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Abstract 

Developments in information and computing technologies have given rise to Intelligent Decision 

Support Systems (IDSS). The design of IDSS is largely based on data mining techniques and fuzzy 

logic. While decision-making is an advanced cognitive process, very little has been done in developing 

decision support methodologies that help integrate high level cognitive human reasoning and thinking 

elements within IDSS. This paper proposes a new IDSS methodology that incorporates both data 

mining techniques and human cognition in the process of decision-making. This proposed 

methodology involves a phased decision-support process. The initial phase focuses on phrasing a 

decision based on important criteria or conditions. The second phase involves the machine to analyse 

the required information from one or more large datasets. The third phase involves human cognition 

in making intelligent decisions based on key cognitive elements. Furthermore, the proposed 

methodology is tested on a large data set in the context of elderly care units in Melbourne.  

Keywords: Intelligent Decision Support Systems (IDSS), data mining, human cognition, decision 

making, clustering 

 

 



1 INTRODUCTION 

A key role of decision makers in organizations concerns the evaluating and ranking of possible 

decision criteria that may lead to appropriate action (Malakooti 2012). According to Franklin (2013), a 

decision maker: (1) looks into the pros and cons of each action, (2) considers all the alternatives for a 

successful outcome, (3) is expected to predict outcomes of each option for any given situation, and (4) 

based on all these criteria, determines the best option suitable. Nowadays, technology plays a vital role 

in helping humans take decisions in an effective way by processing the data, analysing the data and 

providing alternatives to choose from. There are several information systems that have emerged in the 

past few years, referred to as Decision Support Systems (DSS), which help decision makers to identify 

and solve problems by making the right decisions utilizing large datasets and different models 

available (Polič 2009). The advent of emerging technologies such as Artificial Intelligence (AI) in the 

Information and Computing industry, has given rise to a new form of DSS called Intelligent Decision 

Support Systems (IDSS). An IDSS is a decision support system that acts like a human consultant 

supporting decision makers in acquiring and evaluating data and making final decisions (Jantan et al. 

2010; Phillips-Wren 2012).  

Most of the new generation IDSS use a combination of Online Analytical Processing (OLAP), data 

mining techniques and fuzzy logic to process large volumes of data to come to one or more 

conclusions. By making use of these state-of-the-art computing technologies, IDSSs are able to 

perform some selected cognitive decision-making functions. However, perfect design of IDSS is still 

largely based on human decision-making mechanisms including human cognition and experiences of 

specific contexts, and behaviour. Top-level management in an organization who generally participates 

in decision-making processes might not have high-level knowledge in mathematics and/or computer 

science to use IDSS. Considering this scenario, very little has been done in developing DSS’s that help 

harness high level human cognitive reasoning and thinking elements (Franklin 2013). There is a need 

for a methodology that explores the complementary nature of emerging IDSS technologies and human 

cognitive abilities as antecedents for effective, intelligent decision-making. This study therefore aims 

to address this limitation by answering the following research question:  

How can organizational decision-making be improved using human cognition and machine 

intelligence?  

In addressing this research question, this research in progress proposes a new IDSS methodology that 

incorporates human cognitive elements with a data mining technique called ‘clustering’ to help 

managers both IT and non-IT environments, sift through and reason out relevant information from 

large data sets in an easy, effective and timely fashion. The next section reviews key literature on 

traditional decision support systems, new trends in decision-making tools and then reviews how 

human cognition is used in decision-making. Section 3 illustrates the research approach, followed by 

Section 4 that proposes a new IDSS methodology. The proposed methodology is then tested in a 

practical scenario (Section 5). Finally, the paper concludes with some future scope of the research. 

2 BACKGROUND 

Existing literature indicates that from late 1960s to 1990s, researchers mainly focused on developing 

model-driven DSS (Power 2007), financial planning systems, spreadsheet-based DSS and group DSS 

(Chai et al. 2011). Data-driven DSS such as data warehouses, executive information systems, Online 

Analytical Processing (OLAP) and business intelligence systems emerged during the same period 

(Power 2007). The advent of the World Wide Web and other computing technologies in the mid 

1990’s led to a rise of knowledge driven DSS and web-based DSS (Bhargava et al. 2001). 



In recent years, several decision support systems have facilitated the use of deductive and inductive 

approaches to decision-making. Advanced data analysis systems such as Online Analytical Processing 

(OLAP) systems follow a deductive or analytical approach in their modelling. While using these 

approaches and with the increase in data volume, even the best analysts find it difficult to drill down 

and consider several alternatives for recognising patterns, trends and valuable information (Rok et al. 

2007).  

Data mining is defined as the process of discovering patterns in data from large databases to support 

the analysis of the data (Witten et al. 2005). Data mining helps to: understand information present in 

the data sets, carry out predictions and trend analysis, and perform clustering based on certain specific 

criteria or queries selected. The use of data mining techniques has helped resolve some of the 

difficulties associated with sifting through large data sets. These techniques are easier to analyse and 

also visually more interesting to suffice non-technical decision makers (Rok et al. 2007). Data mining 

models can be grouped into two main classes according to their goals: supervised or predictive models 

(classification and regression) and unsupervised or descriptive models (summarization, clustering and 

methods for association rule mining). Important techniques that are part of the supervised and 

unsupervised models, and widely used algorithms for each of these techniques are described in the 

Table 1. 

 

Data mining techniques Description Algorithms used 

Classification A function that maps each data item to 

one of the several available classes, which 

are predefined.  

Ex: Classifying financial market trends 

Decision trees, rule-based 

induction, neural networks, 

memory (case) based reasoning, 

genetic algorithms, bayesian 

networks 

Regression Predicts the value of a data item based on 

other real value variables. Ex: Predicting 

the demand of a newly launched product 

based on expenditure for the ads 

   

Linear regression, nonlinear 

regression 

Clustering 

 

 

Association 

Identifies similar data sets and forms them 

into groups.  

Ex: Clustering data sets based on the 

population density of a suburb 

 

Uses if/then statements that uncover 

relationships between apparent unrelated 

data in a large data set 

Ex: A customer buying products x1 and x2 

will also buy product y with a certain 

probability 

K-means, DBSCAN, Cobweb, 

EM, Farthest First 

 

 

Apriori (using Breadth first 

search), Eclat (using Depth First 

search), FP-Growth (frequent 

pattern) 

 

Summarization 

 

 

Finds a compact description for a subset of 

data.  

Ex: Tabulating the mean and standard 

deviation for all the fields. 

Keyword summaries, sentence 

extraction, natural language 

understanding/generation 

    Table 1:  Data mining techniques and algorithms used for each technique 

Furthermore, as the decision-making process have encountered more fuzzier situations and 

unstructured managerial problems, newer intelligent techniques that can handle human reasoning and 

learning have come into existence, which are again embedded in DSS. In this case, the DSS 

application’s name is given based on the intelligent techniques that they use, such as expert systems, 

rule-based systems, Knowledge Based Systems (KBS), fuzzy sets, and Neural Networks (Jantan et al. 

2010). However, these intelligent techniques are more specific to chosen fields such as usage of fuzzy 

DSS in e-commerce and tactical decision-aid systems to support military planning operations (Grasso 



et al. 2006; Mittal et  al. 2013; Ngai et al. 2005). According to Shim et al. (2002), the future of DSS is 

web-based, where a typical browser serves as the user interface for the decision makers. DSS to date 

have supported deductive and inductive styles in various ways but having only a technical perspective 

presented by these systems is not enough for decision-making. Personal perspectives, organizational 

views, ethical and aesthetic issues need to be considered for effective decision-making (Courtney 

2001).  

According to Liu et al. (2012), “decision-making is an advanced cognitive process”. People would not 

only want to choose the best alternative but also focus on selecting the most effective and best fit for 

their goals, desires, lifestyle and values. Li et al. (2010) highlight that an entrepreneur’s mental model 

while making strategic decisions, may be influenced by cognitive factors such as beliefs, values, 

schemas, emotions and feelings. A study by Pohl (2008) suggests six functional elements that form the 

nature of decision-making: information (factual data and details of the problem or situation), 

representation (the way objects are presented and described), visualization (mechanisms to visually 

communicate and present information), communication (channels for social interaction), reasoning ( 

drawing deductions and inferences from information),  and intuition (spontaneous knowledge transfer 

to a new domain). Another study suggests that crucial human factors such as personality, culture, 

values, intuition, and emotions are important internal factors inherent to decision-makers (Barsnick 

2002). According to Barsnick (2002), expertise, stress and risk form external factors that are 

determined at the time of making the decision. With the help of technology used in DSS discussed 

earlier, though people can improve their working efficiency, in most fuzzy situations the final 

judgment of decision makers is dependent on their inherent gut feeling (Liu et al. 2012). In addition, 

apart from having practical knowledge of the decision task, other important aspects that affect decision 

makers are the “personality type, cognition, decision style, company position, and objectives of each 

decision maker” (Karacapilidis 2006). Thus, to overcome the gap between human and machine 

interaction especially while modelling DSS, a methodology is required that emulates decision makers’ 

cognitive abilities, in addition to data mining concepts for timely and effective decision-making.  

Based on the existing literature it is observed that either data mining techniques or fuzzy logic using 

human cognition have been used in different fields of study to make decisions. In this paper we argue 

that a DSS that combines both aspects: (1) data mining techniques/tools to help handle large datasets 

and (2) use of human cognitive elements, is necessary to help managers in organizations make 

effective, accurate and timely decisions. This study therefore proposes a design methodology that 

incorporates both machine and human cognitive abilities into a DSS in a simpler and easily 

implementable manner. 

3 RESEARCH APPROACH 

The aim of this study was to address the research question: How can organizational decision-making 

be improved using human cognition and machine intelligence? To answer this question, the research 

approach undertaken in this study consisted of: (1) a literature review, (2) designing a new 

methodology to develop an IDSS using relevant literature that can be used by managers, (3) 

identification of large datasets in the health care sector, (4) interviews with some decision makers from 

different organizations, and (5) finally testing the proposed methodology.  

This research started by reviewing current literature on various DSSs developed and used in the IT 

field. Keywords that were used to search for relevant research papers included DSS, IDSS, human 

cognition, human cognition and data mining. Most of the DSS research was based on analysing trends 

using historical data and predicting results needed to support decisions. There were some DSS called 

intelligent decision support systems that focus on introducing data mining, fuzzy logic and fuzzy 

cognitive mapping (Witten et al. 2005; Grasso et al. 2006; Mittal et al. 2013). About fifty papers were 

reviewed that discuss IDSS and how human cognition is embedded into DSS. Most articles focused on 

developing decision support systems for specific contexts. It was also observed that only a few studies 

focussed on using both machine intelligence using data mining and human cognition for DSS, to sift 



through large datasets and aid managers to make decisions in a simple, efficient and meaningful way. 

Also, few of the studies that developed IDSS using data mining techniques and human cognition, were 

context specific. This lack of a combined approach to decision making prompted a need for a different 

methodology that involves both machine intelligence and human cognition a single DSS that would be 

easy to implement, understand and use by organizational decision makers.  

In this paper, we propose a methodology that uses both data mining techniques and human cognition. 

The proposed methodology consists of three phases – Phase 1: decision criterion; Phase 2: usage of 

machine and data mining techniques and; Phase 3: application of human cognitive elements. From 

exiting literature, we collated important human cognitive elements for effective decision-making and 

used an intelligent data mining technique called clustering. The methodology therefore uses the 

machine, a data mining technique and also encapsulates human cognition elements for decision-

making. To validate these human cognitive elements, we conducted informal interviews with seven 

managers from IT and non-IT firms to capture their views about the important cognitive elements they 

use while decision-making. It is important to note that the informal interviews were treated only as a 

pilot to confirm common human cognitive elements used by decision makers.  

The proposed methodology was then tested on a large dataset synthesized from Victorian government 

websites in the aged-care context, with a real-world decision scenario of whether or not it is profitable 

for a decision maker to establish an elderly care unit in one of the Melbourne suburbs. To start the 

testing process, a senior decision maker from an aged care sector was interviewed to gather some 

information about important criteria required to start an elderly care unit. Further, based on the inputs 

and data availability, the datasets were pre-processed to make it suitable for the data-mining tool 

called WEKA (Hall et al., 2009). Waikato Environment for Knowledge Analysis (WEKA) is 

recognized as a comprehensive system in data mining and machine learning. It provides a wide-

ranging collection of machine learning algorithms and data pre-processing tools for users to easily 

compare different machine learning methods on new data sets. The proposed framework was then 

tested and validated against a large dataset and this methodology provided results that help a manager 

decide where he would be able to start an aged care unit based on profitability.  

4 NEW METHODOLOGY FOR IDSS DEVELOPMENT 

In this section, we introduce a new methodology for development of an IDSS that incorporates both 

machine intelligence and human cognition. The proposed methodology involves three phases:  

1) Phase 1 is the initial phase that involves the role of a decision maker - to reflect, reason and decide 

on important decision criteria/queries that he/she has to consider for a decision to be made, based on 

his/her existing knowledge expertise; 

2) Phase 2 involves using the machine to help decision makers with the analysis of required 

information gathered from huge datasets, using decision criterion in Phase 1. Phase 2 involves the 

processing of large volumes of data that cannot be handled by humans using data mining techniques 

such as clustering. At the end of Phase 2 a decision maker would have some alternatives at hand and;  

3) Phase 3 involves a human to make the right decision(s) based on the most important cognitive 

elements that influence human decision-making abilities. These cognitive elements are applied to the 

alternatives in Phase 2 and the most effective alternative is chosen for decision making. 

Figure 1 represents the proposed IDSS methodology showing the three phases and the important steps 

in each phase of the methodology. The following sub sections describe each of the phases. 

When a decision is to be made, phrasing it according to the criteria is a primary task. For example, a 

criterion could be a request from an external organisation that considers to: “Start an elderly care unit 

in a suburb in Melbourne”. But it would be useful if the decision phrase had more descriptive and/or 

qualifying information that aids decision-making, according to the actual flow of thought.  



  

Figure 1: The proposed IDSS methodology 

4.1 Phase 1: Decision criteria  

That is, we could have a criterion that states starting a commercial elderly care unit in Melbourne in a 

suburb, which is economical and convenient. This phrase gives a richer view on the actual decision that 

has to be made. The outcome of the decision should satisfy important factors in the phrase, such as, the 

elderly care unit should provide commercial success to the organization; it should be economical for 

the organization in terms of expenditure and must have convenient access to transport and other 

facilities for the elderly that stay in these care units. Knowing what we actually need would help in 

choosing the best alternatives. In order to phrase the decision and look for information/inputs that is 

important that decision makers experience and knowledge in the specific area is crucial. It is therefore 

necessary for a decision maker to consider all the factors such as budget, expenditure, convenience, 

resources, clients and other requirements, and then phrase a decision criterion. 

4.2 Phase 2: Usage of machine 

Once the decision is phrased, the important steps in Phase 2 are: (1) gathering relevant information, (2) 

usage of intelligent techniques and tools, and (3) identifying the best decision alternatives. 

Information gathering: Information relevant to the specific context is gathered from various data 

sources. This information should be accurate and provide enough details for the decision to be made.  

Aiming to include all the data available may delay the decision-making process. In order to suffice the 

format that is accepted by data mining techniques, the data gathered should be pre-processed. Pre-

processing of the data includes preparing and formatting the data through scrubbing e.g. removing 

duplicates and correcting capitalizations.  

Usage of intelligent techniques: The large data sets that available at this stage, makes it impossible 

for decision-makers to analyse and choose the best alternatives, identify patterns, trends and make 

sense of the available data. This is where the power of the machine using data mining plays an 

important role. The results obtained by using one or more data mining techniques can be presented in a 

visually interesting way that makes it easier to understand the result of data-mining for non-technical 

users (Fayyad et al. 1996; Tsiptsis et al. 2011). In this study, we used ‘clustering’ as the data mining 

technique to analyse the data.  The advantage of clustering is that it can be performed on both 

heterogeneous attributes and large datasets (Berkhin 2006). This makes it easier for a decision maker 

to eliminate one or more clusters from the larger dataset in the event that these do not fit the decision 

maker’s decision criteria. 

Identifying the decision alternatives: Based on results obtained from clustering as performed by the 

machine, the best suitable alternatives can be identified. Choosing the best alternatives is related to the 

decision criteria chosen in Phase 1 and the information gathered. The steps in identifying the decision 

alternatives include: Step 1: Identify the clusters and in particular, the data sets in those clusters that 

are most suitable to the criteria determined in Phase 1, Step 2: Eliminate the remaining clusters that do 



not match the decision criteria, and Step 3: The data sets are further analysed to match the decision 

criteria. This is an iterative process that will narrow down the data sets, and Step 4: a set of best-suited 

alternatives is selected. 

4.3 Phase 3: Application of human cognitive elements 

After identifying the decision alternatives in Phase 2, a decision-maker has to work on essential 

cognitive elements in Phase 3 to make decision choices. The new IDSS at hand presents the most 

essential human cognitive elements to be considered while making any decisions. In Phase 3, the 

decision maker is taken through a series of steps such as identifying the human cognitive elements, 

weighting the alternatives chosen via a decision table and finally choosing the best one from those 

alternatives.  

Human cognitive elements: Human cognitive ability plays an important role while making any final 

decisions. It enables decision-makers make most effective decisions and chooses the best alternative. 

Based on the existing literature discussed in Section 2, a number of cognitive elements that affect 

humans in their decision-making were identified: belief, value, intuition, emotion, schema, personality 

type, stress etc. To enhance understanding and strengthen the capturing of cognitive elements for 

effective decision-making, we conducted a pilot study and interviewed seven managers/technical leads 

generally involved in decision-making, to understand how decisions are taken in organizations. Some 

of their comments are summarized below: 

A service delivery manager from a multinational corporation said “The critical elements that drive 

towards effective decision-making are: problem identification, past experience, data analytics, 

‘thinking beyond’ and SWOT analysis”. He also said: “While making decisions our mind plays a vital 

role in utilizing logic and intuition. Logic mainly focuses on the facts and analytics whereas intuition 

resides in a subconscious mind that is mainly [geared] towards opinion, belief and arriving at a 

decision.”  

A technical lead said: “The important cognitive elements for decision-making are vision, intuition, 

cognitive inertia, group thinking and emotions”. Another manager commented that: “Vision, 

emotional status of the team, expertise, and intuition were the essential cognitive elements that had to 

be considered while making a decision”.  

Based on the cognitive elements identified in the existing literature and the information collected from 

different managers for this study, four important cognitive elements vision, intuition, expertise and 

emotion were considered and embedded into the methodology as shown in Table 2.  

Vision: Vision plays a vital role in human cognition of decision-making. For effective decision-

making the decision-maker should be well acquainted with answers to questions such as:  what does 

the company aim to achieve as a primary objective in the future? Will the decision that is made, satisfy 

the future goals and aspirations of the organization? (Pohl 2008). 

Intuition: A formal definition of intuition according to (Li et al. 2010) is: “A capacity for attaining 

direct knowledge or understanding without the apparent intrusion of logical inference”. According to 

this definition, logical reasoning and the weightage of strengths and weaknesses of particular 

situations are not considered, but just the gut feeling of a person with little information or prior 

experiences.  

Expertise: The more knowledgeable and experienced a decision maker is about a situation; the better 

s/he is in deciding the best alternative (Pohl 2008).  

Emotion: Research has revealed the importance of examining emotions like anger and fear impact 

judgments and decision-making. Being positive while making a decision, will influence the mind in a 

positive way, allowing an effective decision, to be made (Pohl 2008). 

A decision maker works on these elements for effective decision-making, depending on their state of 

mind and experience at the time.  



Weighting the alternatives: The alternatives selected in Phase 2, are weighted against human 

cognitive elements. Table 2 describes the decision table, which can accommodate human cognitive 

elements, the priority of each and alternatives (choices). The decision-maker has to prioritize the 

cognitive elements and then s/he has to mark the highest priority element with the highest score, and 

lowest priority element with the lowest number. For example: How much does choice 1 satisfy the 

human cognitive element vision? A score on a scale of 1 -10 describes the weightage. 

 

Choosing from the alternatives: Once priorities and choices are weighted against each human 

cognitive element, each priority number is multiplied with the corresponding choice. A decision-

maker has to weight the choices with a number from 1 to 10 according to their preference. Thus all the 

choices are scored against the elements according to the priority and then summed up to form the final 

score. The choice with the highest score would be considered as the most effective decision. That is, 

this choice has navigated through all the important steps right from data mining to the most important 

elements that effect human cognition. The choice supports all the business analytics and human factors 

and is considered to be the best decision based on all the criteria at hand.  

 
COGNITIVE ELEMENTS --->   Vision   Intuition   Expertise   Emotion   

  Priority                 

ALTERNATIVES                 SCORE 

Choice 1: 

 
  

 
  

 
  

 
    

Choice 2: 

 
  

 
  

 
  

 
    

Choice 3: 

 
  

 
  

 
  

 
    

Choice 4:                   
 

Table 2: Decision table with human cognitive elements and priority 

5 TESTING THE PROPOSED IDSS METHODOLOGY  

Part of the pilot study involved the testing of the proposed IDSS methodology in a real-life situation, 

i.e in an aged-care context using the Victorian government website that provides large datasets of 

information about suburbs, age profile of people residing in those suburbs, transport facilities, 

availability of shopping centres, hospitals and so on. For example, an organization might have the 

intention of starting an aged care unit in a suburb in Melbourne. A suburb to start an elderly care unit 

is chosen based on the decisions provided by our new proposed IDSS methodology using the 

following three phases, as well as datasets from the Victorian websites and inputs from managers in 

organizations.  

5.1 Phase 1 

In Phase 1, a decision-maker decides on the decision criteria. In this study, to understand the important 

criteria for starting an elderly care unit in Melbourne, a decision-maker who works as a data analyst 

with one of the nursing services in Melbourne was contacted to garner her initial thoughts in the form 

of decision-criteria on this issue. Based on her experience, an elderly care unit should be started in a 

suburb where the income, age, and health of the elderly individuals are all ‘good’.  The suburb 

shouldn’t have any other aged care unit with a similar cultural background. Other resources like: land 

availability or properties, government rules and regulations should also be considered. Decisions on 

whether it should consider opening a private or funding-based care unit; its size; how many beds it can 

accommodate; delivering aged-care with the most economical human resources, balance with quality 

care, are important aspects for consideration. Population might not be a concern, but the environment 

is important. Good knowledge on the suburbs is also required. Based on inputs from the analyst and 

data availability, the following criteria were taken into consideration: 

 



 Cost /budget, i.e. the suburb shouldn’t be too costly to start an elderly care unit. 

 Suburb with a high population of the elderly. 

 A suburb that has most of the amenities e.g. fresh markets, police stations, parks, libraries, 

recreational centers, hospitals, shopping malls and transportation were considered. 

 Most primarily a suburb with less or no competition (i.e. no existing elderly care units) was also 

considered. 

Thus, starting an elderly care unit in Melbourne can be re-phrased as: Starting up a commercial 

elderly care unit in Melbourne in a suburb that is both economical and convenient.  

5.2 Phase 2 

Information about the list of suburbs and appropriate information needed to meet the criteria were 

taken from the statistics present in the Victorian websites (State Library of Victoria. 2013; Department 

of Planning and Community Development. 2013; Victoria Police. 2013; Department of Health, 2013; 

Commonwealth of Australia, 2014; Ripefruit Media Co.; Wikipedia. 2014a,b; Fairfax Media. 2011). 

Once the data was gathered and collated into a single data set, the data was pre-processed
1
 to remove 

duplicates, unwanted symbols, capitalization in between the lines, etc. to fit the WEKA data mining 

tool (Hall et al., 2009). Table 3 shows the sample dataset after pre-processing the collected data.  

In this study, for the purpose of testing, the clustering data mining technique was selected from 

WEKA. Specially, we used a clustering algorithm called K-means because the dataset collected was 

unsupervised and sum of the squared errors was less when compared to the other algorithms in 

clustering. In K-means algorithm, K-clusters are formed, and the average of each cluster’s content 

determines its centroid. The centroids in this algorithm are recalculated as and when data is added 

until the point where the centroid doesn’t change. Thus, a dataset of 411 rows and 19 columns of the 

suburb information collected were divided into 4 different clusters. These clusters that were formed 

have their own centroids and attributes corresponding to each centroid. Each instance in the dataset 

would be nearer to one of these centroids. Table 4 depicts the centroids and attributes of the 4 clusters 

formed. As shown in Table 4, for cluster 0 and 1 the suburb Abbotsford is its centroid, for cluster 2 the 

suburb Kalorama is its centroid and Alphington is the centroid for cluster 3. The attributes were: 

Melbourne suburbs, elderly care unit and public libraries. 

According to the criteria considered in Phase 1, there should be no existing elderly care units and the 

suburb should be convenient and economical. In the graph shown in Figure 2, (X-axis Elderly care 

units, Y-axis Melbourne Suburbs), the ‘no’- right-hand side of the elderly care unit gives us all the 

suburbs without an existing elderly care unit. Also, the other criteria are to look for convenient and 

economical suburbs. A suburb with public libraries, fresh markets, police stations, recreational groups, 

and tram stops, etc. would fulfil this criteria. Hence, the cluster with more ‘yes’s’ in Table 4 was 

considered. It is noted that in Table 4 the number of yes’s (left-hand side) is more for cluster 1 i.e. the 

red coloured clusters. Therefore the combination of no elderly unit values and red cluster instances 

was considered. 

 

As seen in Figure 2, on the no (right-hand) side of the graph there are a few crosses marked in red, 

when double clicking on each of those (in WEKA), further details would be visible. The best 

alternatives were considered to closely fit the criteria. 

                                              
1 Data pre-processing or scrubbing is a way of amending or removing incorrect, incomplete, improperly formatted or duplicated data from a 

data set. This can be done systematically by examining data for flaws using algorithms, lookup tables and rules. 

http://www.ripefruit.com/


 

Table 3: Sample dataset 

 

   Table 4: Centroids of the Clusters formed 
 

 

   Figure 2: Elderly care unit vs Melbourne suburbs 

In our study we have selected Warrandyte, Williamstown and Doncaster East as the suburbs that best 

fit our criteria. The details of all the three suburbs are shown in Table 5. The three alternatives 

Warrandyte, Williamstown and Doncaster East were scored against each cognitive element. A 

weighting of 8 was given to vision for Warrandyte as this suburb meets most of the goals. 

Williamstown and Doncaster East were given 5 for vision each as they only satisfy few of the goals 

considered. Likewise, intuition, expertise and emotion were also weighted for each alternative. 

 



 

   Table 5: Alternatives Selected 

5.3 Phase 3 

Based on the selected alternatives above, each alternative is weighted against each human cognitive 

element in the decision table by a decision maker. Table 6 shows the priority and weightage given for 

each element. The alternatives Warrandyte, Williamstown and Doncaster East are placed under the 

alternatives column. The human cognitive elements vision, intuition, expertise and emotion are placed 

as column headings as shown in the weighted decision table in Table 6. Further each cognitive 

element has its own priority column. The decision maker would prioritize these elements according to 

his/her choice and weight the suburb choices against each cognitive element considered on a 1 to 10 

scale. 

The test case example in Table 6 shows the four human cognitive elements considered - top priority 

was given to vision and the least priority given was for emotion.  

 

COGNITIVE ELEMENTS --->   Vision   Intuition   Expertise   Emotion   

  Priority 4   2   3   1   

ALTERNATIVES                 SCORE 

Choice 1: Warrandyte 

 
8 

 
6 

 
5 

 
5 64 

Choice 2: Williamstown 

 
5 

 
3 

 
7 

 
3 50 

Choice 3: Doncaster East   5   5   7   2 53 

Table 6: Weighted Decision Table 

 

The final scores were calculated. The final score for Warrandyte was 4*8+2*6+3*5+1*5=64, 

Williamstown: 4*5+2*3+3*7+1*3=50, and Doncaster East 4*5+2*5+3*7+1*2=53. To conclude, the 

scoring was done for each alternative keeping the decision criteria in mind. Hence, for the criteria: 

there shouldn’t be any elderly care units in the area; the suburb should be convenient; and it should be 

economical and viable to construct a unit in the particular suburb – the best suited suburb in 

Melbourne to start an elderly care unit was Warrandyte with the highest score 64 as shown in Table 6. 
 

6 DISCUSSION AND CONCLUSION 

In this section, we reflect on the research question identified in Section 1. How can organizational 

decision-making be improved using human cognition and machine intelligence? In addressing this 

question, we designed a new IDSS methodology that embedded human cognition and ‘clustering’ as a 

data mining technique to sift out useful patterns and trending information.  

This new IDSS methodology incorporated in a decision support system, takes us through a three-

phased approach for effective decision-making. Phase 1 emphasizes the phrasing of the decision 



considering all the criteria by the decision-maker. Phase 2 uses the machine to analyse the huge 

volumes of data available through clustering, a data mining technique. At the end of Phase 2, decision 

makers would be able to select several alternatives based on his/her decision-criteria. Phase 3 involves 

human cognition elements. All the alternatives are weighed against human cognitive elements in the 

decision matrix and the best alternative is selected.  

Can our new methodology that combines data mining technique and human cognition assist managers 

to sift through large data sets and be able to make easy, relevant and timely decisions with little or no 

IT technical knowledge?  Based on the tests we conducted as discussed in Section 5, we were able to 

extract and deduce sensible and relevant information for decision-makers using this new methodology 

in an aged-care context using large datasets from the Victorian websites. 

Does the consideration of both human cognition elements and data mining technique on large data 

sets provide us with useful information to improve decision-making? Early evaluations of our 

methodology as a prototype provide support that our automated approach that includes human 

cognition elements and clustering, can be used by decision makers with little or no knowledge of using 

complex data mining systems to sift through large amounts of data to make effective and timely 

decision.  

Is the resulting methodology useful as a decision-making tool for managers in organizations? Our 

initial testing and evaluation of the methodology on a large data set on elderly care units in Melbourne 

suggest that the embedded human cognitive elements within this proposed DSS methodology can 

successfully be used to reduce the size of large data sets into meaningful information. Our initial 

findings also indicate that there are other important cognitive factors: tacit knowledge of the decision- 

maker, a deep knowledge of the data set(s) and knowledge of the decision-making context and 

environment influence the decision-making process. 

This study is a part of a larger research in progress project. The approach developed in this study 

provides a systematic step-by-step methodology for designing an improved IDSS. One limitation is 

that the system is not fully implemented and ready to be hosted. Future scope of the research is to 

follow this proposed methodology and implement a whole new fully automated application including 

a user-friendly GUI. Furthermore, future work includes: (1) testing and validating human cognitive 

elements in decision-making in organizational settings with formal ethics approval using 

comprehensive interviews, and (2) making use of other data mining techniques such as regression, 

classification, summarization, constraint clustering,  and (3) evaluation of the methodology in different 

organizational contexts.  
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