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Abstract 

Invalid measurement of constructs in survey research often remains undetected and can lead to false 

conclusions. An important determinant of a construct’s measurement validity is how it is modeled. A 

construct can often be modeled in different ways, such as the sum of its parts or the cause of its effects. 

Since each of these models is associated with a unique set of errors, the common practice of specifying 

only a single model undermines validity. Current guidelines on measurement have not focused on how 

better validity can be achieved by comparing and combining multiple models. In this paper we provide 

a framework for the development and use of multiple models. This, we hope, would lead researchers 

view their construct of interest from different perspectives and thus measure it more validly. 

 

Keywords: Measurement, models, method, indicator, construct, item 

 

1 Introduction 

Invalid measurement has long been a hidden problem in the field of Information Systems (Boudreau et 

al. 2001; MacKenzie et al. 2011; Straub 1989). Validation is often hampered by unclear conceptual 

definitions (MacKenzie 2003) and unused tools and techniques (MacKenzie et al. 2011). 

Meta-analytical and methodological studies suggest that the hidden problem of invalidity impedes the-

ory development. After synthesizing a subset of eleven meta-analyses on estimating treatment effects, 

Wilson and Lipsey (2001, p419) conclude: “our indication that different operationalizations of what is 

presumed to be the same outcome construct within the same treatment domain can lead to quite differ-

ent results is disconcerting.” More broadly, the risk of using and continuing to use invalid operational-

izations is indeed disturbing because it may lead us to draw the wrong theoretical and practical conclu-

sions (Burton-Jones 2009; Viswanathan 2005). 

Researchers have devoted much attention to the underlying reasons for measurement error. They have 

identified many common sources of error and proposed various ways to control for them, both before 

and after data collection (e.g. Burton-Jones 2009; Podsakoff et al. 2003; Podsakoff et al. 2012; Tou-

rangeau et al. 2000; Viswanathan 2005). The multitude of potential errors can be mind-boggling; 

many published studies do not even discuss errors or their potential effects on results (Schmidt and 

Hunter 1999). Schmidt and Hunter (1999, p183) conclude that, “failure to control for biases induced 

by measurement error has retarded the development of cumulative research knowledge.” 

Designing a measurement model that controls for error is difficult because errors often correspond to 

multiple of its aspects, such as how questions are asked, when, where, to whom, and how the meaning 

of these questions relate to the construct (Burton-Jones 2009). In Spector’s (2006, p230) words, “each 

operationalization of a variable [] carries with it a unique set of potential biases.” 
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Modeling a construct from multiple perspectives can result in more valid measurement (Campbell and 

Fiske 1959). This relies on triangulation; the same logic that underlies the common practice of measur-

ing using multiple reflective items. Like applying a reflective item, applying an entire model is a way 

of taking a look at an entity’s position on the construct and capturing a reflection. Any reflection is to 

some degree distorted, contaminating our estimation. We can remove some of this contamination by 

using multiple reflections that are distorted differentially. Thus, analogous to reflective items, models 

can be compared and combined in a larger model. 

The principle of triangulating across models has rarely been adopted. Exceptions include various in-

formation retrieval constructs such as relevance (Harter 1992). While methods have been proposed to 

leverage the principle across methods, they have focused on evaluating validity, not on improving it 

(Campbell and Fiske 1959; MacKenzie et al. 2011). 

In this paper, we provide a measurement framework that aims to help researchers operationalize their 

construct in multiple models. We typify ways to tie a construct to its indicators, and how taking such 

steps iteratively can generate complementary models. Subsequently, we discuss when the multi-model 

approach is most beneficial, what its limitations are, and where future research is needed.  

2 A Structure of Measurement 

The key to measuring a construct is the items that tie it to observations. As shown if Figure 1, items 

specify what is to be observed in order to measure the construct. While a combination of items indi-

cates a construct conceptually, each item separately relates operationally to one observation for each 

individual, firm, or any other entity to be measured. Records of these observations combine mathemat-

ically to produce estimates, from which to draw measurement inferences.  

Measurement is valid to the extent an estimate, i.e. what is measured, matches the meaning of the con-

struct, i.e. what is to be measured (Markus and Borsboom 2013; Rigdon 2013). As can be seen from 

Figure 1, this match has three components: one conceptual, one operational, and one mathematical. 

More error in any of those components means lower measurement validity. 

Meaning of a 
Construct:

What to 
Measure

Estimates
of a Construct:

What is 
Measured

Conceptual

Mathematical

Inferential

OperationalRecords of 
Observation:

What is 
Observed

Items, i.e.
Referents of 
Observation:

What to 
Observe

 

Figure 1.  A Structure of Measurement 
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Error is conceptual when a construct is not equivalent to the combination of items. This error occurs, 

for example, when items correspond to only some parts of a construct, or when they correspond to ef-

fects of a construct that are also effects of something else. Operational errors occur when what is ob-

served deviates from what was to be observed. For example, a respondent misinterprets a question or 

lies about it. Mathematical errors are due to the researcher combining the records of observations in a 

way that departs from what the conceptual relationship stipulates. Without these three types of error, a 

construct is measured with perfect validity: what is measured equals what was to be measured. 

2.1 The Conceptual Relationship 

The relationship between what to measure and what to observe can take many forms. The simplest 

relationship is when an item is defined as equivalent to the construct, being its only indicator. Gender 

and age are examples of constructs typically assessed with one item. In those cases, the match between 

the construct and the item is perfect; no conceptual error exists. 

Many constructs, of course, are measured with multiple items (Bergkvist and Rossiter 2007). The de-

gree to which the combination of multiple items is equivalent to the meaning of a construct – we will 

call this conceptual validity for short – depends on the logic and knowledge that underlies this rela-

tionship. In an application of measuring frequency of technology use, Carlson and Grossbart (1988) 

included three items: use on weekdays, use on Saturdays, and use on Sundays. Logic and knowledge – 

in this case about time – allowed the researchers decompose the construct into multiple parts. Logic 

and knowledge also allow us to evaluate that a weighted sum of an individual’s positions on these 

items is equivalent to that on the construct, meaning the conceptual component of validity is perfect. 

Measuring technology use, or any construct for that matter, can be compared to measuring the mass of 

a pie. Carlson and Grossbart (1988) cut the pie at one angle – the angle of the structure of the week – 

to get three pieces that are perhaps more operable than the whole. This angle is one of an infinite num-

ber of angles at which the pie, or technology use frequency, can be cut. Other angles could divide it 

into its different features, locations, situations, durations, and so on. Here, the underlying logic is that 

of summing parts to make up the whole. This conceptual analysis is valid as long as the items together 

represent the entire conceptual domain of the construct (Churchill 1979; Clark and Watson 1995; 

Haynes et al. 1995; MacKenzie et al. 2011). 

We could also cut based on causal logic, breaking up a construct into its causes or its effects. In prac-

tice, this logic is probabilistic, making perfect conceptual validity unattainable. But these angles may 

help define more operable pieces, i.e. pieces that can be measured without much operational error. To 

stretch the analogy, asking your guests how full they are after eating your pie and if they want another 

one is a crude way of measuring its mass, but it is worth considering in case the pie has been eaten 

already. These are conditions where physical measurement is complicated if not impossible; these 

conditions often apply in behavioral information systems research. 

Whether we use mereology or causality to analyze the construct, the resulting pieces stand in the same 

qualitative relationship to the construct. They are all constituent parts, all causes, or all effects. An al-

ternative is to cut pieces with qualitatively different relations to the construct. For example, we could 

measure the mass of the pie by multiplying its density with its volume. Similarly, we could measure 

technology use by multiplying use in a past period with a growth rate. While at first glance such di-

mensions may seem to complicate the measurement problem, contextual conditions may exist in 

which they ease it. 

So far, all these examples of conceptual analysis rely on the knowledge of the substance of the con-

struct. But knowledge on method may also drive a conceptual analysis. For example, a writer of a 

question that should capture the meaning of the frequency of technology use may grow concerned 

with potential differences in interpretation: would respondents interpret ‘smartphone use’ only as ac-

tive use or as both active and passive, including listening to music? Some guidelines advise to generate 

items that differ in syntax, rather than semantics (Churchill 1979; Netemeyer et al. 2003). Generating 



Zwanenburg / Measuring Constructs With Multiple Models 

 

 

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 4 

 

 

items that refer to ‘using the smartphone’ and ‘the smartphone being used’ may lessen the problem of 

ambiguous stimuli. 

This approach is an example of breaking up a construct’s method of measurement into pieces. It is cut 

at an angle of one measurement aspect, in this case how a question is asked. Other analyzable aspects 

are to whom a question is asked, i.e. by using multiple informants (Kumar et al. 1993), and when it is 

asked, i.e. by using ecological momentary assessment (also called the experience sampling method; 

Csikszentmihalyi and Larson 1987; Hektner et al. 2007). Which aspect to cut depends on the magni-

tude of error associated with that aspect. By analogy, we could weigh the entire pie using multiple 

scales in case we do not trust any particular scale. 

These examples involve qualitatively similar items. Yet similar to a substantive analysis, a methodical 

analysis can involve cuts that yield qualitatively different pieces. We could cut up the measurement of 

the mass of the pie into the measurement of its weight and that of the weight-mass conversion factor. 

Similarly, when we are interested in deviant technology use, we could cut it up into a convenient piece 

and a corrective piece, such as self-reported deviant use and the tendency to give social desirable an-

swers (Nederhof 1985; Podsakoff et al. 2012).  

While the discussion so far has provided examples of a single step of conceptual analysis, it has ig-

nored that linking a construct to a combination of items often consist of taking multiple consequent 

steps. Many constructs relate to their items through intermediate indicators (Edwards 2001; Law et al. 

1998; Polites et al. 2012). 

In the pie example, we can first equate the mass of the pie to the multiplication of its weight with a 

weight-mass conversion factor, and then equate the weight of the pie to the sum of the weights of its 

slices, etc. As summarized in Table 1, in each step the construct is conceptually analyzed based on 

method or substance so as to equate it to a combination of indicators that are more operable. This con-

tinues until all indicators are items, i.e. when every indicator refers to one observation for each entity 

to be measured. That last step completes the conceptual design of a measurement model.  

  

Relation to  

Construct across 

Indicators 

How an Indicator Relates to its Construct 

Substantively Methodically 

Same 

A substantive aspect of the construct 

distinguishes the indicators. The log-

ic relies on mereology or causality 

related to the substance of a con-

struct; indicators refer to its constitu-

ent parts, its causes, or its effects 

(Bollen and Bauldry 2011; 

MacKenzie et al. 2011).  

A measurement aspect distinguishes the 

indicators. The logic relies on an under-

standing of how this aspect corresponds 

to sources of error that are difficult to 

isolate. Indicators could refer to how a 

question is asked (Netemeyer et al. 2003), 

to whom (Kumar et al. 1993), when 

(Csikszentmihalyi and Larson 1987), and 

even where. 

Different 

Indicators refer to concepts that re-

late differently to the construct. The 

underlying logic relies on the ‘spa-

tial’ structure of a construct. Exam-

ples include multiplying a construct’s 

dimensions (Law et al. 1998; Vroom 

1964), and, conversely, dividing a 

multi-dimensional concept of which 

the construct is a dimension by its 

other dimension(s). 

An indicator can help measure the con-

struct by measuring the bias of another 

indicator. This relies on the assumption 

that a particular method error can be iso-

lated. Examples include confirmatory 

factor models where all items suspected 

of suffering from one type of bias are 

loaded on a factor representing that bias 

(Harman 1976; Nederhof 1985; 

Podsakoff et al. 2003; Podsakoff et al. 

2012). 
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Table 1.  A typology of the relationship between a construct and a combination of indicators 

2.2 The Mathematical Relationship 

The mathematical relationship mirrors the conceptual relationship: each step in the link between the 

construct with its items corresponds to one unique step in combining records of observation. When the 

conceptual step is deterministic, it prescribes exactly how the mathematical step is made. When it is 

not, specifying a model can be more complicated. 

Various mathematical models exist, with varying assumptions about the type of scales of variables, the 

distributions of the variables, the form of their relationship, and the modeling of error (Mellenbergh 

1994; Nunnally and Bernstein 1994). Many applications of measurement models draw on classical test 

theory, in which an observation is equated to a linear combination of the true score, i.e. the position on 

the referent of that observation, and the error score. In a popular extension, confirmatory factor analy-

sis, multiple indicators are modeled in this way, typically under the assumption that all error scores are 

mutually independent. Other extensions allow for modeling different types of indicators (Jöreskog and 

Goldberger 1975), or multiple layers of indicators (Edwards 2001). 

Much attention has been paid to how the direction of the conceptual link should determine its mathe-

matical model (Blalock 1964; Bollen and Lennox 1991; Bollen and Bauldry 2011; Diamantopoulos et 

al. 2008; Diamantopoulos and Winklhofer 2001; Edwards 2001; Edwards and Bagozzi 2000; Kim et 

al. 2010; MacKenzie et al. 2011; Petter et al. 2007). This discussion assumes that (1) multiple entities 

are measured, (2) all indicators relate to the construct in qualitatively the same way, and (3) the link is 

best characterized as unidimensional. If indicators can be thought to be dependent of the construct, this 

direction is reflective, flowing from the construct to the indicators. If the construct is thought to be 

dependent of its indicators, this direction is formative, flowing from the indicators to the construct 

(MacKenzie et al. 2011). In terms of the ‘same’ row of Table 1, cause and part indicators are forma-

tive, while effects and method indicators are reflective. 

Reflective indicators are commonly advocated or assumed to be modeled through factor analysis, alt-

hough some have argued for simply summing scores on reflective indicators (Spector 1992). How 

formative indicators are best modeled has been topic of an on-going debate (Bollen and Bauldry 2011; 

Diamantopoulos and Temme 2013; Edwards 2011; Howell et al. 2013; Lee et al. 2013; MacKenzie et 

al. 2011; Markus and Borsboom 2013; Rigdon 2013). 

In our view, most generally, the measurer is best advised aim to adopt a mathematical model that fits 

the measurement problem at hand. That is the model that best fits the understanding of the conceptual 

link between a construct and a combination of indicators, within the context of the entire conceptual 

relationship specifically and that of the inquiry more generally. 

This context of inquiry limits the mathematical options when only a single entity is measured and little 

prior knowledge exists on the relationships between the variables. Further, when multiple links in the 

conceptual relationship are non-deterministic (Edwards 2001), or the measurement fits into a larger 

structural model, one may consider the advantages of modeling multiple links integrally, such as with 

structural equation modeling (Chin 1998; Jöreskog and Sörbom 1993). 

Importantly, while a conceptual link is the basis for the choice of the mathematical model, an under-

standing of these models should help researchers in designing the conceptual relationship that can be 

easily mirrored mathematically. 

3 A Process of Measurement 

The goal of measuring a construct is to infer the position of an entity on the construct, i.e. to describe 

the entity according to the meaning of the construct. The meaning of a construct is thus the starting 

point of measurement (MacKenzie et al. 2011).  
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Knowing what to measure can be confusing (MacKenzie 2003). A construct’s name, i.e. its label or 

term, can also denote other constructs as it can carry multiple meanings. Further, one meaning can be 

described in different ways; a construct can be defined in different languages and syntaxes. Definitions 

of a construct can also highlight different aspects of its meaning. As long as they are consistent, multi-

ple definitions of the same construct help specify its meaning, i.e. they demarcate it (Barki 2008; 

Goertz 2006; MacKenzie et al. 2011). These definitions must be consistent; inconsistent definitions do 

not define the same construct. The meaning of a construct can never be fully specified; any description 

of a construct is to some degree ambiguous (Kaplan 1964; Van de Ven 2007). 

It may be helpful to visualize a construct as a node in a hyper-dimensional web of nodes connected by 

strings. The web is an internally consistent map of reality, with nodes representing concepts and 

strings. The strings position the nodes, giving it meaning. When we define a construct, we take a string 

and attach its node to other nodes. We may define these nodes too in a similar way or assume their 

location is bound by our prior knowledge or common understanding of them.  

Attaching strings will limit the potential space the node can occupy, analogous to demarcating the 

meaning of the construct in the space of reality by providing definitions. Ideally, this is done in a way 

that specifies the position best. Since this reality is hyper-dimensional, there will always be degrees of 

freedom. How we best attach strings to limit them depends on the larger goal of inquiry. If this goal is 

to assess the relationship between two constructs, i.e. to investigate the distances between two nodes, 

the definitions of the constructs should remove as much as variance in the possible distances between 

their nodes. This will help make stronger inferences, revealing more of the shape of reality (Kaplan 

1964). 

Measuring a construct, then, is approximating the location of its node, or estimating a point on the sur-

face of reality. In the analogy, this is by way of assessing the distance with other nodes. We will infer 

a position more reliably when assessing these distances with nodes in multiple directions. Similarly, 

triangulation in the measurement of a construct will be more successful when based on more diverse 

concepts. 

This visual analog highlights not only the use of our structure of understanding in measurement but 

also that of its process. Experimenting with measuring distances to different concepts should help de-

termine how to best fix a position. Specifically, commonly advised practices for developing measure-

ment instruments include pretests and pilot tests, in which responses to stimuli are compared with 

what was expected (Churchill 1979; Dillman 2000; MacKenzie et al. 2011). These tests can aid the 

level of a stimulus, an item, a combination of indicators, and the level of constructs, in case of as-

sessing nomological validity (MacKenzie et al. 2011). Such testing may involve thought experiments, 

expert judgments, participant interviews, surveys, and actual experiments. All these approaches can 

help validate and calibrate measurement. 

The focus in this paper is on the design of an initial condition with multiple models as these can bene-

fit the most from subsequent testing. 

3.1 Conceptual Design 

The conceptual design of a measurement model consists of tying a construct to a combination of 

items. We can specify a combination of items through one or more consecutive steps of conceptual 

analysis. As shown in Table 1, at each step, we can generate indicators that are heterogeneous or ho-

mogenous, and based on substance or on method. This latitude allows for a plethora of conceptual 

measurement models.  

As a first step, we can consider a construct’s potential ties: what it causes, what it is caused by, how it 

changes over time, what it is composed of, what it is part of, what its dimensions are, what it is a di-

mension of, who perceives it, how it is recorded, and so on (Goertz 2006; MacKenzie 2003; 

MacKenzie et al. 2011). While some of these ties may be subject to hypotheses, those that are better 

understood may provide a portal for measurement. 
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This evaluation often relies on consulting prior literature and theories, reviewing extant measures, ask-

ing experts, using focus groups, and conducting explorative surveys (Churchill 1979; MacKenzie et al. 

2011; Netemeyer et al. 2003). Coupled with logic, such inquiry allows us to draw a map of the con-

struct, positioning it in a web of concepts. 

How promising these concepts are as potential portals to specifying a measurement depends not only 

on how well their relationship with the construct is understood; they also should make the construct 

more operable. Thus, evaluating potential indicators requires iterating this mapping exercise, keeping 

in mind the goal of minimizing conceptual and operational error. Each step should introduce as little 

conceptual error as possible, while also move toward potential items. Items are best specified at such a 

level that observations can be reasonably assumed to correspond to their referent, i.e. operational error 

is minimal. Knowledge on the meaning of the construct and on operations of measurement will help 

maintain direction, focusing on feasible ways to tie a construct to observations. See Figure 2 for how a 

part of such an iterative map could look like. Each of the rectangles corresponds to one model. 

Frequency 

of Technology 

Use (FTU)

FTU as a cause of 

its effects

FTU as an effect of 

its causes

FTU as perceived 

by peers

FTU as recorded 

on the server

FTU as the sum of 

use across features

FTU as a 

composite of 

aspects depth and 

breadth

FTU as a 

composite of FTU 

across locations

How peers report 

their perceptions of 

it when asked at...

How the self 

reports these effects 

in an anonymous...

How the self 

reports use of its 

features... 

Sum of responses by the self to the 

question “How often do you use 

[feature i]?” in an online 

questionnaire, administered in 

location a, etc.

Common factor of responses by 

the self to the following effect 

questions when asked in an 

online questionnaire, 

administered in location a, where 

the responses are also loaded on 

a factor of social desirability, 

which...

Average response by peers, when 

asked “How often does [X] use 

it?” in an online questionnaire, 

administered at time x, etc.

FTU as the sum of 

FTU over time 

periods

 

   

 

 

 

   

 

  

  

  

  

 

 
FIGURE 2: MAPPING POTENTIAL MODELS OF FREQUENCY OF TECHNOLOGY USE 

Each model’s error consists of the conceptual errors introduced in each of the links that tie the model 

to the construct, and the operational error of its items. This analysis of error should help assess the rel-

ative quantity and quality of error across models. Models that have clearly the most error may be dis-

carded, while models with heterogeneous errors quality are best retained; models that are erroneous 

for different reasons carry the promise of triangulation.  

Figure 3 illustrates this comparison with an imaginary example in which we know the quality and 

quantity of errors across five models. Two of them are clearly inferior, while three others are hetero-

geneous in their error, making them complementary.  

 
FIGURE 3: COMPARING MODELS FOR TRIANGULATION 
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In a recursive way, an entire model can be seen as a reflective indicator. Both reflective items and en-

tire measurement models aim to capture the entire meaning of a construct. Similar to evaluating reflec-

tive items, we could put multiple models to the test. Their relative performance may be evaluated us-

ing the same criteria as those developed for evaluating reflective items (Fornell and Larcker 1981; 

MacKenzie et al. 2011). In place of item scores, we can use composite scores, factor scores, or any 

other point estimate of the construct produced by a mathematical model. An evaluation of the models’ 

relative performance may suggest refining, dropping, or retaining them. When we retain multiple 

models we may use them in a factor analysis or a composite so as to produce valid, multi-model 

measurement. 

4 Discussion 

In this paper, we argue why and how we can use multiple models for better measurement validity. But 

when is this approach worth the effort? More models mean more effortful design, and perhaps costlier 

operations. 

In general, more valid measurement can prevent mistakes in drawing research conclusions 

(Viswanathan 2005). Such mistakes are expensive when they lead a stream of research down a blind 

alley. Multiple models are more likely to prevent wrong inferences when research conclusions are 

more sensitive to measurement validity, such as when studying small effects or using small samples. 

That is, better measurement validity can compensate for lack of statistical power. Further, using multi-

ple models should pay off more when even the best measurement model of a construct suffers from 

much error.  

Thanks to technology, operating costs of measurement methods have dropped. For instance, the inter-

net and mobile devices have made it easier to measure through the momentary assessment method. 

This approach complements more traditional approaches, being less sensitive to errors specific to loca-

tion and time (Hektner et al. 2007; Podsakoff et al. 2012). Innovations in digital payments and loca-

tion-based services will reduce the administrative burden of such measurement methods, and increase 

its usefulness. 

One limitation of multi-model measurement is that it may complicate standardization of measurement. 

While standardization generally helps in comparing multiple studies, the premise of meaningful com-

parisons is that constructs are measured with sufficient validity. The adoption of multiple models can 

help ensure this premise. We would thus argue that the adoption of multiple models aides comparison. 

Future research could develop mathematical models that better fit the simultaneous use of multiple 

measurement models of the same construct. Using factor analysis with indicators that are themselves 

factor scores, for example, involves a loss of information, which may affect the ability to identify and 

evaluate structural models. An alternative of specifying a multi-level measurement model may be dif-

ficult since it introduces cross-model relationships that may be difficult to evaluate. 

Error can threaten the validity of measurement in a plethora of ways, especially in survey research. 

Conventional procedures and techniques to control for these errors are limited because they assume a 

single model of a construct. Many measurement errors are specific to its particular underlying view of 

the construct. In this paper, we advance why, how, and when combining multiple models can lead to 

better measurement validity. Multiple models may be generated by applying a structural and process 

framework presented in this paper. We hope that by contextualizing and typifying the ways in which a 

construct can be tied to observations this paper will lead researchers come up with complementary 

models allowing them to measure construct with better validity. 
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