an annotated bibliography Organisation for Economic Co-

operation and Development, 1967.

Klarner, P., and Raisch, S. "Move to the beat-Rhythms of change and firm performance," Academy of Management

Journal) 2012, p amj. 2010.0767.

Koch, S. "Profiling an open source project ecology and its programmers," Electronic Markets (14:2) 2004, pp 77-88.

Krishnamurthy, S. "Cave or community?,") 2002.

Krishnamurthy, S. "On the intrinsic and extrinsic motivation of free/libre/open source (FLOSS) developers,"

Knowledge, Technology & Policy (18:4), 2006/12/01 2006, pp 17-39.

Leana, C.R., and Barry, B. "Stability and change as simultaneous experiences in organizational life," Academy of

Management Review (25:4) 2000, pp 753-759.

Lee, S.Y.T., Kim, H.W., and Gupta, S. "Measuring open source software success," Omega (37:2) 2009, pp 426-438.

Lerner, J., and Tirole, J. "Some simple economics of open source," The journal of industrial economics (50:2) 2002,

pp 197-234.

Levitt, B., and March, J.G. "Organizational learning," Annual review of sociology) 1988, pp 319-340.

Lindberg, A. "Understanding Change in Open Source Communities: A Co-evolutionary Framework," Academy of

Management Proceedings, Academy of Management, 2013, p. 16619.

March, J.G. "Footnotes to organizational change," Administrative science quarterly) 1981, pp 563-577.

March, J.G. "Exploration and exploitation in organizational learning," Organization science (2:1) 1991, pp 71-87.

Méndez-Durón, R., and García, C.E. "Returns from social capital in open source software networks," Journal of

Evolutionary Economics (19:2) 2009, pp 277-295.

Mockus, A., Fielding, R.T., and Herbsleb, J.D. "Two case studies of open source software development: Apache and

Mozilla," ACM Transactions on Software Engineering and Methodology (TOSEM) (11:3) 2002, pp 309-

346.

Montgomery, D.C., and Woodall, W.H. "An overview of six sigma," International Statistical Review (76:3) 2008, pp

329-346.

Murugappan, M., and Keeni, G. "Blending CMM and Six Sigma to meet business goals," Software, IEEE (20:2)

2003, pp 42-48.

Nelson, R.R., and Winter, S.G. An evolutionary theory of economic change Harvard University Press, 2009.

Page, S.E. Diversity and complexity Princeton University Press, 2010.

Pentland, B.T., Hærem, T., and Hillison, D. "The (N) ever-changing world: stability and change in organizational

routines," Organization Science (22:6) 2011, pp 1369-1383.

 Moderate Variation in Software Development Routines are Valued

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 15

Rabiner, L.R. "A tutorial on hidden Markov models and selected applications in speech recognition," Proceedings of

the IEEE (77:2) 1989, pp 257-286.

Robbins, J.E., and Redmiles, D. "Software architecture design from the perspective of human cognitive needs,"

Proceedings of the California Software Symposium (CSS’96), 1996, pp. 16-27.

Roberts, J.A., Hann, I.-H., and Slaughter, S.A. "Understanding the motivations, participation, and performance of

open source software developers: A longitudinal study of the Apache projects," Management science (52:7)

2006, pp 984-999.

Robinson, W.N., and Deng, T. "Data Mining Behavioral Transitions in Open Source Repositories " Hawaii

International Conference on Software Systems, IEEE, HI, USA, 2014, p. (best paper nominee).

Robles, G., and González-Barahona, J.M. "A comprehensive study of software forks: Dates, reasons and outcomes,"

in: Open Source Systems: Long-Term Sustainability, Springer, 2012, pp. 1-14.

Salvato, C. "Capabilities unveiled: The role of ordinary activities in the evolution of product development

processes," Organization Science (20:2) 2009, pp 384-409.

Santos, C., Kuk, G., Kon, F., and Pearson, J. "The attraction of contributors in free and open source software

projects," The Journal of Strategic Information Systems (22:1) 2013, pp 26-45.

Scacchi, W. "Free and open source development practices in the game community," Software, IEEE (21:1) 2004, pp

59-66.

Scacchi, W., Feller, J., Fitzgerald, B., Hissam, S., and Lakhani, K. "Understanding free/open source software

development processes," Software Process: Improvement and Practice (11:2) 2006, pp 95-105.

Schroeder, R.G., Linderman, K., Liedtke, C., and Choo, A.S. "Six Sigma: Definition and underlying theory," Journal

of operations Management (26:4) 2008, pp 536-554.

Sen, R., Singh, S.S., and Borle, S. "Open source software success: Measures and analysis," Decision Support

Systems (52:2) 2012, pp 364-372.

Shannon, C.E. "A mathematical theory of communication," ACM SIGMOBILE Mobile Computing and

Communications Review (5:1) 2001, pp 3-55.

Stewart, K.J., Ammeter, A.P., and Maruping, L.M. "Impacts of license choice and organizational sponsorship on

success in open source software development projects," Information systems research (17:2) 2006, pp 126-

144.

Subramaniam, C., Sen, R., and Nelson, M.L. "Determinants of open source software project success: A longitudinal

study," Decision Support Systems (46:2) 2009, pp 576-585.

Subramanyam, R., and Krishnan, M.S. "Empirical analysis of ck metrics for object-oriented design complexity:

Implications for software defects," Software Engineering, IEEE Transactions on (29:4) 2003, pp 297-310.

Van de Ven, A.H. Engaged Scholarship: A Guide for Organizational and Social Research: A Guide for

Organizational and Social Research Oxford University Press, 2007.

Von Krogh, G., Spaeth, S., and Lakhani, K.R. "Community, joining, and specialization in open source software

innovation: a case study," Research Policy (32:7) 2003, pp 1217-1241.

Yourdon, E. Death march Pearson Education, 2003.

 Moderate Variation in Software Development Routines are Valued

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 16

APPENDIX

Of the 18 Git repository activities, we focused on six, which most closely associated with development
teamwork are in Table 5.

Table 5 GitHub development teamwork event types.

Event type Description

IssuesEvent An issue is created, closed, or reopened.

PushEvent Code is committed (pushed) to the repository.

PullRequestEvent A user requests that new code be pushed to the repository.

IssueCommentEvent A comment is associated with an issue.

CommitCommentEvent A comment is associated with a commit (PushEvent).

PullRequestReviewCommentEvent A comment is associated with a PullRequest.

We obtained a total of 92,988 work motifs. The summary statistics of these motifs is provided in Table 6.

Table 6 Summary Statistics of Work Motifs

Issue Event .* PullRequest Event .* Reopen Event .*

Number 68,095 21,776 3,117

Average Duration 53 days 17 days 46 days

Average number of Comments 2.68 2.27 3.83

Number of Unique Actors 2.7 2.5 2.6

Number of Events 5.4 5.7 7.2

Table 7 GitHub projects.

Project Name Owner

AFNetworking AFNetworking

android github

android-bootstrap AndroidBootstrap

Android-PullToRefresh chrisbanes

AngularJS-Learning jmcunningham

annotated_redis_source huangz1990

async caolan

atom atom

AwesomeMenu levey

backbone-boilerplate backbone-boilerplate

bash-it revans

bootstrap-sass twbs

 Moderate Variation in Software Development Routines are Valued

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 17

brackets adobe

capistrano capistrano

cocos2d-html5 cocos2d

coffeescript jashkenas

colour-schemes daylerees

compass chriseppstein

coursera coursera-dl

cw-omnibus commonsguy

devise plataformatec

discourse discourse

docker dotcloud

ember.js emberjs

fabric.js kangax

fastclick ftlabs

FlatUIKit Grouper

flight flightjs

Font-Awesome FortAwesome

Front-end-Developer-
Interview-Questions darcyclarke

Ghost TryGhost

gitlabhq gitlabhq

GMGridView gmoledina

grunt gruntjs

guzzle guzzle

hackathon-starter sahat

handlebars.js wycats

highlight.js isagalaev

history.js browserstate

idiomatic.js rwaldron

intro.js usablica

jasmine pivotal

javascript-patterns shichuan

jekyll jekyll

jqGrid tonytomov

jQuery-menu-aim kamens

jquery-pjax defunkt

jScrollPane vitch

KineticJS ericdrowell

less.js less

libgdx libgdx

masonry desandro

meteor meteor

 Moderate Variation in Software Development Routines are Valued

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 18

metrics dropwizard

moment moment

MWFeedParser mwaterfall

netty netty

NewsBlur samuelclay

node-webkit rogerwang

normalize.css necolas

onepage-scroll peachananr

OpenTLD zk00006

parallax wagerfield

phantomjs ariya

phonegap-plugins purplecabbage

platform_frameworks_base android

Probabilistic-Programming-
and-Bayesian-Methods-for-
Hackers CamDavidsonPilon

ProjectTox-Core irungentoo

pure yui

raphael DmitryBaranovskiy

ratchet twbs

ReactiveCocoa ReactiveCocoa

resque resque

retire karmi

rubinius rubinius

select2 ivaynberg

Semantic-UI Semantic_Org

SlidingMenu jfeinstein10

statsd etsy

storm nathanmarz

Telescope TelescopeJS

TimelineJS NUKnightLab

typeahead.js twitter

underscore jashkenas

Vundle.vim gmarik

wysihtml5 xing

x-editable vitalets

zepto madrobby

	Diversity in Software Development Routines are Attractive: A Preliminary Analysis of GitHub Repositories
	Abstract
	Keywords

	Introduction
	Open Source Software Development
	Design Routines
	This study

	Theoretic Background
	Definitions
	Requisite Variety Theory
	Routines
	Open Source Routines
	Moderating change
	Project Attractiveness

	FLOSS projects need to attract users and developers to keep a FLOSS project active and successful (Arakji et al. 2007; Koch 2004; Krishnamurthy 2002; Von Krogh et al. 2003). Important success factors include, developer motivation and interest to parti...
	Model Development and Hypotheses
	Relationship between Routine Diversity and Project Attraction
	Relationship between Routine Change and Project Attraction

	Research Design
	Data Collection
	Data Preparation
	Measurement
	Dependent variables
	Independent variables
	Control variable
	Data Analysis

	Research Results
	Discussion
	REFERENCES
	APPENDIX

