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ASSESSING QUALITY OF CONSUMER REVIEWS IN MOBILE 

APPLICATION MARKETS: A PRINCIPAL COMPONENT 

ANALYSIS APPROACH 

Sangwook Ha, Department of Information Systems, National University of Singapore, 

Singapore, sangwook@comp.nus.edu.sg 

Abstract 

This study presents a simple, theory-based method for calculating a metric which reflects the quality 

of online consumer reviews in mobile application markets. Derived from prior online consumer review 

studies based on psychology, information quality, and economics literature, a metric for measuring 

online consumer review quality is developed. The metric is a weighted sum of three variables (Squared 

Star Rating, Log-transformed Word Count, and Sum of Squared Negative and Positive Sentiment), and 

weights for calculating the metric are estimated by using Principal Component Analysis (PCA) 

technique. Preliminary assessment of the proposed method shows that metrics computed by using the 

proposed method are positively correlated with helpfulness ranks of mobile application reviews in 

Google Play. However, PCA results show that one of the variables (i.e., sentiment) used for 

developing the metric did not load consistently on the first factor component. From the findings of the 

preliminary evaluation on the metric, limitations and future research directions of the proposed 

method are discussed. 

Keywords: Mobile Application Market, Online Consumer Review, Review Sentiment. 

 

 



1 INTRODUCTION 

As the smartphone market grows, the number of mobile applications for smartphones is expanding 

rapidly. For example, Apple reported that people spent over $10 billion on its iTunes App Store in 

2013 (Apple Inc. 2014) and Google’s CFO noted that Google Play, a mobile application store for its 

‘Android' platform smartphones drove its recent revenue growth (Popper 2014). According to Gartner, 

revenues from mobile application markets will hit $77 billion in 2017 (Gartner 2014a). This trend has 

not only opened up new mobile business opportunities but also created novel research opportunities on 

mobile businesses (Ladd et al. 2010; Scornavacca et al. 2006). 

Among various research topics in this area, one prominent question is “how to help potential 

customers to discover applications which meet their needs?” People are aware of only a fraction of 

applications in the vast mobile application markets (Gartner 2014b). Moreover, numerous “me-too” 

(e.g., Flappy Bird and its countless imitators) and malicious applications (e.g., fake or phishing mobile 

applications) hinder consumers to find applications which they really want. To address this issue, 

researchers have proposed several solutions, such as a search engine for mobile application markets 

(Datta et al. 2013), and a recommender system for mobile applications (Yan & Chen 2011). Although 

these systems have demonstrated their utility to a certain extent in real-world situations, researchers 

are still looking for additional methods to improve them as the volume of the market is expanding fast 

(Yan & Chen 2011).  

An emerging idea for promoting and presenting various kinds of products to potential customers 

effectively is using online consumer reviews (Clemons et al. 2006). The impact of online consumer 

reviews of a product on its sales is a well-known phenomenon (Chevalier & Mayzlin 2006; Duan et al. 

2008a) and studies posit that displaying ‘helpful reviews’ (i.e., high-quality consumer reviews) could 

strengthen this relationship (Ghose & Ipeirotis 2011; Mudambi & Schuff 2010) because information 

from such peer-reviews could assist consumers’ decision-making processes (Sun 2012).  

In the past, researchers attempted to address this idea by proposing algorithms and building systems 

for automatically assessing ‘helpfulness’ of each review based on data mining techniques and learning 

algorithms in the context of online marketplaces like Amazon.com (e.g., Cao et al. 2011; Chen & 

Tseng 2011; Kim et al. 2006; Lee & Choeh 2014; Liu et al. 2007; Tsur & Rappoport 2009). However, 

applying these approaches directly to mobile application markets are sometimes challenging because 

1) some features of online consumer reviews required for implementing previous methods are often 

system-dependent - e.g., most mobile application markets do not provide detailed information of the 

author of a review, which is one of the crucial factors for measuring the quality of consumer reviews 

in previously developed methods, 2) prior approaches require numbers of pre- and post-processing 

steps for getting results (e.g., need to train algorithms or build lexicons before using them) so it is 

questionable that these methods can effectively meet the demands of the fast-growing mobile 

application markets 3) prior studies mainly focus on predicting helpfulness of an online consumer 

review (e.g., numbers of helpfulness votes or a proportion of helpfulness votes in the number of total 

votes an online consumer review received) rather than providing quality index or score of each online 

consumer review which could be more helpful for practitioners and consumers (one exception is 

RevRank, Tsur & Rappoport 2009), and 4) while prior studies built upon a data mining approach  

often assume a linear relationship between features of an online consumer review and helpfulness of 

the online consumer review, recent empirical studies find non-linear relationships between them, 

casting doubts on this assumption (e.g., Baek et al. 2012; Mudambi & Schuff 2010). 

To mitigate these issues in the extant research, this study presents a simple, theory-based method for 

calculating a metric which reflects quality of consumer reviews in mobile application markets. 

Developed from online consumer review studies based on psychology, information quality, and 

economics literature (e.g., Baek et al. 2012; Ghose & Ipeirotis 2011; Mudambi & Schuff 2010; 

Otterbacher 2009), a metric for assessing quality of online consumer reviews is devised. The metric is 



a weighted sum of three variables (i.e., Squared Star Rating, Log-transformed Word Count, and Sum 

of Squared Negative and Positive Sentiment), and the first factor component of Principal Component 

Analysis (PCA) on these three variables is used as weights. Preliminary assessment of the metric 

shows that it is positively correlated with ranks of consumer reviews of mobile applications in Google 

Play. Yet one of the variables (i.e., sentiment) did not load consistently on the first factor component 

(i.e., weights for calculating the metric) in PCA results. 

This study contributes to both research and practice. In terms of research contribution, it attempts to 

synthesize two streams of research on online consumer reviews – empirical studies on factors affecting 

helpfulness of online consumer reviews and online consumer review recommendation systems – and 

extends them into the new, emerging area of mobile application markets. For practice, it presents a 

simple, theory-based metric for choosing high-quality consumer reviews in mobile application markets.  

2 LITERATURE REVIEW 

Derived from prior literature, this study defines online consumer reviews as peer-generated post-

purchase evaluations of product, service, and seller provided by a focal or third-party service (Chen & 

Xie 2008; Mudambi & Schuff 2010; Pavlou & Dimoka 2006). The format of most online consumer 

reviews is comprised of three components: 1) star rating (a consumer’s subjective score of a product), 

2) author profile (information of an author of the review; ranged from a simple user name to a detailed 

user history depending on the online consumer review system), and 3) review comment (an open-

ended written comment on the product). Generally, people who purchased a product or a service on an 

online market which has its own consumer review system (e.g., Amazon.com, iTunes Store, and 

Google Play) could write a review of it. In addition, consumers can write their purchase experiences 

on third-party consumer review services (e.g., metacritic and Rotten Tomatoes). 

 

Variable 
Relationship with 

Review Quality 
Issues Raised Major Reference 

Star Rating 
Quadratic relationship 

with review quality 

May vary by types of 

products 

Mudambi & Schuff 

(2010); Yin et al. (2014) 

Author Profile 

Reviews from high-ranked 

author positively affect 

review quality 

Inconsistent findings 

Information is not always 

available; depend on online 

markets/services 

Ghose & Ipeirotis 

(2011); Otterbacher 

(2009) 

Review 

Comment 

Word 

Counts 

Linear and log linear 

relationship with review 

quality 

Log linear model showed 

larger coefficients than 

linear models 

Baek et al. (2012); 

Korfiatis et al. (2012); 

Mudambi & Schuff 

(2010)  

Sentiment 

‘Extreme’ sentiments 

contribute to review 

quality 

No standard method for 

measuring sentiments 

Baek et al. (2012); 

Ghose & Ipeirotis 

(2011); Willemsen et al. 

(2011) 

Readability 

Linear relationship of 

readability index with 

review quality 

Inconsistent findings; vary 

by types of deployed 

readability index 

Ghose & Ipeirotis 

(2011); Korfiatis et al. 

(2012) 

Table 1. A Summary of the Literature Reviewed  

Prior research on online consumer reviews investigated reviews-sales relationships and revealed a 

positive link between them in various online transaction contexts. For example, the volume of online 

consumer reviews (Chevalier & Mayzlin 2006; Duan et al. 2008a, 2008b) and dispersion of star 

ratings (Clemons et al. 2006) regarding a product were formed to be positively related to its sales. 

However, inconsistent findings between studies from this area (e.g., the impact of volume, valence, 

and dispersion of consumer reviews on sales is inconsistent; Dellarocas et al. 2007) drove researchers 



to study this topic from different perspectives. One of the alternative approaches, the quality of the 

online consumer reviews (often referred as ‘helpfulness’) is recently gaining research attention 

because providing high-quality reviews to potential customers helps their purchase decision-making 

process and thus can facilitate product sales (Ghose & Ipeirotis 2011; Mudambi & Schuff 2010). The 

following section presents the relationship between three components in an online consumer review 

(star rating, author profile, review comment) and the quality of the review based on our analysis of the 

previous literature (See Table 1). 

2.1 Star Rating 

A quadratic relationship between an online consumer review’s star rating and its quality is suggested 

by both theory and empirical results. In marketing, the theory of two-sided advertising argues that 

providing not only positive but also negative information of a product could enhance consumers’ 

credibility of the information (Crowley & Hoyer 1994).  Mudambi & Schuff (2010) elaborated this 

assertion with prior literature on star rating and proposed a concept of “review extremity” which posits 

that the squared star rating in an online consumer review influences the quality of the review. 

Although their initial hypotheses suggest this relationship depends on the type of a product (e.g., a 

positive relationship with search goods and a negative relationship with experience goods), results 

from subsequent studies postulate that this relationship could exist regardless of the type of products 

(Baek et al. 2012; Korfiatis et al. 2012; Yin et al. 2014). In addition, inconsistent findings from studies 

which tested a linear relationship (Pan & Zhang 2011; Zhang et al. 2010) also suggest the possibility 

of a quadratic relationship between star rating and review quality. 

2.2 Author Profile 

Studies showed a review reader’s perception of the credibility and expertise of the author of an online 

consumer review could influence the quality of the review (Baek et al. 2012; Ghose & Ipeirotis 2011; 

Otterbacher 2009; Schlosser 2011). Psychological models on persuasion (i.e., the impact of external 

information on a person’s decision making process) have found the perceived characteristics of the 

information sender (e.g., credible, expert) could affect the audiences’ decision on a certain topic 

(Chaiken 1980; Petty & Cacioppo 1986). Inspired by these models, researchers hypothesized that if 

the author of an online consumer review discloses his/her real name in the review and has a reputation 

in an e-commerce site (e.g., high-ranked reviewer in Amazon.com), readers could perceive it “better” 

quality than reviews from anonymous, low-reputation authors. However, findings were inconsistent 

among studies. For example, disclosing the author’s real name in an online consumer review did not 

statistically affect on the quality of the review in some studies (Baek et al. 2012; Otterbacher 2009). 

Similarly, the association between an online consumer review author’s “reviewer ranking” in 

Amazon.com and the quality of his/her review was marginal or not clear (Ghose & Ipeirotis 2011; 

Otterbacher 2009). In addition, “author profile” is a website dependent feature. Even nowadays, only a 

few e-commerce websites (e.g., Amazon.com) have this feature and most mobile application markets 

do not have this feature in their system for now. This issue limits further research on this topic and 

prevents its application in the context of this study (i.e., mobile application markets). 

2.3 Review Comment 

Comments in online consumer reviews have been studied in several ways. First, researchers focused 

on the amount of information in an online consumer review. Cognitive psychology and economic 

literature posit that the availability of information biases a person’s decision-making process (Tversky 

& Kahneman 1974) but it could be bounded because its utility could decrease with consumption 

(Gossen 1983) and human’s limited processing capacity (Lang 2000) could constrain the amounts of 

external information processed. Based on these arguments, researchers used word counts of an online 

consumer review as a proxy for the amount of information and tested its relationship with quality of 



the review. Results support both linear and log linear relationships (Baek et al. 2012; Korfiatis et al. 

2012; Mudambi & Schuff 2010; Otterbacher 2009) but the regression coefficient from a log linear 

model indicates larger effect size and higher statistical significance (Baek et al. 2012) than linear 

models. 

Second, research found there is a link between an online review’s sentiments (e.g., subjectivity, 

polarity) and the quality of the review. Negativity and positivity biases (Herr et al. 1991; Ito et al. 

1998) are well-known human traits. Thus, researchers conducted lab experiments (Gershoff et al. 

2003; Schlosser 2011) and regression analyses (Baek et al. 2012; Ghose & Ipeirotis 2011; Willemsen 

et al. 2011) to discover if these effects also exist in the online consumer review context. Although 

results from both research methods confirmed the existence of those biases (readers of online 

consumer reviews prefer either very positive or negative reviews than “moderate” reviews), low 

regression coefficients (Baek et al. 2012) and marginal support for the negativity and positivity bias 

hypotheses (Ghose & Ipeirotis 2011; Willemsen et al. 2011) suggest that further studies are needed to 

refine measures for capturing sentiments in online consumer reviews. 

Last, some studies investigate the “readability” of an online consumer review and its impact on the 

quality of the review. Researchers argue that reviews which are written in “readable” style could 

reduce readers’ cognitive efforts and thus they could favor the review more than others with language 

errors and complex sentence structures (Ghose & Ipeirotis 2011; Korfiatis et al. 2012). However, their 

tests revealed inconsistent relationships among different types of ease-of-reading indices and the 

quality of online consumer reviews. 

3 PROPOSED METHOD 

 

Figure 1. A Graphical Representation of the Proposed Method 

Based on the literature review in section 2, a metric for assessing the quality of online consumer 

reviews in mobile application markets is proposed in Figure 1 and Equation (1). As an equation form, 

the metric of review quality for the k
th
 review from a group of reviews j (or application j) is a weighted 

sum of three variables of the k
th
 review (i.e., Star Ratingjk

2
, Log(Word Countjk), and Review 

Sentimentjk). Weights for variables from a group of reviews j (or application j; β0j, β1j, and β2j) are 

acquired from the first factor component of PCA on the correlation matrix of three variables from a 

group of reviews j (or application j). 

   Composite Scorejk = β0j(Star Ratingjk
2
) + β1j{Log(Word Countjk)} + β2j(Review Sentimentjk)    (1) 

The metric is rooted in two salient findings of the prior research on online consumer reviews: 

consumers’ preferences on 1) “extreme reviews”, and 2) “informative reviews.” Both lab experiments 

and empirical analyses suggest consumers prefer reviews with extreme star rating (Baek et al. 2012; 

Mudambi & Schuff 2010; Yin et al. 2014) and emotional expressions (Gershoff et al. 2003; Schlosser 

2011) than “moderate” reviews. In addition, studies also show consumers perceive long review 

comments as an indicator of a high-quality review (Baek et al. 2012; Korfiatis et al. 2012; Mudambi & 



Schuff 2010; Otterbacher 2009) but cognitive theories suggest its impact may be hampered due to 

human’s limited capacity to consume and process external information (Gossen 1983; Lang 2000). 

Therefore, the method employs squared star rating and sum of squared positive and negative 

sentiments to reflect review extremity, and uses log transformed word count to represent the amount of 

information in a review. Then, a composite score of a review’s quality is calculated with equation (1) 

and weights of each variable estimated from PCA on the correlation matrix of three variables. This 

process is similar to Singular Value Decomposition (SVD) which commonly used in computer science 

and related research areas for reducing dimensions of data (Gerbrands 1981). This is because the first 

factor explains the largest amount of variances of the three inputted variables for conducting PCA, and 

the relationship between the first factor component and the three inputted variables are represented by 

each variable’s factor loading on the first factor component (Suhr 2005). According to its theoretical 

and empirical foundations mentioned in the literature review section, this method can be validated by 

investigating two hypotheses below: 

Hypothesis 1: Squared Star Rating, Log-transformed Word Count, and Sum of Squared Negative and 

Positive Sentiment will be positively loaded on the first factor component from PCA. 

Hypothesis 2: The composite score will be positively correlated with proxy measures of review quality 

from mobile application markets 

4 PRELIMINARY EVALUATION 

4.1 Evaluation Design 

In order to evaluate the proposed method and hypotheses, a pilot study was conducted. Google Play 

was selected as the site for this study due to two reasons. First, it is one of the major mobile 

application markets in the industry. Second, it provides alternative information (sort reviews by 

“helpfulness”) for inferring the quality of online consumer reviews in each mobile application’s 

download page. Although Google did not disclose its actual mechanism for sorting reviews by 

helpfulness, the voting system for review comments (helpful/not helpful/spam) suggest that the 

Google Play’s system resembles Amazon.com’s helpfulness voting system and thus the order of 

reviews sorted by helpfulness can be a proxy measure of the quality of each consumer review. 

 

Variable Mean Std. Dev. Min Max 

Star Rating (ra) 3.58 1.64 1.00 5.00 

Word Count (wc) 42.37 23.92 8.00 147.00 

Positive Sentiment (pos) 0.41 0.24 0.00 0.90 

Negative Sentiment (neg) 0.53 0.26 0.00 0.90 

Squared Star Rating (ra2) 15.46 10.19 1.00 25.00 

Review Sentiment (sen) 0.57 0.18 0.00 0.82 

Log(Word Count) (lwc) 3.60 0.54 2.08 4.99 

Helpfulness Rank (rnk) 15.50 8.69 1.00 30.00 

Table 2. Descriptive Statistics (N=120) 

To collect data to test the proposed method, I searched mobile applications in Google Play which 

frequently updated and rarely contain spam reviews. Based on these criteria, four applications (The 

Official YouTube app, AndChat, ES File Manager, and Wakelock Detector) were selected. Then I 

captured first 30 consumer reviews per each application (total 120 reviews) sorted by “helpfulness” 



which contain ‘meaningful’ review comments (after the 30th comment, most review comments are 

short, simple words such as “thanks” or “good!”). The data was collected during March-April 2014 

period. The dataset contains: 1) star rating, 2) review comment, 3) word count, and 4) helpfulness rank 

(i.e., the order of consumer review appeared in the application’s page; 1st review = 30, 30th review = 

1). To build the metrics for conducting PCA, I used Perkins (Jacob 2010)’s Python NLTK Sentiment 

Analysis with Text Classification Demo for analyzing review comments’ sentiment. The tool 

processes inputted chunk of sentences and outputs the portion of positive (e.g., “nice”, “wonderful”) 

and negative sentiments (e.g., “bad”, “disappointed”) in the inputted chunk of sentences. Stata 13 

(StataCorp. 2013) was used for manipulating/testing data for the proposed method. Table 2 shows 

descriptive statistics of the dataset and Table 3 presents Pearson correlation coefficients between the 

measures used for the study. 

 

 
ra wc pos neg ra2 sen lwc rnk 

ra 1.00 
       

wc 0.13 1.00 
      

pos 0.51* 0.04 1.00 
     

neg -0.47* 0.03 -0.50* 1.00 
    

ra2 0.99* 0.14 0.52* -0.45* 1.00 
   

sen -0.13 0.10 0.34* 0.51* -0.10 1.00 
  

lwc 0.10 0.93* 0.03 0.02 0.10 0.08 1.00 
 

rnk 0.21* 0.33* -0.02 0.03 0.20* -0.05 0.37* 1.00 

Table 3. Correlation Matrix (N=120); *p<0.05 

4.2 Preliminary Results 

To test the two hypotheses stated in the Section 3, I investigated 1) the factor structure of the first 

factor component by examining the factor loadings of the first factor component from PCA, and 2) 

calculated Spearman and Pearson correlations between a metric for each mobile application review 

calculated by the proposed method and the helpfulness rank of each mobile application review 

gathered from Google Play. Results show that calculated metrics for mobile application reviews were 

positively correlated (Pearson and Spearman’s r=0.31, p<0.001) with their helpfulness ranks 

(Hypothesis 2, Table 5), but one of the variables (i.e., sen) did not load consistently on the first factor 

component (Hypothesis 1, Table 4) from PCA.  

Post-hoc analyses of each subset (n=30) suggest that factor structure may vary by each mobile 

application. For example, the sentiment variable (sen) created from reviews on two mobile 

applications (AndChat and ES File Manager) has a positive loading on the first factor component from 

PCA (Table 4). However, the sentiment variable (sen) devised from other two mobile applications 

(YouTube and Wakelock Dector) has a negative loading on the first factor component from PCA. 

One possible reason for this inconsistency could be rooted in the characteristics of mobile application. 

Because the quality of a mobile application can vary by multiple factors (e.g., version of the 

application, a consumer’s mobile device and its operating system) and it can be enhanced through the 

application developer’s efforts (i.e., maintaining the application’s code), consumers may ‘report’ 

issues in the review comments regarding the application rather than ‘express’ their emotions towards 

their usage experience. An anecdote notice which often comes with a mobile application’s description 

such as “please report the application’s bugs and issues to the developer’s email rather than user 

review section” would be an example of this explanation. This result also can be caused by diverse 

types of sentiment information in review comments which the deployed sentiment analysis method 



may not be able to assess properly. Recent studies on sentiment analysis find some kinds of sentiment 

information can change the overall sentiment assessment of an online posting – e.g., non-verbal 

expressions like emoticon (Hogenboom et al. 2013) can provide additional sentiment information, and 

sarcasm can reverse ”positive” sentiment into ”negative” sentiment or vice versa (González-Ibáñez et 

al. 2011; Riloff et al. 2013).  

 

 

Pooled 

(N=120) 

YouTube 

(N=30) 

AndChat 

(N=30) 

ES File 

Manager 

(N=30) 

Wakelock 

Detector 

(N=30) 

ra2 0.7964 0.7639 0.6556 0.6814 0.7365 

sen -0.4448 -0.4697 0.5991 0.2046 -0.3307 

lwc 0.4099 0.4316 0.4596 0.7027 0.5901 

Variance 

Extracted 
0.3681 0.3822 0.4317 0.5086 0.4909 

Table 4. Factor Structure of the 1st Component (Unrotated) 

 

 

Pooled  

(N=120) 

YouTube 

(N=30) 

AndChat 

(N=30) 

ES File 

Manager 

(N=30) 

Wakelock 

Detector 

(N=30) 

Spearman 0.31*** 0.49** 0.29 0.30 0.53** 

Pearson 0.31*** 0.46** 0.28 0.35* 0.48** 

Table 5. Correlation Between Composite Scores and Helpfulness Ranks; ***p<0.001, **p<0.01, 

*p<0.5, other coefficients are significant between p<0.11-0.15 range 

5 LIMITATIONS AND FUTURE RESEARCH DIRECTIONS 

Like all other studies, this study has its own limitations. First, the pilot study used relatively small size 

of data (N=120) from three categories (Music and Video, Communication, and Productivity) for the 

analysis. Some categories in the Google Play (e.g., games and entertainments) are excluded from the 

preliminary analysis because 1) many mobile games and entertainment services have an “invitation 

code” system which forces their users to write ‘promotion reviews’ for receiving rewards (e.g., free 

items for games, bonus online credits for purchasing services), and 2) spam reviews prevail among 

those categories. Hence, the generalizability of the study may be limited. Second, as discussed in the 

section 4.2, some facets of sentiment information may not covered by the implemented method for 

calculating sentiment in review comments (e.g., emoticon and sarcasm). Third, some studies show that 

people’s evaluation on online consumer reviews (e.g., helpfulness ranks of reviews) can be biased by 

social influences and individual traits (Aral 2013; Li & Hitt 2008; Wan & Nakayama 2012) and 

algorithms for assessing quality of review comments as well (Liu et al. 2007; Tsur & Rappoport 2009). 

Therefore, further evaluations with different evaluation designs (e.g., field experiments) or 

comparisons with other metrics for assessing quality of consumer reviews are needed.  

These limitations open seveal venues for future works regarding the proposed method and metric: 1) 

conduct a study on a large set of online review samples from multiple mobile application markets, 2) 

deploy additional methods for analyzing multiple sentiments sources (e.g., sarcasm and emoticons), 3) 

assess the quality of the proposed metric with different evaluation methods (and metrics developed for 

similar purposes). 
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