
Association for Information Systems
AIS Electronic Library (AISeL)

PACIS 2015 Proceedings Pacific Asia Conference on Information Systems
(PACIS)

2015

Making Task Recommendations in Crowdsourcing
Contests
Jiahui Mo
Nanyang Technological University, Singapore, jhmo@ntu.edu.sg

Sumit Sarkar
The University of Texas at Dallas, sumit@utdallas.edu

Syam Menon
The University of Texas at Dallas, syam@utdallas.edu

Follow this and additional works at: http://aisel.aisnet.org/pacis2015

This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been
accepted for inclusion in PACIS 2015 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please
contact elibrary@aisnet.org.

Recommended Citation
Mo, Jiahui; Sarkar, Sumit; and Menon, Syam, "Making Task Recommendations in Crowdsourcing Contests" (2015). PACIS 2015
Proceedings. 132.
http://aisel.aisnet.org/pacis2015/132

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301365335?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fpacis2015%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2015?utm_source=aisel.aisnet.org%2Fpacis2015%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2015%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2015%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2015?utm_source=aisel.aisnet.org%2Fpacis2015%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2015/132?utm_source=aisel.aisnet.org%2Fpacis2015%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

MAKING TASK RECOMMENDATIONS IN CROWDSOURCING

CONTESTS

Jiahui Mo, Nanyang Business School, Nanyang Technological University, Singapore,

Singapore, jhmo@ntu.edu.sg

Sumit Sarkar, Jindal School of Management, The University of Texas at Dallas, Richardson,

TX, USA, sumit@utdallas.edu

Syam Menon, Jindal School of Management, The University of Texas at Dallas, Richardson,

TX, USA, syam@utdallas.edu

Abstract

Crowdsourcing contests have emerged as an innovative way for firms to solve business problems by

acquiring ideas from participants external to the firm. To facilitate such contests a number of

crowdsourcing platforms have emerged in recent years. A crowdsourcing platform provides a two-

sided marketplace with one set of members (seekers) posting tasks, and another set of members

(solvers) working on these tasks and submitting solutions. As crowdsourcing platforms attract more

seekers and solvers, the number of tasks that are open at any time can become quite large.

Consequently, solvers search only a limited number of tasks before deciding which one(s) to

participate in, often examining only those tasks that appear on the first couple of pages of the task

listings. This kind of search behavior has potentially detrimental implications for all parties involved:

(i) solvers typically end up participating in tasks they are less likely to win relative some other tasks,

(ii) seekers receive solutions of poorer quality compared to a situation where solvers are able to find

tasks that they are more likely to win, and (iii) when seekers are not satisfied with the outcome, they

may decide to leave the platform; therefore, the platform could lose revenues in the short term and

market share in the long term. To counteract these concerns, platforms can provide recommendations

to solvers in order to reduce their search costs for identifying the most preferable tasks. This research

proposes a methodology to develop a system that can recommend tasks to solvers who wish to

participate in crowdsourcing contests. A unique aspect of this environment is that it involves

competition among solvers. The proposed approach explicitly models the competition that a solver

would face in each open task. The approach makes recommendations based on the probability of the

solver winning an open task. A multinomial logit model has been developed to estimate these winning

probabilities. We have validated our approach using data from a real crowdsourcing platform.

Keywords: Crowdsourcing, Competition, Recommendation Systems.

1 INTRODUCTION

Crowdsourcing contests have emerged as an innovative way for firms to acquire ideas to solve

business problems from participants who are usually external to the firm. In a typical contest, a firm

posts its requirements about a task on a website. The firm also specifies the time frame for the contest

and the prize money that the winner of the task would receive. The contest is usually open to everyone

who wishes to participate. After the deadline is reached, the firm evaluates the solutions and picks a

winner. Typically, there is a single winner who receives the entire prize money; the other participants

do not get any monetary reward for their efforts.

 A number of crowdsourcing platforms have emerged in recent years to facilitate such contests. A

crowdsourcing contest platform is an intermediary who provides a two-sided marketplace with one set

of members (usually firms) posting tasks, and another set of members working on these tasks by

submitting solutions. The members of the first set are the seekers, while the members of the other are

the solvers. The emergence of these intermediaries makes it possible to connect the demands of a

variety of seekers with a large community of potential solvers. Crowdsourcing platforms provide a

good venue for seekers to access a wider array of solvers than those in one internal organization, and

to undertake problems for which internal resources may be scarce. At the same time, by providing

access to many tasks in a centralized location, these platforms make it easier for solvers to generate

income by using their expertise and skills (Lacy 2011). Platforms often support tasks across a variety

of categories such as developing software and web sites, and designing logos, business cards, jewelry,

t-shirts, etc.

Such contests have resulted in many successful outcomes for both parties, and as a result

crowdsourcing platforms have becomes quite popular. The number of tasks in crowdsourcing

platforms has also increased rapidly. For example, a popular crowdsourcing platform 99designs,

which was founded in 2008, handled about 100,000 contests by 2012 (Lacy 2012), and has almost

tripled that number as of April 2014 (99designs.com). Gartner Inc. (2013) has predicted that by 2017,

more than half of all consumer goods manufacturers will receive 75% of their consumer innovation

and R&D capabilities from crowdsourcing solutions.

As crowdsourcing platforms attract more seekers and solvers, the number of tasks that are open at

any time can become quite large (a task is open for solvers to participate in from the time it is posted

by a seeker until the seeker-specified deadline after which new solvers are not able to submit

solutions). For instance, on 99designs, there are around a thousand open tasks in some categories at

any point in time, and a typical task stays open for four to seven days. Therefore, when a solver visits

the platform with the intention of participating in a task, she would have to evaluate a very large

number of task postings to identify suitable tasks to participate in. Because a solver has to complete a

task in a reasonably short amount of time (from a few hours to a few days at most, given the duration a

typical task is open), it is usually not worthwhile for the solver to spend a substantial amount of time

and effort in trying to identify tasks to participate in. Platforms list open tasks in order of some pre-

determined dimension, along with some alternative orderings that a solver can deploy. A common

dimension is the posting time for a task, with the most recently posted task appearing on top. Other

typical dimensions include the amount of prize money and the time left before a task will close. While

such options provide a solver some flexibility in examining the descriptions of open tasks, it is

nevertheless very difficult, if not impossible, for a solver to identify and examine in detail all the tasks

she could be potentially interested in. Consequently, solvers search only a limited number of tasks

before deciding which one(s) to participate in, often examining only those tasks that appear on the first

couple of pages of the task listings (Chilton et al. 2010).

This type of search behavior has potentially serious implications for all parties involved in

crowdsourcing contests. First, solvers typically end up participating in tasks for which they are not as

well suited as other harder to find tasks (Ambati et al. 2011). This reduces the chance of the solver

winning such a contest. Further, it can also lead to seekers receiving solutions of poorer quality

compared to a situation where solvers are able to find the tasks that they are more likely to win. A

seeker may not even receive the minimum number of submissions that makes the exercise worthwhile

– platforms usually have to refund the prize money to a seeker in such circumstances (e.g., Zhubajie

and DesignCrowd). If seekers are not satisfied with the outcome, they may leave the platform; as a

result, the platform could lose revenues not only for current tasks but could also lose future business

opportunities.

Recognizing these concerns, some platforms have started providing recommendations to solvers

in order to reduce their search costs. The recommendations are usually provided whenever a solver

visits the site. These approaches (e.g., in Zhubajie and Freelancer) are typically based on

recommendation systems deployed for e-commerce sites. In some cases, the tasks recommended to a

solver are those that have requirements that best match the skills of the solver (which are usually

explicitly provided by the solvers when they first register at the site). In other cases, tasks

recommended to a solver are those that are most similar (based on some platform determined metric)

to closed tasks that the solver had participated in. Emergent research on recommendation systems for

crowdsourcing environments address micro-task platforms (and not contest platforms). They also

propose content-based or collaborative approaches. For example, Ambati et al. (2011) develop a

system based on task descriptions and solvers’ skill sets. Yuen et al. (2012) use a Probabilistic Matrix

Factorization (PMF) approach to develop a preference-based task recommendation framework.

However, an important and interesting distinction between crowdsourcing micro-task platforms

and crowdsourcing contest platforms is that the former are non-competitive environments while the

latter involve competitions among many solvers and there is only one winner in each contest. In

crowdsourcing contests, solvers are usually most interested in participating in tasks that maximize

their chances of winning (Lakhani et al. 2007, Brabham 2010). A solver’s chances of winning are

greatly influenced by the other solvers who are participating in the same task. Traditional

recommendation systems (whether for e-commerce or micro-task platforms) do not capture the

competitive environments of crowdsourcing contests.

In this research, we develop a system to recommend tasks that a solver is most likely to win given

the current set of participants in the various open tasks in a crowdsourcing platform. The central

component of such a recommender system is a methodology to determine the probability of a focal

solver winning a task if she participates in it. This probability is determined by considering the

solver’s characteristics known to the platform (self-reported skill sets, task history, past performance,

etc.) as well as the known characteristics of the competitors participating in the task. A multinomial

logit model is developed to determine the winning probabilities for each solver participating in a task.

For a focal solver, once the winning probabilities are determined for each task, a desired number of

tasks (e.g., top-k tasks) can be recommended by comparing these probabilities. We validate the

probability model using data from a real crowdsourcing contest platform 99designs.

When recommending open tasks to a solver, a platform will not know the full competition when

the tasks close; instead the platform will have to make the recommendations based on whatever is the

competition for each open task at the time the recommendation has to be made. An interesting

question is whether the existing competitions for different open tasks that are at the same stage in their

overall timelines are representative of the eventual competition that the target solver will face at the

time the task closes. We conduct experiments to examine this issue by ranking pairs of such tasks for

different target solvers. Our experiments show that the rankings are remarkably consistent over time.

Thus, even though the probability that the target solver will win a task changes over time as more

participants join in, the likelihood of winning one task relative to another one is not very different

when the task closes.

We describe next the problem in detail, and develop a model to predict the probability that a

solver would win an open task with a given set of competitors. We then describe how we validate our

approach using data from the 99designs. We conclude by discussing the potential contributions of our

work.
1

2 RECOMMENDATION SYSTEMS FOR A CROWDSOURCING

CONTEST PLATFORM

2.1 Problem Description

The context we model here is one where a platform wishes to provide recommendations to a solver

when the solver visits the platform’s website (referred to as the site). We assume that the solver has

already registered on the site and provided information as required by the platform. This information

typically includes, along with personal identifying information, the skill sets of the solver. For

example, a solver interested in designing logos may list formal training in graphic design (additional

details of such information for a specific platform are described later). We refer to such a solver as the

target solver. When the target solver logs on to the site, the platform could provide, along with the

default ordering of open tasks, the tasks recommended for the target solver based on the predicted

probability of her winning those tasks. In order to estimate the target solver’s probability of winning a

given open task, the platform needs to consider not only the target solver’s skills and past participation

history, but also the skill sets and participation histories of other competitors who are participating in

the contest. The current participants define the competition structure for the task. We note that for ease

of exposition we discuss how to order recommendations based on the target solver’s probability of

winning a task. Our model naturally and easily extends to where tasks are recommended based on

their expected payoffs (product of prize money and winning probability) to the solver.

2.2 Determining a Target Solver’s Probability of Winning an Open Task

The main component of the proposed recommendation system is a module to estimate the target

solver’s probability of winning an open task. As discussed earlier, we expect this probability to depend

primarily on the characteristics of the target solver and of the other solvers who comprise the

competition structure. Therefore, determining the winning probability for the target solver can be

viewed as a prediction problem, given the characteristics (attribute values) of all the participants.

 Several models have been proposed in the literature to predict probabilities of outcomes based on

attributes relevant to the problem domains of interest (Boulier & Stekler 2003, Clarke & Dyte 2000).

For example, for binary classification types of task, some widely used models include, among others,

logit, probit, decision trees, naïve Bayes, and support vector machines. In our problem, there are many

solvers for a given task, and only one person is eventually chosen as a winner. To predict the

probability of an event happening within multiple classes (or solvers, in our context), we also consider

a multinomial logit model. This model has been widely used in multi-class prediction problems, such

as cancer prediction (Zhou et al. 2006) and winner prediction in horse racing competitions (Bolton and

Chapman 1986).

We determine the probability of the target solver winning an open task i as follows. We denote the

number of solvers (including the target solver) in the task by Mi, and index the solvers using j (j =

1,…, Mi). Xij denotes the attribute values of solver j participating in task i. We denote the performance

of solver j in task i by Vij. We then model the performance of solver j in task i to be a function of the

attribute values Xij as follows (Terwiesch and Xu 2008, Yang et al. 2011):

1 While there exists a growing body of work on crowdsourcing contests, we did not include a complete literature review

section for space considerations. Extant literature deals with issues such as mechanism design for tournaments and contests

(Dahan and Mendelson 2001, Moldovanu and Sela 2001, Terwiesch and Xu 2008), motivations and incentives for solvers’

participation and effort levels (Brabham 2010, Boudreau et al. 2011), and solvers task selection patterns (Yang et al. 2008).

The findings of these researches are tangential to our work.

𝑉𝑖𝑗 = 𝛼𝑋𝑖𝑗 + 𝜀𝑖𝑗 . (1)

Here, Xij is a vector of weights that correspond to the importance of each attribute in a solver’s

performance, and 𝜀𝑖𝑗 corresponds to an error term which captures the impact of unobserved factors

(e.g., the solver’s effort level, the solver’s ability to anticipate the seeker’s taste, etc.) that impact the

performance of a solver. The intuition behind this model is analogous to that of choice models, with

the eventual performance depending on a collection of deterministic and random components.

In order for solver j to win task i, her performance should be the best among all the participants.

Therefore, the winning probability for solver j in task i, Pij, is given by

𝑃𝑖𝑗 = 𝑃(𝑉𝑖𝑗 > 𝑉𝑖𝑘, 𝑘≠𝑗, 𝑘 = 1,… ,𝑀𝑖) . (2)

To obtain the probability Pij, we need the distribution function for the error term in equation 1. We

assume that the error term 𝜀𝑖𝑗 follows a Type 1 extreme value distribution (Greene 2011) for

tractability. This results in the following closed-form expression for Pij:

𝑃𝑖𝑗 =
𝑒𝑥𝑝(𝛼𝑋𝑖𝑗)

∑ 𝑒𝑥𝑝(𝛼𝑋𝑖𝑘)
𝑀𝑖
𝑘=1

 . (3)

The above model can be operationalized as follows. First, we need to identify the set of attributes

that are observable by the platform and that can be expected to impact a solver’s performance for a

given task. Then, we need to estimate the values of the parameters that best reflect the impact the

attributes have on solver performances. Analogous to traditional multinomial models, maximum

likelihood techniques can be used to estimate these parameters given historical data on task

participants and task outcomes. Once these parameters are obtained, the target solver’s probability of

winning an open task can be determined using Equation 3.

When an open task finishes, it will be

included in the historical data set, and the parameter will be reestimated. Therefore, all the solvers’

last time’s submissioins will be considered for subsequent task performences.

The proposed approach is computationally quite efficient. The probabilities can be easily

computed if the parameters have been obtained beforehand (which would normally be the case). If the

maximum number of open tasks at any point in time is n, and the maximum number of solvers for an

open task is M, the worst case computational complexity of the recommendation system will be

O(nM). Given the values likely to be observed for n (in the thousands) and M (in the hundreds), a

platform can determine in real-time the tasks to recommend to the target solver when she logs on to

the site, while accounting for all the competitors who are participating in each of the open tasks.

3 MODEL VALIDATION

3.1 Data Collection and Description

We have validated the model using data collected from 99designs, which claims to be the largest

online marketplace for graphic design in the world. Given the large number of open tasks, solvers will

find it difficult even to browse through all of them, let alone evaluate each task effectively for

participation. 99designs has eight categories of tasks – (i) logo & identity, (ii) website & app, (iii)

business & advertising, (iv) clothing & merchandise, (v) art & illustration, (vi) packing & label, (vii)

book & magazine, and (viii) other. We have chosen to work with the logo & identity category, as it is

the most popular category in the platform, with approximately 60% of the open tasks coming from this

category (99designs.com). Most tasks in this category are posted by firms looking to design logos for

official use – on business cards, business stationary, or webpages. The logo & identity category is

further divided into five subcategories: logo design, logo & business card, business card, stationery

and business identity pack.

We have collected data using a crawler written in Perl. The data collection started from the task

listing page, which provides information on all the open tasks and some of the recently closed

(completed) tasks. The crawler collected data on all the completed tasks that were listed on the site on

a specific day. It then went to the task landing page for each task in the listing page and collected all

the information available there. This included, for each task, information such as task title, task

number, and task prize amount. This also included task descriptions, firm (seeker) industry, logo style,

color requirements, as well as target customers of the firm. The crawler then visited the corresponding

solution page to collect information on all the solutions. This included the list of solvers who have

submitted entries, the sequence in which entries were submitted, and the winner as determined by the

seeker. Finally, the crawler collected all the available information for each participating solver for the

selected tasks. This included both solver reported information as well as platform generated

information on the solver.

Our final data set consists of 1917 tasks and about 13,000 solvers. On average, there are 37 solvers

for each task, while the average prize money is about $367. We have divided the dataset into two

equal parts for analysis, with the first half of the tasks being used for training and the second half

reserved for testing.

3.2 Attributes Influencing Winning Probability

In order to build the model, we need to identify factors which can potentially influence a solver’s

performance and her winning probability. Performance has been investigated in many research areas,

such as economics, organizational behavior, and psychology. First, past performance has been

observed to be a good predictor of future performance (McGonigle and Curnow 2006). Further, we

expect that a solver with expertise specific to the domain of interest would have a better chance of

winning a task than otherwise (Ericsson 2006). Prior research also suggests that an individual’s

performance is limited by the extent of her expertise (Terwiesch and Xu 2008). We identify as many

variables along these dimensions as we can in the context of crowdsourcing platforms based on what

we observed from the 99designs website.

The platform has developed two capability measures (based on a solver’s capability demonstrated

in prior tasks) that it lists on the solver landing pages – points and capability level. The crawler has

collected this data, and they are included as potentially important attributes for inclusion in our model.

In addition, three other solver-specific attributes are also provided by the site – the number of times

the solver has won across all categories, the number of times the solver was shortlisted across all

categories, and the number of categories in which the solver considers herself an expert (the site

provides the number of sub-categories, from which we identify the number of categories). These

solver-specific variables are shown in Table 1.

X1 : points X4 : # of times shortlisted (across all categories)

X2 : capability level X5: # of categories with reported expertise

X3 : # of wins (across all categories)

Table 1. Site Provided Solver Specific Attributes

Because the platform does not disclose how these measures are determined, we have decided to

create a set of additional measures (attributes) based on the task participation data that we have

collected for each solver. These attributes complement those already provided by the site. The

attributes are specific to a solver at the time a specific task is available for participation. For example,

a solver who has participated in tasks T25, T200 and T603 in our dataset while winning task T200 will

have the values of number of prior wins (variable X7) set to 0, 0, and 1, respectively for each of these

tasks. This is because the solver has not won any task when she decides to participate in tasks T25 and

T200, while she has won one task when she opts to participate in task T603.
2
 Table 2 lists all the

additional attributes we derived from our training data. Note that the values of all these attributes are

calculated as of the time the solver participates in the current task (within the training data).
3

X6: success rate X16: average number of solutions per participated

task

X7: number of solver’s prior wins in the

industry of the current task

X17: fraction of solver’s prior participations in the

subcategory of the current task

X8: fraction of solver’s prior wins in the

industry of the current task

X18: number of solver’s prior participations in the

industry of the current task

X9: number of solver’s prior wins in the

subcategory of the current task

X19: fraction of solver’s prior participations in the

industry of the current task

X10: number of distinct industries with wins X20: number of distinct industries participated in

X11: fraction of solver’s prior wins in the

subcategory of the current task

X21: number of solver’s prior participations in the

subcategory of the current task

X12: number of distinct subcategories with

wins

X22: average listed prize per participated task

X13: number of tasks already participated in X23: number of distinct subcategories participated

in

X14: aggregate number of solutions submitted

by solver

X24: 1 if solver reports expertise in

 current task category; 0 if not

X15: average number of competing solvers per

participated task

X25: 1 if solver reports expertise in

 current task subcategory; 0 if not

Table 2. Additional Attributes Considered at the Solver-Task Levels

3.3 Winning Prediction Evaluation

As discussed in Section 2.2, many data mining models can be used to predict the winning probability.

We first adopt Naïve Bayes and Bayesian Network to make classifications, because these two methods

can provide probability estimates when making classifications. We also apply a Multinomial Logit

Model (MNL) which can capture competition explicitly. The models are trained on the training data

set, and the associated parameters estimated. We use these models to predict the winning probability

for each solver in each test task. The solvers in each test task are then ranked according to the

predicted winning probability, and the solver with the highest predicted winning probability is

projected as the winner of the task. A prediction is considered correct if the projected winner of a task

is the true winner, and the proportion of the number of correct predictions among all the tasks in the

test set is the accuracy of the model involved.

So far, we have focused on predicting a single winner for each task. Predicting the specific winner

correctly with well over thirty solvers on average is difficult in general. For instance, there may be

multiple strong solvers who are competing in the same task. For our model to make a correct

prediction for such a task, it has to precisely predict the performance of one of these strong solvers to

be superior to all the others. From this point of view, measuring accuracy based on predicting only one

2 We note that while task specific attributes such as prize amount are common across all participants and will not

impact solvers’ winning probabilities given the competition structure, other attributes such as task industries and

subcategories will lead to differential attribute-values across the participants and can influence solvers’ winning

probabilities differently (e.g., X7).
3
 We note here that even for new solvers, some variables, such as X5, X24, and X25, are still applicable, and

these variables have values. When variables are not applicable to new solvers, we fill them with 0.

winner may be a very stringent requirement. Therefore, we consider another way to measure the

qualities of the models. This approach is more nuanced than measuring accuracy based on the

prediction of a single winner. For example, a model is considered wrong any time the predicted winner

is not the actual winner. However, if the model predicts the actual winner to have the second highest

winning probability for a task, while for another task, it predicts the actual winner to have the lowest

winning probability, the prediction quality is quite different for these two tasks. This aspect of

performance is not captured if we consider accuracy based on predicting only a single winner.

Therefore, in addition to predicting a single winner, we rank solvers based on winning probability

and predict the top n solvers. When one of the top n predicted solvers is the actual winner, we consider

the prediction to be a success. We have considered in our experiments values of two to five for n. The

results for the three models with various values for n are presented in Table 1.

*, **, ***refer to improvements at the 0.1, 0.05, and the 0.01 significance levels, respectively.
The first significance level is for the performance of MNL relative to Naive Bayes, while the second is relative

to Bayesian Network.

Table 3. Accuracies of the three models

When predicting only one winner, the accuracy of MNL is significantly better than that of both

Naive Bayes (at a 0.01 significance level) and Bayesian Network (at a 0.1 significance level). When

we relax n from one to three, the accuracy of MNL increases from 12.84% to 30.48%, while it

increases further to 44.57% when n is five. That is, the winner will be predicted to be within top 5

almost half the time. While all these models can be used to predict the winning probability, MNL

predicts winners more accurately as it considers competition structure – something the other two

models do not do. These experiments suggest that MNL should be preferred to predict a solver’s

winning probability, at least in our context.

We also compared the prediction accuarcy of MNL with two other methods. The first approach

randomly selects a solver as the winner, while the second predicts the solver with the highest

capability points as the winner. The first provides a measure of how useful a good recommender

system can be, while the second uses the variable the platform considers to be a good predictor of

solver capability. Results are presented in Table 4.

*, **, ***refer to improvements at the 0.1, 0.05, and the 0.01 significance levels, respectively.

 n=1 n=2 n=3 n=4 n=5

Naive Bayes
90 160 231 283 351

9.39% 16.70% 24.11% 29.54% 36.64%

Bayesian Network
106 176 256 313 360

11.06% 18.37% 26.72% 32.67% 37.58%

MNL
123***,* 214***,*** 292***,*** 372***,*** 427***,***

12.84% 22.34% 30.48% 38.83% 44.57%

 n=1 n=2 n=3 n=4 n=5

Random Selection
35 83 118 161 196

3.65% 8.66% 12.32% 16.81% 20.46%

Points
68*** 144*** 216*** 292*** 342***

7.10% 15.03% 22.55% 30.48% 35.70%

MNL
123***,*** 214***,*** 292***,*** 372***,*** 427***,***

12.84% 22.34% 30.48% 38.83% 44.57%

The first significance level is for the performance of MNL relative to Random Selection, while the second is

relative to the model that uses Points.

Table 4. Accuracy Comparisons of MNL with Random Selection and Point-based Prediction

In the random selection method, a randomly chosen solver is projected as the winner. In the model

based on Points, the solvers in a task are ranked by points, and the solver with the highest points

projected as the winner. The platform has developed the Points measure to capture solvers’

capabilities. Therefore, this should predict the winner effectively if the platform has constructed this

measure well. Table 4 shows that Points measure does improve on random selection significantly for

all five values of n. However, MNL improves on the Points based model significantly as well, with the

improvements in the accuracy of predictions for all the five values of n being significant at the 0.01

level. When n=1, the accuracy is increased by 5.74%. When n is relaxed to 4 or 5, the accuracy

increases by over 8%.

In sum, we find that MNL performs sgnificantly better as it captures competition structures

explicitly. We should point out that we have collected data that capture roughly two weeks of activity

on the site, and using just this limited amount of data, we have been able to demonstrate the value of

using additional attributes for prediction. A crowdsourcing platform would naturally be able to do a

better job of fine-tuning the predictive model given the data available to it.

3.4 Ranking Tasks with Incomplete Information

Our previous analysis demonstrates that a crowdsourcing site can make reasonable predictions of the

probability of a solver winning a contest based on the competition structure. In order to make

recommendations to a target solver, the platform would need to estimate her winning probability for

all the open tasks, and then recommend a pre-determined number of tasks based on these probabilities

(e.g., rank the tasks based either on expected winning probability or expected payoffs). Naturally,

tasks that have been posted recently have fewer participants than tasks that are about to close, and

therefore at a given point in time the winning probabilities for newly posted tasks would usually be

higher than that for the other tasks. To make the comparisons more meaningful, our system could

provide recommendations to a solver segregated by different timelines; for instance, the system can

recommend tasks for each closing date separately, with the recommendations for each closing date

sorted by the predicted winning probabilities.

When recommending open tasks to a solver, the platform will not know the final competition

structures of the tasks; instead the platform will have to make the recommendations based on whatever

is the competition structure for each open task at the time the recommendation has to be made. An

important consideration then is the reliability of the task rankings for a solver when tasks have

received only a fraction of the eventual set of solutions. An assumption one could make is that the

existing competition structures for different open tasks that are at the same stage in their overall

timelines are representative of the eventual competition that the target solver will face at the time the

task is closed. In that case, even though the probability that the target solver will win a task changes

over time as more participants join in, the likelihood of winning one task relative to another one may

not be very different when the task closes, i.e., the rank order of the winning probabilities for different

open tasks at a similar stage of completion may not change very much over time.

 To examine if this assumption is reasonable, we conduct the following experiment. We consider

tasks which are at the same level of completion. For example, we consider the competition structures

for tasks when they have received only the first 25% of all their eventual solutions. We then compare

how two tasks would be ranked for a target solver if only their current sets of competitors were

considered, relative to the ranking that would be obtained if their final competition structures were

known. If the ranks are consistent across the two approaches, then it would indicate that it is

reasonable to make recommendations using tasks with partial (incomplete) competition structures. We

repeat this for all feasible task pairs for each solver for three partial competition structures:

specifically, when the first 25%, 50%, and 75% of the whole competition structures are known. We

find that based on the first 25% of the competition, 89.32% of the task pairs are ranked consistently.

The consistencies in rankings increase to 93.56% and 96.47% when 50% and 75% of the competition

are known, respectively. This suggests that the proposed approach is able to identify tasks to

recommend to a solver reasonably well even with incomplete information regarding the final

competition structure.

4 CONTRIBUTIONS OF OUR WORK

This research contributes to two domains of considerable interest to information systems researchers

currently, crowdsourcing contests and recommendation systems. The research proposes a

methodology to design a system that can recommend tasks to solvers who wish to participate in

crowdsourcing contests. A unique aspect of this environment is that it involves competition among

solvers. The proposed approach explicitly models the competition that solvers would face in each open

task. The approach makes recommendations based on the probability of the solver winning an open

task. A multinomial logit model has been developed to estimate these winning probabilities. We have

validated our approach using data from a real crowdsourcing platform. We first identified a potential

set of attributes that could be used to predict a solver’s probability of winning a task. We then used

part of the contests for which data were collected to train three alternative models. The trained models

were tested on the remaining tasks and found to perform quite well (especially given the difficulty of

picking a winner among many participants). The relative ranking of tasks for a target solver was

shown to be quite reliable even when only 25% of the eventual solvers had submitted their solutions to

open tasks.

Our proposed approach has important implications for crowdsourcing contest platforms. First, by

helping solvers find winnable tasks, it would enable them to devote more effort on solving the tasks. It

will also help seekers by recognizing if a posted task has not received many solutions (which would

make it more winnable than other tasks), recommending that task to other solvers. This will reduce the

chance that a task does not receive the minimum acceptable number of solutions. This will directly

benefit the platform as well in terms of potential revenues from such tasks – for instance, we have

observed in 99designs that seekers have not picked a winner in more than 10% of the posted tasks. In

addition, the benefits to the solvers and the seekers would have positive long-term benefits to the

health of the platform.

The proposed approach has been developed to make recommendations whenever an existing

solver visits the platform (i.e., in a push mode). However, the probability model we have developed is

very flexible and can also be used in a pull mode by a solver – for instance, a solver can shortlist a set

of tasks based on her own private preferences, and then ask the platform to rank these tasks based on

her winning probability. Such a feature can be very valuable to a solver; even if a solver were able to

identify tasks that match her skill set, she would still find it very difficult to evaluate by herself her

chances of winning each of those tasks given the potentially large number of different solvers

participating in each of those tasks. The proposed system can be used in conjunction with traditional

recommendation approaches (e.g., skill-based) as well; the different approaches can be viewed as

complementary to each other. Furthermore, the proposed system can also easily incorporate many

other factors when making recommendations. We can take time pressure to finish the task into

considerationg. For example, for tasks to be finished in one day, the system displays tasks by winnable

probability.

A potential area of future research is to examine how often such recommendations are adopted by

solvers, and the changed competitive structures that ensue. It would be interesting to see if the changed

competition structures affect the underlying models – although our methodology will still apply, a

platform may need to revise the model by re-training it with data collected from the new competition

environment.

References

Ambati, V., Vogel, S. and Carbonell, J.(2011). Towards task recommendation in micro-task markets.

In Proceedings of the 25th AAAI Workshop in Human Computation, San Francisco, CA.

Boulier, B.L. and Stekler, H.O. (2003). Predicting the outcomes of national football league games.

International Journal of Forecasting, 19(2), 257–270.

Bolton, R.N. and Chapman, R.G. (1986). Searching for positive returns at the track: A multinomial

logit model for handicapping horse races. Management Science, 32(8), 1040-1060.

Boudreau, K. J., Lacetera, N. and Lakhani, K. R. (2011). Incentives and problem uncertainty in

innovation contests: An empirical analysis. Management Science, 57(5), 843-863.

Brabham, D.C. (2010). Moving the crowd at threadless: Motivation for participation in a

crowdsourcing application. Information, Communication & Society, 13(8), 1122-1145.

Chilton, L. B., Horton, J. J., Miller, R. C. and Azenkot, S. (2010). Task search in a human computation

market. In Proceedings of the ACM SIGKDD Workshop on Human Computation, p.1-9, New

York, NY,

Clarke, S.R. and Dyte, D. (2000). Using official ratings to simulate major tennis tournaments.

International Transactions in Operational Research, 7(6), 585-594.

Dahan, E. and Mendelson, H. (2001). An extreme-value model of concept testing. Management

Science, 47(1), 252-276.

Ericsson, K.A. (2006). The influence of experience and deliberate practice on the development of

superior expert performance. The Cambridge Handbook of Expertise and Expert Performance.

Cambridge University Press, Cambridge, United Kingdom.

Gartner. (2013). Gartner reveals top predictions for it organizations and users for 2014 and beyond.

http://www.gartner.com/newsroom/id/2603215

Greene, W.N. (2011). Econometric Analysis (Seventh Edition), Prentice Hall.

Lacy, S. (2011). Accel invests $35m. in 99designs…after years of trying. Techcrunch.

http://techcrunch.com/2011/04/28/accel-invests-35m-in-99designs-after-years-of-trying/

Lacy, S. (2012). http://pando.com/2012/01/24/get-over-it-haters-99designs-has-tipped/

Lakhani, K.R., Jeppesen, L.B., Lohse, P.A. and Panetta, J. A. (2007). The value of openness in

scientific problem solving. Harvard Business School Working Paper.

Moldovanu, B. and Sela, A. (2001). The optimal allocation of prizes in contests. American Economic

Review,91 (3), 542-558.

McGonigle, T.P. and Curnow, C.K. (2006). Measures of training and experience. Applied

Measurement Methods: Industrial Psychology in Human Resources Management. 1
st

Edition. Psychology Press.

Terwiesch, C. and Xu, Y. (2008). Innovation contests, open innovation, and multiagent problem

solving. Management Science, 54(9),1529-1543.

Yang, J., Adamic, L.A. and Ackerman, M.S. (2008). Crowdsourcing and knowledge sharing: strategic

user behavior on taskcn. In Proceedings of the 9th ACM Conference on Electronic Commerce, p.

246-255, New York, NY, July.

Yang, Y., Chen, P. and Banker, R. (2011). Winner determination of open innovation contests in online

markets. In Proceedings of the International Conference on Information Systems, p.16, Shanghai,

China.

Yuen, M., King, I. and Leung, K. (2011). Task matching in crowdsourcing. IEEE International

Conferences on Internet of Things, and Cyber, Physical and Social Computing, p. 409-412, Dalian,

China.

Zhou, X.,Wang X. and Dougherty, E.R. (2006). Multi-class cancer classification using multinomial

probit regression with bayesian gene selection. Systems Biology, 153(2), 70-80.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2015

	Making Task Recommendations in Crowdsourcing Contests
	Jiahui Mo
	Sumit Sarkar
	Syam Menon
	Recommended Citation

	

