
 Hiding in Plain Site: Scrubbing Secrets 
  

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 1 

Hiding in Plain Sight:  

Scrubbing Secret Content from Files 
Submission Type: Full Paper 

Charles Wood 
Duquesne University 

woodc@duq.edu  

Abstract 

Steganography is a technique used to hide encrypted messages within multimedia files.  This technique 
was recently reported to have been used by Osama Bin Laden to communicate with terrorist cells within 
the United States, and, thus, prevention of the transmission of steganographic content is of great interest 
to those interested in information security. Methods of steganalysis have been developed that attempt to 
detect files that contain steganographic content.  However, authors of these methods admit that they are 
not viable for production or have been shown to be defeated by newer advances in steganography. This 
article illustrates an innovation in which algorithms neutralize any hidden messages without significantly 
detracting from the underlying integrity of the multimedia files and without the need for prior detection 
of steganographic content. 

Keywords (Required) 

Stgeganography, Encryption, Information Security 

Introduction 

Steganography is the science of embedding messages within other messages. The sole purpose of 
steganography is to transmit messages between two parties with limited or no possibility of detection 
from a third party.  The term "Steganography" (literally translated from the Greek phrase meaning 
"covered writing") was first used in the fifteenth century, where messages were sent on the back of wax 
writing tables or even on the stomachs of rabbits (Kessler 2004). Newer software packages, such as 
SysCop, Steghide, Mandelsteg, Hide and Seek, Hide4PGP and OpenPuff, to name a few, easily allow users 
to embed secret messages within multimedia files. The techniques used by these tools can widely vary.  

Ker, et al. (2013) describe the steganographic process where an individual (known as the steganographer) 
wishes to send a covert communication (known as the payload) to a recipient. The steganographer has 
access to unaltered images (known as covers). The communication channels used by the steganographer 
(e.g., email, Internet postings, etc.) are monitored by a person who tries to prevent secret messages from 
being sent (known as the steganalyst).  The goals of the steganographer are threefold: (a) to encrypt a 
secret message and send it to some recipient, (b) to not only hide such information from the steganalyst, 
but to even hide the fact that a message has been sent, and (c) to resist future audit attempts that would 
detect the secret message.  

A problem exists in that steganography can be used for terrorist, espionage, or criminal activities. 
Steganography packages are easy to use, and criminal or terrorist organizations have been reported to use 
steganography in order to secretly transfer information that is hidden from law enforcement and 
intelligence agencies. For example, multiple sources from the multiple governments indicate that Osama 
Bin Laden used steganography to send messages to terrorist cells within online multimedia files 
(McCullough 2001), and a Italian newspaper, Corriere della Sera, cites how court documents and 
investigative interviews detailing how an al-Qaeda cell which had been captured at the Via Quaranta 
mosque in Milan used pornographic images on their computers, and that these images had been used to 
hide secret messages through steganography.    

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301365936?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 Hiding in Plain Site: Scrubbing Secrets 
  

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 2 

The potential of the use of steganography can also be used to criminally transfer secret information, such 
as trade secrets, private identity and credit card information, and secret corporate strategies.  Secret 
messages can include matters of personal identity theft, national security and etc., and can pass messages 
undetected from computer to computer unless there is a tool to catch and remove (or neutralize) the 
hidden message.  The damages that can occur range from financial loss - possibly in the extreme - to the 
ultimate loss of life, possibility of war, and the possibility of other horrific tragic outcomes. (Kessler 2004; 
Johnson and Jajodia 1998). 

Current wisdom in the fields of information systems and of computer science embrace the 
acknowledgement of the threat that steganography poses businesses and national security, and also 
recognizes the importance of detecting the presence of steganographic alteration when and where it 
appears (termed “steganalysis” by researchers and practitioners).  However, detection methods are still in 
their infancy, and steganographic methods are now designed to bypass existing steganalysis techniques 
(Open Puff, 2015). 

This research is design science (Hevner, et al. 2004) which proposes the building of a construct to solve 
an existing research problem. This research uses a methodology used in other design science research 
where existing alternatives compared to a new innovation, where the new innovation addresses some of 
the weaknesses of existing alternatives (March and Story 2008; Lee, et al. 2008).  Specifically in this case, 
a prototype is developed that purports to solve the problems generated by steganography, after describing 
the weaknesses inherent in current steganalysis alternatives.  This research illustrates a proof of concept 
that capitalizes on the limitations on visual acuity within human beings to remove hidden steganographic 
content from within files without prior detection (required by steganalysis) of the hidden content while 
leaving the images virtually unchanged to the human eye. 

A Basic Discussion of the Steganographic Method  

Steganography can be accomplished by the manipulation of the least significant bit (LSB) within some 
multimedia files, such as BMP or GIF image files, or AU or WAV sound files (Johnson and Jajodia 1998).  
The concept is that the color (red, green, and blue components, gray-scale components, etc.) or the sound 
(volume control, pitch, etc.) can be slightly modulated so that the difference is not detectable to the 
human eye or ear.  Within this modulation, a secret message can be placed so as to be undetectable. 

To illustrate, observe the two gray colors (“Old Color” and “New Color”) in Figure 1. 



 Hiding in Plain Site: Scrubbing Secrets 
  

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 3 

Old Color    New Color 

 

� Embed an “A” � 

 

� 
Original Pixel Color:  

RGB(198,190,197) 
 
Original Pixel Color in Binary:  

RGB( 1100 0110, 
 1011 1110, 
 1100 0101) 

� 

 
ASCII of “A” = 65 
Binary of “A” is: 
0100 0010 

 
� 

� 
New Pixel Color in Binary: 

RGB( 1100 0100, 
 1011 1110, 
 1100 0010) 

 
New Pixel Color:  

RGB(196, 190, 194) 

Figure 1 – Embedding an “A” inside a pixel 

In Figure 1, a single pixel (showing a gray color) is selected and embedded with the letter “A”. Each pixel is 
made up of three light components – a red component, a green component, and a blue component. The 
original gray color has red-green-blue (RGB) values, respectively, of 198, 190, and 197.  Computers “think” 
in binary, and the binary representation of the RGB values is 1100 0110, 1011 1110, 1100 0101. As one can 
see in Figure 1, the difference between the “Current” color and the “New” color is undetectable by the 
human eye. 

Letters are converted to numbers within any computer system.  With many, ASCII coding is used.  With 
this coding, the letter “A” is assigned the value of 65 in decimal, or 0100 0010 in binary. 

To embed the letter “A” in the pixel, the last four bits of the red and blue components are replaced with 
the letter “A”’s components.  (In Figure 1, the bold and italics parts of “A” replace the corresponding bold 
and italics parts of the gray pixel, leading to the new color that has RGB components of 196, 190, and 194.  
These new numbers are very close to the old numbers, and it is unlikely that the casual observer will be 
able to tell the difference between the two numbers.  This is because the most significant bits control most 
of the color, and the least significant bits are used to fine-tune the color. Because the fine-tuning of the 
new color is so slight, the human eye cannot often distinguish between such slight color changes in a 
picture, which is often made up of millions of pixels.  Note, too, that we added an “A” to a single pixel by 
manipulating the least significant four bits per pixel (bpp), but there’s no reason to force one pixel per 
character in order to only manipulate the last LSB. In fact, many steganography tools do indeed embed 
letters in a secret message over several pixels (<1 bpp) to reduce damage to the multimedia file and also 
reduce the chance of visual detection. (Although Kawaguchi and Eason (1998) propose a BPCS (Bit-Plane 
Complexity Segmentation) steganographic method that could embed a secret message in noisy parts of an 
image using up 4 bpp without observable visual impairment of the image.) 

Steganography is also very difficult to detect. Detection methods that can be used for the simple example 
shown in Figure 1 have to determine that an “A” is embedded in the new pixel, rather than determining 
that RGB(196, 190, 194) is the color it is supposed to be in the image.  Add on top of this that secret 
messages are often encrypted and compressed before embedding them to the multimedia file, and 
detection becomes very difficult indeed. This work proposes a programmatic structure to eliminate any 
files that have steganographic messages embedded within identifiable file types, even if identification of 
the message or even detection that a message exists is impossible, without harming the content of any 
multimedia (or other) file in any way that is detectable to the end user. 



 Hiding in Plain Site: Scrubbing Secrets 
  

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 4 

Advanced steganographic algorithms allow the embedding of a secret message within a larger multimedia 
file or files, such as pictures, audio files, and video files. When a message is embedded, there is some 
alteration of the original message at the pixel level, but each pixel is altered so slightly so that a secret 
message can be contained within the picture. (This image with a secret message embedded in it is often 
called a “stego-image”.)  Most often, the alteration is so slight that the human eye cannot detect the 
changes that result from the hidden message.  

Steganography can exist within many different types of files, by passing secret messages within, images 
(by manipulating the values of the RGB field or the luminance (brightness) inside a JPEG image file), 
audio/sound files (by manipulating the volume control), and even Microsoft Word documents or Adobe 
Acrobat files (by manipulating the meta data, such as internal file comments, line spacing, letter size or 
spacing of punctuation, etc.).  Even programs can be suspect, by implementing a number of NOPs (“No 
Operation”) within a file that correspond to a message, or by placing a secret message within an 
executable and adding code to branch around the secret message, thereby making the executable code 
work exactly as before, but containing a secret message. Other techniques involve adding a secret message 
before a beginning of file (BOF) marker or after an end of file (EOF) marker, so that users of the file or 
program will not be able to detect the secret message. 

The Failure of Steganalysis 

There have been many authors that have examined the implementation of steganography and have 
discussed the implications to security. For example, Johnson and Jajodia (1998) describe steganographic 
tools that existed at that time and how such tools pose a threat to law enforcement (by allowing the 
undetectable trafficking of illicit material) and to company secrets (by allowing the covert transmission of 
trade secrets) and even national security (by allowing the covert transmission of top secret information). 

Steganalysis is the term used to describe the process of detecting secret messages made from 
steganography. Steganalysis techniques used to detect the existence of steganography have also been 
examined.  Although it may be counter-intuitive, a steganographic technique is known to be “stego-
secure” against a steganalysis technique (or against all existing steganalysis detection from any technique) 
if the steganalysis cannot detect that an image contains a secret message. A steganographic system is 
considered stego-secure if no statistical test can distinguish between unaltered files and files containing 
secret messages. 

There methods of detection often discussed in the literature are χ2 steganalysis, Regular/Singular (RS) 
steganalysis, and most recently, machine learning systems.  This section will discuss the weaknesses of 
each method and how each staganalytic method was circumvented after being developed. 

χχχχ2 Steganalysis 

Westfeld and Pfitzman (1999) developed a detection technique that works when pixels are sequentially 

changed to embed a secret message, commonly referred to as the χ2 (chi-square) steganalysis.  They take 
advantage of the fact that a pixel stream can be regarded as a high-order Markov process (Philip and 
Joseph 2000), where the binary value of each pixel is independent from the other pixels.  Thus, entropy is 
maximized when different pixel values have equal probability of occurring. 

χ2 steganalysis starts with a palette image, and counts the colors for each possible pixel, where you have, 

at most, 256 colors (C={c0, c1,…,c255}) contained in each palette. χ
2 steganalysis then uses pairs of values 

(PoVs) of palette values, so 256 possible colors make 128 pairs of adjacent pixels (k={0-1, 2-3, 4-5,…,254-
255}). Next, a count of each occurrence of every possible color is made. (For color ci, ni is count of the 
pixels that contain that color.) The following equation defines the expected frequency of pixel colors as the 
average pixel count between two adjacent pixels: 

2
' 1++
= ii

i

nn
n  

The χ2 statistic with k-1 degrees of freedom developed by them to test if equality of n'i and ni are equal.  As 

messages are embedded, n'i and ni tend to diverge: 



 Hiding in Plain Site: Scrubbing Secrets 
  

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 5 

( )
∑
=

−

−
=

k

j j

jj

k
n

nn

1

2

222

1
'

'
χ  

The χ2 test is a strong test to detect embedded content (Westfeld and Pfitzman 1999; Provos and 
Honeyman 2003). However, steganographers quickly discovered that a way to circumvent detection was 
to add a secret message to an image file without using sequential pixels, but rather using a pseudo-
random order of pixels usually determined by the key chosen by the steganographer (Provos 2001). 

The circumvention of χ2 –based steganalysis is exacerbated by many security tools that claim to detect 

steganographic content, but use only the χ2 –test as their technique.  Many extant steganography tools 
boast that they can beat this test (e.g. OpenPuff 2015).  Unsuspecting information security officers may 
not have the training to understand that they are still vulnerable. 

Regular/Singular (RS) Steganalysis 

RS steganalysis is proposed by Fridrich et al. (2001) as a method of detecting the existence of 
steganography by examining the flipping of the LSB.  Fridrich et al. define three types of flipping: positive 
flipping (where an LSB is shifted from zero to one during steganalysis), negative flipping (where an LSB is 
shifted from one to zero during steganalysis) and zero flipping (where an LSB is unchanged during 
steganalysis).  The relationship between positive, negative, and zero flipping is formally defined as 
follows: 

F-1 = F1 (F0 + 1) – 1 

where F-1, F1, and F0, are denoted, respectively, as negative, positive, and zero flipping functions.  

RS steganalysis is accomplished using a two-step process.  In the first step, the image is divided into 
separate blocks of pixels, each arranged in a vector GB in zigzag scan order: 

 GB = (x1, x2, … xn,)   

The spatial correlations of LSBs of adjacent pixels can be determined by the discrimination function: 

( ) ∑
−

=

+−=
1

1

1

n

i

iiB xxGf  

where xi is the pixel value and n is the number of pixels.  The value returned by the discriminant function 
shown above is inversely proportional to the strength of the correlation (i.e. a small f is indicative of a 
strong correlation).   

In the second step, non-negative flipping and non-positive flipping are applied on each block: 

( ) ( ) ( ) { }
( ) ( ) ( ) { }1,0,2,1

1,0,2,1

−∈

∈

−−−

+++

nMMM

nMMM

K

K

 

The relative number of “Regular” positive blocks is denoted as Rm while the relative number of “Singular” 
positive blocks is denoted as Rm. Conversely, the relative number of “Regular” negative blocks is denoted 
as R-m while the relative number of “Singular” negative blocks is denoted as. S-m. Fridrich, et al. (2001) 
show that the R and S blocks have the relationships : 

mm RR −≅   and  mm SS −≅  

Fridrich, et al. show that the difference between Rm and R-m and between Sm and S-m both increase with 
the length of the embedded message.  Further, they show that RS steganalysis is resistant to 

steganographic methods that defeat χ2 steganalysis.   



 Hiding in Plain Site: Scrubbing Secrets 
  

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 6 

However, relatively soon after RS steganalysis was introduced, steganographic techniques that utilize a 
pseudo-chaotic adjustment of LSBs followed by a compensation of the stego-image that ensures the 

relationship of mm RR −≅   and  mm SS −≅  remain true (Luo et al. 2007). 

Steganalysis using Blind Calibration and Machine-Learning Methods 

Thus far, no universal models of steganalysis, where the staganalytic method works across all 
steganographic embedding algorithms, exist.  However, in response to acceptable universal models, 
recent steganalysis algorithms have been successful through blind self-calibration method (Solanki et al. 
2007; Pevný and Fridrich 2010; Dabeer et al. 2004). Recently, such self-calibration are considered to be 
the best techniques available, in that the steganalyst can determine one out of six steganographic 
algorithms employed for hiding with a detection accuracy of more than 95% in most cases, even at low 
embedding rates (> .05 BPNZ) (Solanki et al. 2007). 

However, newer steganographic techniques have taken on blind steganalysis.  Probably the most 
promising is the work done by Filler, Judas, and Fridrich (2011) that employs an algorithm based on 
Syndrome-Trellis Codes that can deliver undetectable messages within .2 BPP.  This means that, within 
an 800x600 gray scale pixel image, the steganographer can deliver a message that 96,000 bytes long, or 
embed a file of that size.  JPEG maps and instructions, client lists, blueprints in .GIF format, etc., can 
often easily fit within these parameters.  Furthermore, with color files or movie files, the maximum 
undetectable size of a secret file can increase dramatically. 

The Problem with Steganographic Procedures that Defeat Steganalysis  

There has been much research devoted to defeating steganalysis with the goal of developing stego-secure 
methods that defeat existing steganalysis (e.g., Wang et al. 2010, Luo et al. 2007). Li (2011) describes 
multiple steganographic techniques and the steganalysis that was relatively quickly developed to defeat 
them, and then the response to the steganalysis through the development of more sophisticated 
steganography.  

Top researchers in the field agree that staganalytic methods do not exist that work with unknown 
algorithms, multiple objects, and multiple actors, and existing steganography research often concentrates 
on gray-scale JPEG images, to the exclusion of many other file types and multimedia files (e.g., Ker et al., 
2013). Indeed, most researchers who have developed staganalytic programs would agree that their 
detectors work well only in laboratory conditions, and if such detectors were implemented in a business 
environment, their accuracy would be uneven and unreliable even in situations where older 
steganographic techniques that have shown to be detectable are used (Ker et al., 2013).  

The take away from this section is that modern techniques for detecting secret messages embedded in 
multimedia files through steganography have yet to be addressed by researchers, and not only are beaten 
in relatively short order by newer, better steganographic algorithms, but also that the steganalysis 
techniques often concentrate on solely one type of existing steganography algorithms and also are not 
robust enough to implement within a production environment (Ker et al., 2013). When one considers that 
steganography attacks can involve only one or two images posted online or emailed and can pose a threat 
to national security or a catastrophic event to businesses by allowing the undetectable and illicit transfer 
of information that can bypass law enforcement or national security defenses.  As such, there is need for 
an innovation that removes the threat of steganography, yet does not rely on steganalysis to first detect 
the steganography. 

The Proposed Innovation 

According to current wisdom prior to the present invention, any steganographic images or other data file 
alterations are neutralized or rendered benign only after the steganographic data file alteration has first 
been identified.  Information system security through steganalysis is primarily understood in research to 
include the sequential steps of discovering (first) and then preventing (second) steganographically 
inserted messages in data files, with the believed-to-be key initial step of discovery or detection of the 
presence of the steganographically generated message.   



 Hiding in Plain Site: Scrubbing Secrets 
  

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 7 

The detection of a steganographically embedded secret message is the necessary first step in any proposed 
intervention to halt transmission of a message and to remove that secret message from an applicable data 
file.  In this instance, tools that detect steganographically-embedded secret messages prior to decoding or 
neutralizing them are enormously cumbersome and inefficient for the preponderance of computer 
security applications for which neutralization of steganography is needed.  Equally importantly, too, prior 
steganalysis approaches have not been designed to address virtually all or all data file types to create a 
ubiquitous tool for computer security. 

However, it is the contention of this research the vast majority of computer files that are transferred over 
the Web and that need to be free of steganographic alteration also do not need their hidden messages to 
be detected and decoded simply need to be rendered safe from alteration. This research proposes a 
scrubbing tool that can be applied ubiquitously to a single data files or program or across all data files and 
programs to remove any secret message, if present, with the advantage in efficiency and effectiveness of 
deliberately not investigating whether a secret message is present first through these key characteristics: 

• The proposed scrubbing tool does not rely on steganalytical methods to detect the presence of 
steganographically-embedded secret messages.  

• The proposed scrubbing tool automatically scrubs, or neutralizes, steganographically-embedded secret 
messages in data files or across data files, if such secret messages are present. 

• The proposed scrubbing tool acts without observable changes to the viewing of the file(s) if the file(s) do 
not contain a secret message. 

Figure 2 shows this graphically.  What is needed is a way to (a) keep bad content from reaching our secure 
areas, (b) keep secret content from leaving our secure areas, and (c) to accomplish this without the need 
for prior detection. 

 

         

Figure 2 – Files need to be scrubbed coming in or going out of a system 

 

Removal of secret content without prior steganalytic detection of (a) what that secret content is and (b) 
what method was used to place it in the file, is key to a resolution approaching the system described in 
Figure 2. At first may seem to be an insurmountable problem, but in truth, it may be accomplished in the 
same way that secret steganographic messages are first added to a file.  For instance, just as a 
steganographer may add secret content by adjusting the least significant bit in the picture file so that the 
altered file is indistinguishable from the original, we can erase any content by scrambling the least 
significant bit.  Mathematically, this can be expressed as: 



 Hiding in Plain Site: Scrubbing Secrets 
  

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 8 

( )1,0RANDxorbitbit ijij =  

In the above equation, an exclusive or bit operation (and AND or an OR bit operation can also be used) is 
applied to a random binary number and the least significant bit in each pixel in a picture of i x j pixels.  
The result would be that (a) any secret message that employed these least significant bits would be 
destroyed, (b) the picture would be altered so slightly so that any changes to the picture would be 
imperceptible to the human eye, and finally (c) any distortion of the picture done by a scrubbing routine 
that employs this would not be repeated by multiple applications of the same routine, so that a file 
exposed to multiple applications of the same routine would not be damaged further after the first 
iteration. 

This code is most easily expressed on a bitmap (BMP) file.  After a file is read in, the code to an RGB 
image file, the following Java code can be used to scrub the image: 

// Scrubs an image that is loaded into RGB memory 

    public final BufferedImage scrub(BufferedImage image) { 

        for (int x = 0; x < image.getWidth(); x++) { 

            for (int y = 0; y < image.getHeight(); y++) { 

                Color c = new Color(image.getRGB(x, y)); 

                int r = c.getRed(); 

                int g = c.getGreen(); 

                int b = c.getBlue(); 

                int a = c.getAlpha(); 

                if (Math.random()>.5) { 

                    r = r & 0xFE;   // ANDed with 0b11111110 

                    g = g & 0xFE;   // ANDed with 0b11111110 

                    b = b & 0xFE;   // ANDed with 0b11111110 

                } 

                else { 

                    r = r | 0x01;   // ORed with 0b00000001 

                    g = g | 0x01;   // ORed with 0b00000001 

                    b = b | 0x01;   // ORed with 0b00000001 

                } 

                Color c2 = new Color(r,g,b); 

                image.setRGB(x,y, c2.getRGB()); 

            } 

        } 

        return image; 

    } 
 

To prove this concept is workable, a package was written where BMP files were embedded with another 
picture.  Figure 3 shows the StegoScrubber package that was developed for this task. 

 



 Hiding in Plain Site: Scrubbing Secrets 
  

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 9 

 

Figure 3 – StegoScrubber removing secret messages from the Chuck.bmp file 

A free online software package, StegHide, was used to embed a smiley face graphic inside the Chuck.bmp 
file. After the scrub was complete, the smiley face graphic could no longer be identified. Then the 
Chuck.bmp file was run 50 more times with no visible degrading of picture quality. 

Conclusion 

Researchers have rightly determined that hidden content within files is a threat to security.  Secret 
information can be transferred out of secure areas while unwanted content can be transferred into secure 
areas.  Heretofore, the effort has been on detection of secret content, a process called steganalysis.   

This design science research makes the contention that staganalytic efforts may be destined to fail, at least 
in the short run, as newer methods to get around detection are developed.  In this article, we illustrate 
how such a tool can be developed, and develop one that removes secret content embedded through an off-
the-shelf steganography package. 

REFERENCES 

Bahi, J. M., Couchot, J. F., & Guyeux, C. (2012). Steganography: a class of secure and robust 
algorithms. The Computer Journal, 55(6), 653-666. 

Cachin, C. (1998) An information-theoretic model for steganography. Information Hiding, Second 
International Workshop, Portland, Oregon, USA, Berlin, April, Lecture Notes in Computer Science, 
1525, 306–318.  

Cayre, F., Fontaine, C., & Furon, T. (2005). Watermarking security: Theory and practice. IEEE 
Transactions on Signal Processing, 53(10), 3976-3987. 

Comesaña, P., & Pérez-González, F. (2007, September). On a watermarking scheme in the logarithmic 
domain and its perceptual advantages. In IEEE International Conference on Image Processing, 
2007. (Vol. 2, pp. II-145). 

Dabeer, O., Sullivan, K., Madhow, U., Chandrasekaran, S., & Manjunath, B. S. (2004). Detection of hiding 
in the least significant bit. IEEE Transactions on Signal Processing, 52(10), 3046-3058. 

Filler, T., Judas, J., & Fridrich, J. (2011). Minimizing additive distortion in steganography using 
syndrome-trellis codes. IEEE Transactions on Information Forensics and Security, 6(3), 920-935. 

Fridrich, J., & Goljan, M. (2002, April). Practical steganalysis of digital images: state of the art. Electronic 
Imaging, 1-13. 

Fridrich, J., Goljan, M., & Du, R. (2001). Detecting LSB steganography in color and gray-scale images. 
IEEE Multimedia, 8(4), 22-28. 



 Hiding in Plain Site: Scrubbing Secrets 
  

 Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015 10 

Fridrich, J., Goljan, M., & Soukal, D. (2003) Higher-order statistical steganalysis of palette images. In 
Security and Watermarking of Multimedia Contents V, E. J. Delp III and P. W. Wong, eds., Proc. 
SPIE 5020, 178–190. 

Hevner, Alan R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems research. 
MIS quarterly, 28(1), 75-105. 

Johnson, N. F., & Jajodia, S. (1998). Exploring steganography: Seeing the unseen. IEEE Computer, 31(2), 
26-34. 

Kessler, G. C. (2004). An overview of steganography for the computer forensics examiner. Forensic 
Science Communications, 6(3), 1-27. 

Ker, A. D., Bas, P., Böhme, R., Cogranne, R., Craver, S., Filler, T., Fridrich, J., & Pevný, T. (2013, June). 
Moving steganography and steganalysis from the laboratory into the real world. In Proceedings of the 
first ACM workshop on Information hiding and multimedia security, 45-58. 

Kawaguchi, E., & Eason, R. O. (1998). Principles and applications of BPCS steganography. In Multimedia 
Systems and Applications, vol. 3528, 464-473. 

Lee, J., Wyner, G. M., & Pentland, B. T. (2008). Process grammar as a tool for business process design. 
MIS Quarterly, 757-778. 

Luo, X., Liu, F., & Lu, P. (2007). A LsB steganography approach against pixels sample pairs 
steganalysis. International Journal of Innovative Computing, Information and Control, 3(3), 575-
588. 

March, S. T., & Storey, V. C. (2008). Design science in the information systems discipline: an introduction 
to the special issue on design science research. Management Information Systems Quarterly, 32(4), 
725-730. 

Pevný, T., & Fridrich, J. (2007). Merging Markov and DCT features for multi-class JPEG 
steganalysis. Proceedings SPIE, Electronic Imaging, Security, Steganography, and Watermarking of 
Multimedia Contents IX, 6505, 3. 

Pevný, T., Bas, P., & Fridrich, J. (2010). Steganalysis by subtractive pixel adjacency matrix. IEEE 
Transactions on Information Forensics and Security, 5(2), 215-224. 

Philip, N. S., & Joseph, K. B. (2000). Chaos for Stream Cipher. Proc. of Recent Advances in Computing 
and Communications, McGraw-Hill, 35-42. 

Provos, N. (2001), Defending Against Statistical Steganalysis. 10th USENIX Security Symposium, 
Washington, DC. 

Provos, N., & Honeyman, P. (2003). Hide and seek: An introduction to steganography.  IEEE Security & 
Privacy, 1(3), 32-44. 

Solanki, K., Sarkar, A., & Manjunath, B. S. (2007, June). YASS: Yet another steganographic scheme that 
resists blind steganalysis. In the proceedings of Information Hiding, 9th International Workshop, 
Saint Malo, France, Springer-Verlag, New York, 16-31. 

Wang, S., Yang, B., & Niu, X. (2010). A Secure Steganography Method Based on Genetic Algorithm. 
Journal of Information Hiding and Multimedia Signal Processing, 1(1), 28-35. 

Westfeld, A., & Pfitzmann, A. (1999). Attacks on Steganographic Systems. In Information Hiding: Third 
International Workshop, Dresden, Germany, September 29-October 1, 1999 Proceedings (No. 1768). 
Springer Berlin Heidelberg, 61-78. 

 


