
 Effectiveness of Pair and Solo Programming Methods

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 1

Effectiveness of Pair and Solo Programming
Methods: A Survey and an Analytical

Approach
Full papers

Wenying Sun
Washburn University

nan.sun@washburn.edu

Miguel I. Aguirre-Urreta
Texas Tech University

miguel.aguirre-urreta@ttu.edu
George M. Marakas

Florida International University
gmarakas@fiu.edu

Abstract

We conducted two studies to further our understanding of the dynamics of the programming methods.
One is a survey study. We surveyed software professionals in the industry to collect their views on the
effectiveness of pair programming versus solo programming. In our second study, we adopted the
analytical approach to compare the three modes of programming: solo only, pair only, and a mixture of
solo and pair. The second study involves three steps. First, we replicated the study conducted by
Dawande and colleagues (Dawande et al. 2008). Second, we applied the parameters collected from our
survey to the same model. Third, we extended the analytical model to further study the effect of project
complexity and pair composition on the effectiveness of the three different programming modes. Due to
space limitations, in this paper, we only report: a) the survey research and its findings; b) partial results
from step 2 and step 3 of the second study.

Keywords

Pair programming, solo programming, effectiveness, practitioner survey, simulation

Introduction

Pair programming is a programming approach where two programmers work together on one
programming task, with one as the driver controlling the keyboard, and the other as the navigator
providing alternatives to the programming task (Arisholm et al. 2007; Beck and Andres 2004; Dybå et al.
2007). With the increased popularity of agile software development methods, pair programming appears
to have become a fairly attractive alternative to the traditional practice of solo programming.

However, pair programming is characterized by having a rich body of literature with little consensus on
some important issues (Sun 2011). Prior research studied the effectiveness of pair programming vs. solo
programming on a variety of factors, e.g. effort, defect rate, knowledge transfer, cost, job satisfaction.
Almost on all aspects, some studies stated pair programming was more effective than solo programming
while others identified contradictory results. In addition, a thorough review of the literature suggests
existing research primarily used experiments and case studies as means to collect and report data. There
have been very few survey research or analytical approaches to the study of programming methods.
Furthermore, mixed developer assignment (a mixture of solo programming and pair programming) is
rarely investigated.

To extend our understanding of the dynamics of the programming methods, we conducted two studies.
The first is a survey study. We surveyed software professionals in the industry to collect their views on the
effectiveness of pair programming compared to solo programming. In our second study, we adopted an
analytical approach to better understand the outcomes of three different modes of programming: solo

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301366036?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Effectiveness of Pair and Solo Programming Methods

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 2

only, pair only, and a mixture of solo and pair. We took three steps in our second study. First, we
replicated the study conducted by Dawande and colleagues (Dawande et al. 2008). The purpose of the
replication is to ensure we understood the logic of the original analytical model and were able to produce
the same results. Second, we applied the parameters collected from our survey to the same model. The
purpose of this step is to identify the effect of different parameters on the model and consequently explain
the differences in results. Third, we extended the analytical model to further study the effect of project
complexity and pair composition on the effectiveness of the three different programming modes. Due to
space limitations, in this paper, we only report: a) the survey research and its findings; b) partial results
from step 2 and step 3 of the second study.

The rest of the paper is organized as follows. We first introduced the survey study, the respondents’
profile, and its findings. We then describe the design and implementation of the analytical approach to
the study of the three programming modes. Next, we report the simulation results on total programming
effort and pair formation effort. Lastly, we discuss the findings.

Survey Results

We conducted a survey of software professionals in industry to collect their views on the effectiveness of
pair programming as compared to solo programming. Nearly 1,500 email addresses were collected
through professional membership associations and their conferences. An email was sent to request
participation in this survey research. A reminder was sent two weeks later to those who did not
participate. Data collection was conducted through an online survey tool and lasted for a month. We
received 194 complete responses, out of which 131 respondents had pair programming experience. Even
though professionals without pair programming experience could undoubtedly form legitimate
perceptions of pair programming without direct experience, for later analysis, we decided to use
responses from professionals with pair programming experience only. The results reported below came
from those professionals.

Table 1 presents the demographic characteristics of the respondents. The profile suggests the responses
came from well-educated and experienced practitioners, with 87.8 percent of the respondents having
college or graduate degrees, and 77.8 percent having over 10 years of working experience in the
information technology field. The pair programming experience reported by respondents ranges from
less than a year to more than 10 years. On average, the respondents have four years of pair programming
experience.

Respondents

 N % N %

Pair programming experience

<1 year
1-2 years
3-4 years
5-6 years
7-8 years
9-10 years
>10 years

28
34
28
22
7
4
8

21.3%
25.9%
21.3%
16.7%
5.3%
3.0%
6.1%

Experience in IS/IT field

< 2 years
2-5 years
6-10 years
11-20 years
20+ years

1
4
24
62
40

0.7%
3.0%
18.3%
47.3%
30.5%

Age

<30
30-39
40-49
50-59
60-69
>69

Gender

 Male
 Female

13
52
45
18
2
1

119
12

9.9%
39.7%
34.4%
13.7%
1.5%
0.8%

90.8%
9.2%

Highest education

High school or equivalent
Some college
College degree
Graduate degree

Location

North America
Europe
Asia
Australia/NZ

1
15
50
65

109
9
10
3

0.8%
11.5%
38.2%
49.6%

83.2%
6.9%
7.6%
2.3%

Industry

 e-Commerce
 Financial

8
16

6.1%
12.2%

Current Position

 Developer
 Project Manager

14
29

10.9%
22.1%

 Effectiveness of Pair and Solo Programming Methods

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 3

 Government
 IT Consulting
 Manufacturing
 Retail
 Technology
 Other
 Not specified

5
24
8
1
48
16
5

3.8%
18.3%
6.1%
0.8%
36.6%
12.2%
3.8%

 Team Leader
 VP/Director of Dev
 Development Manager
 Consultant/Trainer
 Architect
 QA/Tester
 Product Manager
 IT Staff
 CIO/CTO/CEO/President
 Other

9
21
8
14
12
13
3
1
1
6

6.9%
16.0%
6.1%
10.7%
9.2%
9.9%
2.3%
0.8%
0.8%
 4.6%

Table 1. Profile of Survey Respondents

On the survey, we asked the respondents to estimate the percentage difference between solo programming
and pair programming on programming effort, defect rate, and knowledge transfer in scenarios of
projects at different levels of complexity (low, medium, high) and pairs comprised of different expertise
(junior-junior pair, junior-senior pair, senior-senior pair; pair where none has prior pair programming
experience, pair where one has prior pair programming experience, and pair where both have prior pair
programming experience). Programming effort is the total amount of programmer-hours devoted to
completing a project. Defect rate is the number of defects per thousand lines of code (a commonly used
metric in software engineering). Finally, knowledge transfer captures the amount of learning that results
from working in pairs. Each of these estimates were obtained with a single-item question that was original
to this research effort. The measurement scales are from 81-99% decrease (-5), to no difference (0), to
>100% increase (6) (numbers within parentheses indicate how each response was subsequently coded for
later analysis). Due to space limitations, we are not attaching the survey instrument. A copy is available
upon request.

The respondents generally believe pair programming will increase knowledge transfer and reduce defect
rates. Furthermore, they believe this effect will be stronger when the project complexity is high, and when
the pairs are comprised of two seniors where both have prior pair programming experience. For
knowledge transfer, junior-senior composition works leads to the most learning. In terms of effort, survey
respondents do not believe pair programming will reduce effort in all scenarios; rather, it will only reduce
effort when there is a medium or high complexity project, and the pairs are comprised of junior and
senior, or two seniors, and both have prior pair programming experience. Table 2 is a summary of the
survey results.

Outcome Effort Defect Knowledge
Complexity
 Low
 Medium
 High

0.85
-0.24
-1

-1.6
-2.17
-2.54

1.26
1.7
2.07

Pair Expertise
 Junior-Junior
 Junior-Senior
 Senior-Senior

1.04
-0.4
-0.88

-1.1
-2.17
-2.75

1.23
2.1
1.74

Prior PP Experience
 Neither-has
 One-has
 Both-have

1.35
0.02
-1.2

-0.93
-1.88
-2.63

1.18
1.83
1.9

*Measurement scales:
No difference (0)
Increase: 1-20% (1), 21-40% (2), 41-60% (3), 61-80% (4), 81-100% (5), > 100% (6)
Decrease: 1-20% (-1), 21-40% (-2), 41-60% (-3), 61-80% (-4), 81-99% (-5)

Table 2. Survey Results

 Effectiveness of Pair and Solo Programming Methods

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 4

Simulation Design and Implementation

The simulation reported here was custom coded in the R Statistical Environment. Many of the design
decisions discussed next followed directly from the work of Dawande and colleagues (Dawande et al.
2008) in order to make our results more comparable. Where we deviated from their simulation design,
this is explicitly noted and discussed in more detail.

The number of modules in the simulated system was either 40 or 70, representing small and large
systems, respectively. Each of these modules was assigned to one of 6 different groups for purposes of
between-module integration, where the number of modules in each group was similar. For example, in
the case of 40 modules, there were four groups of seven modules each, and the remaining two groups
contained six modules. Each of the modules was assigned to a complexity condition, being complex,
average, or simple, which captures the base amount of development effort required. These were 1, 0.5 and
0.25 person-weeks, respectively. The total number of available developers was fixed at 10 in all simulation
runs. Developers were generated by specifying the proportion of them that were junior developers (either
0.30 or 0.70), the proportion of them who had programmed in pairs before (either 0.30 or 0.70) and the
proportion of those who had programmed together before (either 0.30 or 0.70), for which there would be
no pair formation overhead. Assignment of developers to modules followed one of three conditions: all
developers working alone (solo), all developers working in pairs (pairs) and mixed assignment (mixed);
for the latter, the code ensured that in no case were all developers assigned on their own or in pairs. All
developer assignment was done randomly.

For the case of a solo developer, the speed with which a module was completed was a function of
developer expertise, which was 1 for senior developers and 2/3 for junior developers. When working in
pairs, in addition to developer expertise, speed of completion also included multipliers based on our
survey data, capturing the effects pair programming with regards to module complexity, pair composition,
and prior pair programming experience, as previously discussed. Finally, we distinguish clock time (the
time taken to complete development of a module) from total time (the total number of person-weeks
required to complete the development). For the case of a solo programmer, they are identical. For the case
of a pair, total time is clock time times two, which captures the fact that two developers were involved in
the process.

The simulation code ensured that there were no standalone modules. The number of integration links
between modules was either 0.05 or 0.10 of the total number of possible between-module links. In order
to create simulated systems where within-group modules were more closely related than between-group
ones, the number of integration links within a group was four times as large as the number of integration
links between any two groups. The amount of work required to integrate any two modules was set at ten
percent of the original amount of work needed to develop them in the first place. Calculation of the speed
at which integration was completed was similar to the case of original module development just discussed,
with the following differences. First, developers were randomly assigned to module integration based on
the assignment condition (e.g., all solo, all pairs, mixed). Second, the possibility of overlap between the
developers involved in each of the original modules and those assigned to integrate them was considered.
For each overlap the speed of completion was increased by either 0.02 (low knowledge-sharing) or 0.30
(high knowledge-sharing). Further, these coefficients were multiplied by either 0.80 (when the shared
developer was a junior developer) or 1.2 (when the shared developer was a senior developer).

Both original module development and integration work were considered subject to defects, which
required a second round of work. The amount of work required was a function of the expertise of the
original developers in each case, on the assumption that senior and junior developers generate defects at
their stated productivity rate. As well, for the case where the original work was done in pairs, data from
our survey was used to calculate the work necessary to fix the defects, based on module complexity, pair
composition, and prior pair programming experience. The base defect rate for all conditions was also
obtained from survey responses. Developers were randomly assigned to fix defects in both original
development and integration work, separately for each. The speed with which the work was completed
was, as before, a function of developer expertise, pair considerations for the case where pairs were
assigned, and the amount of developer overlap between the original developers and those assigned to
correct defects.

 Effectiveness of Pair and Solo Programming Methods

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 5

Finally, we also considered the effects of pair formation. At the beginning of each simulation run, some
developers were randomly created as having prior pair programming experience. Of those, some of the
developers (in both cases in the proportions discussed before) were assigned as having actually worked
together before. When those developers were assigned to work in pairs in one or more of the four rounds
of work previously discussed (original module development, defect fixing for original development,
integration work, and defect fixing for integration work), they did not incur any pair formation efforts. For
any other cases, the first time a pair of developers who had not worked together before was assigned to
work together, pair formation overhead was incurred (the pair experience matrix was subsequently
updated in order to avoid incurring overhead more than once). The amount of time taken to form a pair
was either 0.10 or 0.50 person weeks, following prior work (Dawande et al. 2008). Further, these times
were multiplied by 1.2 (when the new pair included two junior developers), 1 (when the new pair had one
junior and one senior developer) and 0.80 (when both developers in the new pair were senior).

The complete simulation designed examined 384 different conditions: number of modules (2) x link
density (2) x knowledge-sharing (2) x pair formation overhead (2) x proportion of junior developers (2) x
proportion of developers with prior pair programming experience (2) x proportion of those who had
worked together before (2) x developer assignment (3 for all solo, all pairs, and mixed). For each one of
these combinations we replicated the results 1000 times, to account for variability in developers and their
assignment to different modules.

Simulation Results

The data obtained from the simulation were analyzed by means of a mixed multi-factor ANOVA. In the
simulation design, each of the design conditions, with the exception of developer assignment mode (that
is, all pairs, all solos, or mixed), were replicated 1000 times. Each of these replications was then processed
using all three of the developer assignment modes. As a result, each of the 128,000 replications generated
three sets of results: when all developers in all stages were working on their own, were working in pairs, or
when mixed assignment was possible. In our mixed ANOVA analysis, the developer assignment mode was
thus the within-subject factor, and the remaining simulation conditions were treated as between-subject
factors. For each of the different developer assignment modes, we focused on two main results: total
project effort (the number of person-weeks that would be needed to complete one run of the simulated
project) and pair formation time (the total amount of time taken by new pairs to start working together;
for the case of all developers working on their own this was always zero). Given the large number of
possible combinations of between- and within-subject factors, we focus here only on those results that are
both significant and of practical interest, given by an effect size that is medium or larger. Effect size is
given by partial eta-squared, which is the proportion of the sum of the effect and error variance that is
attributable to the effect and is expressed with values in the 0 to 1 range. Interpretation guidelines are
given as 0.02, 0.13 and 0.26 for small, medium, and large effects, respectively. Particular emphasis is
placed on results that involve developer assignment mode, as that is the main subject of this research.

Total Project Effort

The first measure of interest in this research is Total Project Effort, which captures the total number of
person-weeks that were consumed by the project through its four stages of module development, module
defect fixing, between-module integration, and integration defect fixing. For the case of developers
working alone, these figures are identical to those discussed in the previous section. In the case of pairs,
the total number of person-weeks involves doubling the time taken by a pair to complete an assignment.
Therefore, this measure is related to the allocation of resources in terms of person-weeks needed to
complete the project. Table 3 presents the results of employing the different developer assignment modes
and their interactions with various design conditions.

Simulation Condition
Developer Assignment Mode
All Solo Mixed All Pairs

Mean across all conditions (.955) 60.29 56.39 52.63
Number of modules (.725)
 Small (40 modules)
 Large (70 modules)

39.41
81.18

36.87
75.90

34.44
70.82

 Effectiveness of Pair and Solo Programming Methods

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 6

Link density (.211)
 Low (5% of possible links)
 High (10% of possible links)

54.05
66.54

50.57
62.20

47.24
58.02

Proportion junior developers (.831)
 Low (30% of developers)
 High (70% of developers)

56.61
63.98

50.80
61.97

45.25
60.01

Past pair experience (.890)
 Low (30% of developers)
 High (70% of developers)

60.24
60.35

58.76
54.01

57.30
47.96

Number of modules x Prop. junior developers (.319)
 Small x Low
 Small x High
 Large x Low
 Large x High

37.28
41.54
75.93
86.43

33.44
40.31
68.16
83.64

29.77
39.12
60.74
80.89

Number of modules x Past pair experience (.527)
 Small x Low
 Small x High
 Large x Low
 Large x High

39.81
39.01
80.66
81.70

38.80
34.94
78.72
73.08

37.82
31.07
76.79
64.85

Prop. junior developers x Past pair experience (.131)
 Low x Low
 Low x High
 High x Low
 High x High

56.53
56.68
63.94
64.03

52.84
48.76
64.69
59.26

49.27
41.24
65.34
54.68

Note: Results are average person-weeks to complete a simulated project under the specified
conditions. Partial eta-squared effect size given in parenthesis next to each condition.

Table 3. Results for Total Project Effort

First, there is a strong main effect of developer assignment mode on the number of person-weeks
necessary: developers working in pairs result in an overall decrease in the amount of resources needed to
complete a project.

Second, there are also some first order interactions with project size (number of modules), link density
between those modules, and the proportion of developers who are juniors (e.g., less experienced and
therefore more error prone and less productive, as discussed in the simulation design). There are slight
improvements in favor of pair programming when the projects are larger and the modules more
interconnected, and a marked improvement when the proportion of junior developers is relatively low.

Third, there are three second-order interactions of interest, which involve project size and the proportion
of junior developers, project size and the proportion of developers that have prior pair programming
experience, and the interaction between these two factors (proportion of junior developers and the
proportion of developers that have prior pair programming experience). The first of these three
interactions shows that pair programming performs better when the proportion of junior developers is
relatively low, for both project sizes. The second one indicates that pair programming also performs better
when compared to solo when the proportion of developers with past pair programming experience is
relatively high (note that in all these cases pair programming also performs better than solo programming
for all conditions, but not markedly so). Finally, the last interaction indicates that pair programming is
particularly effective when the proportion of junior developers in the development team is relatively low
and the proportion of developers with prior pair programming experience is relatively high. Notably, pair
programming performs worse than solo programming – that is, requires more person-weeks allocated to
complete a project under these conditions – when the converse occurs.

 Effectiveness of Pair and Solo Programming Methods

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 7

Pair Formation Time

The second major outcome of interest in our simulation was Pair Formation Time, which captures the
number of person-weeks that would be consumed by developers who have been assigned to work together
in a pair but which have not done so in the past. This effect, also known as ‘pair jelling’, has been observed
in the literature, but can exhibit a fair amount of variability, at least from published results (Williams et
al. 2000). In our simulation design, we distinguished between having prior pair programming experience
– that is, having programmed in pairs before, and thus being more familiar with what pair programming
entails – from having (or not) programmed with a particular other developer before, which is what we
consider here. As a result, the simulation condition “Past pair experience” captures whether developers
have programmed in pairs before, either 30 or 70% of them, for the Low and High conditions respectively.
On the other hand, the simulation condition “Proportion of existing pairs” represents the extent to which
developers who do have prior pair programming experience have worked in a pair with another developer
in the current team before, also in Low and High conditions as before. Results shown in Table 4 represent
the average amount of person-weeks needed for new pairs to begin working effectively together, under a
variety of simulation conditions and only for those where the effect size (as measured by the partial eta-
squared statistic) can be considered medium or larger based on commonly accepted interpretation
guidelines.

Simulation Condition
Developer Assignment Mode

Mixed All Pairs

Mean across all conditions (.998) 10.84 11.45

Number of modules (.549)
 Small (40 modules)
 Large (70 modules)

10.23
11.45

11.37
11.53

Link density (.224)
 Low (5% of possible links)
 High (10% of possible links)

10.54
11.15

11.39
11.51

Pair formation (.995)
 Low (0.10 person-weeks)
 High (0.50 person-weeks)

3.61
18.07

3.82
19.08

Proportion junior developers (.768)
 Low (30% of developers)
 High (70% of developers)

9.92
11.76

10.47
12.42

Past pair experience (.878)
 Low (30% of developers)
 High (70% of developers)

12.20
9.48

12.88
10.01

Proportion existing pairs (.697)
 Low (30% of developers)
 High (70% of developers)

11.61
10.07

12.26
10.63

Number of modules x Link density (.148)
 Small x Low
 Small x High
 Large x Low
 Large x High

9.68
10.77
11.39
11.52

11.25
11.48
11.53
11.53

Number of modules x Pair formation (.351)
 Small x Low
 Small x High
 Large x Low
 Large x High

3.41
17.05
3.82
19.09

3.79
18.94
3.84
19.21

Pair formation x Proportion junior developers (.596)

 Effectiveness of Pair and Solo Programming Methods

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 8

 Low x Low
 Low x High
 High x Low
 High x High

3.31
3.92
16.53
19.61

3.49
4.14
17.45
20.70

Pair formation x Past pair experience (.762)
 Low x Low
 Low x High
 High x Low
 High x High

4.07
3.16
20.34
15.80

4.29
3.34
21.47
16.68

Pair formation x Proportion existing pairs (.506)
 Low x Low
 Low x High
 High x Low
 High x High

3.87
3.36
19.35
16.78

4.09
3.54
20.43
17.72

Past pair experience x Prop. existing pairs (.589)
 Low x Low
 Low x High
 High x Low
 High x High

12.37
12.04
10.86
8.10

13.06
12.71
11.46
8.55

Pair formation x Past exp. x Existing pairs (.389)
 Low x Low x Low
 Low x Low x High
 Low x High x Low
 Low x High x High
 High x Low x Low
 High x Low x High
 High x High x Low
 High x High x High

4.12
4.01
3.62
2.70
20.61
20.07
18.10
13.50

4.35
4.24
3.82
2.85
21.76
21.18
19.11
14.26

Note: Results are average person-weeks to form pairs where assigned developers had not worked together
before. Partial eta-squared effect size given in parenthesis next to each condition. The ‘all solo programmers’
condition omitted since pair formation time was not applicable to that condition.

Table 4. Results for Pair Formation Time

First, the results presented in Table 4 do not include the ‘all solo programmers’ condition since, for all
simulation conditions (including those not reported here) the average time over all replications is exactly
zero for the case of all developers working on their own. This should be the case, since solo developers do
not, by definition, need to incur time learning to work with other developers, and validates that both the
pair assignment mechanism as well as the calculation of time in the simulation works as intended.

Second, the time in the mixed assignment condition – where some developers are assigned to work in
pairs and some on their own – is always less than the time taken to form pairs in the case where all
developers must work in pairs. This is also as expected, since the simulation design enforced that, under
the mixed assignment condition, there would be no cases of all developers working on their own or all
developers working in pairs. This further validates that the simulation run as intended. The remainder of
the results will be discussed in terms of their effect on the case of all developers working in pairs.

Third, there are a few important first-order interactions, in that the is greater when there are more
modules in the project of the density of the links between them is greater; both of these correspond to
more opportunities for developers to work in pairs and, everything else being equal, resulting in a greater
number of possibilities for new pairs to be formed. The increase in time due to the greater presence of
junior developers is a result of our simulation design, which considers that junior developers would take

 Effectiveness of Pair and Solo Programming Methods

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 9

longer than their senior counterparts to get accustomed to working with another developer, given their
overall limited experience in development in general. There is also a marked effect due to the particular
value of the simulation condition that specifies the base amount of time needed for a new pair to form
(e.g., 0.10 or 0.50 person-weeks), which is then adjusted by other factors such as the overall experience of
the developers involved in the particular pair, as just discussed. Also as expected the proportion of
programmers who have worked in pairs before and the proportion of programmers who have worked with
other programmers in their own team before has an effect in the results.

Finally, there are a number of second-order and one third-order interaction which capture many of the
effects discussed before (opportunities to work in pairs, existing pair programming experience, developer
expertise, etc.) together with the base cost of forming a new pair. More interestingly, our simulation
seems to capture well the diversity of times that has been observed in the literature. For example, our
results go from a low of 2.85 person-weeks as the average total time to form all pairs in a project when the
base cost is low, past pair programming experience is high, and the proportion of developers who have
worked together in pairs is high, to a high of 21.76 person-weeks when the opposite conditions are
observed. Our results thus indicate that the time incurred in forming new pairs can vary substantially
depending on the particular characteristics of the project and developer team, and should thus be an
important consideration when choosing among alternative assignment alternatives. At the same time,
pair formation is essentially a one-time cost and therefore, over time as more and more developers in a
development team have worked together in a variety of projects, unlikely to be a major determinant of the
project budget or schedule.

Discussion and Conclusions

In this research we sought to contrast and compare two alternative approaches to software programming,
solo development versus development conducted in pairs, which is an issue that has garnered some
attention since pair programming was introduced as an alternative to traditional development practices.
We do this by means of a simulation that combines the design originally developed by Dawande and
colleagues (Dawande et al. 2008) with results from our own survey of software practitioners, which
provide realistic values for many of the parameters in the simulation. Given that these were obtained from
professionals with both extensive industry experience as well as actual experience in pair programming,
we believe this contributes to the external validity of our findings.

Due to space limitations we focus here solely on the major results of interest, Total Project Effort and Pair
Formation Time, at the expense of others that were obtained from the simulation; for instance, we are not
considering here the variability of our results, and focus solely on the average values obtained. These are
further analyzed by means of a mixed-methods ANOVA, with also an emphasis on those results that
pertain to developer assignment mode, our main topic of interest here. As our results indicate, pair
programming should be considered a viable alternative to traditional solo development in the majority of
cases, but more so under more particular conditions. For example, the difference between solo and pair
programming, for the same group of developers, is magnified when projects are larger, developers have
more expertise and they have a stronger background in pair programming itself. Solo development, on the
other hand, performs relatively better (or at least not markedly different than pair programming) when
the opposite conditions apply. The main result of interest is that differences between the two approaches
appear to be notably dependent on the particulars of both the project under consideration and the
developers that are available to complete it, which suggests that managers would do well to consider these
specifics because deciding on which approach is more or less appropriate at any given time. We also
examined here Pair Formation Time, which captures the time taken for a new pair – two developers that
have not worked together before, to coalesce and begin functioning productively. Our results show,
consistent with past research, that there is quite a fair amount of variability depending on various
characteristics of the particular group of developers under consideration, which should also factor in the
abovementioned decision. It should also be noted that this ‘cost’ incurred by new pairs is a one-time
occurrence and that, over time and as pair programming becomes more prevalent within a given
development team, its impact on the development approach decision decreases quickly. Given that this is
one of the central decisions faced by managers of software development teams, we hope our ongoing
research in this area may prove useful to practitioners in the future.

 Effectiveness of Pair and Solo Programming Methods

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 10

REFERENCES

Arisholm, E., Gallis, H., Dybå, T., and Sjoberg, D. I. K. 2007. "Evaluating Pair Programming with Respect to

System Complexity and Programmer Expertise," IEEE Transactions on Software Engineering (33:2), pp.

65-86.

Beck, K., and Andres, C. 2004. Extreme Programming Explained: Embrace Change. Addison-Wesley Professional.

Dawande, M., Johar, M., Kumar, S., and Mookerjee, V. S. 2008. "A Comparison of Pair Versus Solo Programming

under Different Objectives: An Analytical Approach," Information Systems Research (19:1), pp. 71-92.

Dybå, T., Arisholm, E., Sjoberg, D. I., Hannay, J. E., and Shull, F. 2007. "Are Two Heads Better Than One? On the

Effectiveness of Pair Programming," IEEE Software (24:6), pp. 12-15.

Sun, W. 2011. "The True Cost of Pair Programming: Development of a Comprehensive Model and Test." PhD

Dissertation, University of Kansas.

Williams, L., Jeffries, R., Kessler, R. R., and Cunningham, W. 2000. "Strengthening the Case for Pair

Programming," IEEE software (17:4), pp. 19-25.

