
Association for Information Systems
AIS Electronic Library (AISeL)

PACIS 2015 Proceedings Pacific Asia Conference on Information Systems
(PACIS)

2015

An Evaluation of Open Source Unit Testing Tools
Suitable for Data Warehouse Testing
Robert Krawatzeck
Chemnitz University of Technology, robert.krawatzeck@wirtschaft.tu-chemnitz.de

Anja Tetzner
Chemnitz University of Technology, anja.tetzner@wirtschaft.tu-chemnitz.de

Barbara Dinter
Chemnitz University of Technology, barbara.dinter@wirtschaft.tu-chemnitz.de

Follow this and additional works at: http://aisel.aisnet.org/pacis2015

This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been
accepted for inclusion in PACIS 2015 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please
contact elibrary@aisnet.org.

Recommended Citation
Krawatzeck, Robert; Tetzner, Anja; and Dinter, Barbara, "An Evaluation of Open Source Unit Testing Tools Suitable for Data
Warehouse Testing" (2015). PACIS 2015 Proceedings. 22.
http://aisel.aisnet.org/pacis2015/22

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301365229?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fpacis2015%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2015?utm_source=aisel.aisnet.org%2Fpacis2015%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2015%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2015%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2015?utm_source=aisel.aisnet.org%2Fpacis2015%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2015/22?utm_source=aisel.aisnet.org%2Fpacis2015%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

AN EVALUATION OF OPEN SOURCE UNIT TESTING TOOLS

SUITABLE FOR DATA WAREHOUSE TESTING

Robert Krawatzeck, Chair of Business Information Systems I, Chemnitz University of Tech-

nology, Germany, robert.krawatzeck@wirtschaft.tu-chemnitz.de

Anja Tetzner, Chair of Business Information Systems II, Chemnitz University of Technology,

Germany, anja.tetzner@wirtschaft.tu-chemnitz.de

Barbara Dinter, Chair of Business Information Systems I, Chemnitz University of Technology,

Germany, barbara.dinter@wirtschaft.tu-chemnitz.de

Abstract

Verification and validation are two important processes in the software system lifecycle. Despite the

importance of these processes, a recent survey has shown that testing of data warehouse systems is

currently neglected. The survey participants named besides others modest budget and the lack of ap-

propriate tools as potential reasons for this circumstance. In order to verify these reasons, the paper

at hand presents an evaluation of unit testing tools suitable for data warehouse testing. To address the

modest budget problem, the range of evaluation candidates is limited to no charge, open source solu-

tions, namely AnyDbTest, BI.Quality, DbFit, DbUnit, NDbUnit, SQLUnit, TSQLUnit, and utPLSQL.

The evaluation follows the IEEE 14102-2010 guidelines for evaluation and selection of computer-

aided software engineering tools in order to guarantee benefits from a practioners’ as well as scien-

tific point of view. It results in a detailed overview of how the testing tools meet criteria such as differ-

ent testing functionalities. At least one tool, namely DbFit, can be identified as a promising candidate

with regard to the requirements.

Keywords: Data Warehouse, Testing, Unit Testing, Automated Testing, Regression Testing, Tools,

Frameworks, Evaluation, Open Source, IEEE 14102-2010.

1 INTRODUCTION

A data warehouse (DWH) is according to the well-known definition by Inmon (1996) a subject-oriented,
integrated, time-variant, nonvolatile collection of data in support of management’s decision-making
process. Hence, a DWH is an information system which refers to special kind of database representing
a “single point of truth” for organizational decisions. This purpose implies especially challenges with
regard to the correctness of the presented information, since inaccurate information may lead to far-
reaching consequences for an organization. On the one hand they might result in substantial financial
losses (Manjunath et al. 2011), on the other side the trust of users in the DWH or in other information
systems using the DWH as an information source might decrease due to such misinformation (Haertzen
2012). In addition, the correctness of DWHs is challenged by a rapidly changing environment and in-
creasing competitive pressure which forces organizations to adapt their DWH in an agile and flexible
manner (Wang et al. 2009). These adaptions may lead to defects such as an inconsistent database
schema. In order to detect such defects, the correctness of DWH systems should be verified and validated
after adaptations.

The verification and validation of the correctness of software systems are explicit processes within the
software system lifecycle (ISO, IEC, IEEE 2008). The software verification process tests the correct
implementation of the specified systems requirements of the whole system or system parts (ISO, IEC,
IEEE 2008), and the software validation process tests the correct implementation of the specific intended
use of the whole system or parts of it (ISO, IEC, IEEE 2008). The combination of both processes is
often also referred to as ‘software testing’. In addition to the distinction of what is tested (requirements
vs. intended use), software testing can be further differentiated by the level of detail of the test target
(Abran et al. 2004): Unit testing or component testing focuses on the system independent verification
and validation of single software components, integration testing focuses on the correct functional in-
teraction of those components, and system testing aims at the verification and validation of the whole
software system. Tests of each testing level can be performed manually or automated by means of the
application of testing tools. In contrast to manual testing, automated software testing leads to higher
effectiveness and, thus, to higher acceptance of continuously performed test execution (Dustin et al.
2009; Marcozzi et al. 2012). Therefore, the use of testing tools enables the efficient and continuous
testing of the correctness of a system after changes, the so called regression testing (Abran et al. 2004).

Although software testing is part of the software system lifecycle, an online survey among 870 business
intelligence professionals from German-speaking countries conducted in 2013 has shown that data ware-
house testing is currently neglected (Krawatzeck 2013) (n = 55, response rate = 6.3%). Only 54% of the
respondents said that they are currently testing their DWH in any manner. As the biggest challenge the
survey identified the automation of the DWH testing process. The respondents named besides others the
modest budget and the lack of appropriate tools for DWH testing as potential reasons for the omission
of DWH testing in general or automated DWH testing in particular. Besides the aforementioned chal-
lenges regarding the correctness of the presented information within a DWH, the negligence of DWH
testing is particularly surprising, since many DWHs have failed in the past – surveys exhibit failure rates
of more than 50% (Schutte et al. 2011).

We performed a short review in order to verify the lack of appropriate tools and could identify contri-
butions with collections of unit testing tools suitable for DWH testing (Meszaros 2007; Crispin & Greg-
ory 2008; Collier 2011; Krawatzeck 2013). However, detailed evaluations of these tools are missing
and, thus, no advice for selecting an appropriate tool is provided. The paper at hands aims at filling this
gap by presenting the results of such an evaluation. To address the mentioned modest budget problem,
candidates for evaluation have been limited to no charge, open source (OS) solutions.

Our evaluation contributes to the field of DWH testing in at least two ways. First, it shows that some
promising OS DWH unit testing frameworks exist. Second, it can serve as a starting point and therefore
reduces costs in terms of time and money for organizations planning to evaluate and select DWH testing
tools (IEEE 2010). In addition, although the term ‘unit testing tools’ is misleading, those tools can also

be used to support and automate the integration and system testing levels. Hence, the presented work
contributes to all DWH testing levels.

The remainder of the paper is organized as follows: After a short discussion on related work (Section 2)
we explain the methodology we will use for the evaluation and selection of OS DWH unit testing tools
(Section 3). Afterwards the detailed evaluation is presented in Section 4. Concluding, the findings are
summarized and an outlook to further research is given (Section 5).

2 RELATED WORK

Within scientific literature only a few contributions address DWH testing (Golfarelli & Rizzi 2011a).
Previous work mainly focuses on which test activities should be conducted (Golfarelli & Rizzi 2011a;
Golfarelli & Rizzi 2011b) or which testing approach is the most suitable one for DWH testing (ElGamal
et al. 2012; Gupta et al. 2012; ElGamal et al. 2013). Except for (Krawatzeck 2013), none of these papers
provides any information about specific tools suitable for DWH testing.

Literature regarding the design and development of DWHs addresses the topic of testing (Inmon 1996;
Kimball et al. 1998; Moss & Atre 2003), but again, does not provide any information about adequate
tools. Only Meszaros (2007), Crispin and Gregory (2008), and Collier (2011) list some tools suitable
for database or DWH testing, respectively. However, such lists only contain information about the tool
names and download locations. Hence, no underpinned statement about the appropriateness of the tools
can be made.

3 RESEARCH METHODOLOGY

Unit testing tools provide the functionality to specify and automatically execute software unit tests.
Regardless whether classic or agile software development methodologies are used, testing is an im-
portant part of the software development lifecycle (ISO, IEC, IEEE 2008). Thus, unit testing tools assist
software engineers within the software life-cycle process ‘verification’ and ‘validation’ and therefore
belong to the class of Computer-Aided Software Engineering (CASE) tools (IEEE 2010).

The evaluation and selection process of CASE tools is well-investigated (e.g. Du Plessis 1993; Le Blanc
& Korn 1994; ISO, IEC 2008; IEEE 2010). Since (IEEE 2010) is standardized and is based on the
software product evaluation model as defined in (ISO, IEC 2008) and provides consistency in the eval-
uation and selection processes, we follow the methodology suggested by IEEE (2010) within the paper
at hand.

IEEE (2010) splits the evaluation and selection of CASE tools into four major processes: (P1) prepara-
tion process, (P2) structuring process, (P3) evaluation process, and (P4) selection process. Not all of the
four suggested major processes and related activities have to be passed (IEEE 2010). The evaluation and
selection goal determines the selection of relevant processes and activities (IEEE 2010). Since our goal
is a detailed overview of DWH unit testing tools, the final selection process (P4) is not needed and, in
fact, not feasible. A unit testing tool should fit into the IT environment of an organization. Since we
leave such organization specific parameters aside to provide a broad overview independently of a spe-
cific organization, a selection recommendation would be misleading. However, we perform the first
three major processes and the results can serve as a starting point for evaluations conducted later by
different organizations.

Within the preparation process (P1) the following activities should be performed: goal setting, estab-
lishing of selection criteria, and project planning and control. Since our project plan is not of general
interest, it is not included in the paper at hand. The definition of requirements, the gathering of tool
information, and the identification of final evaluation candidates are part of the structuring process (P2).
The actual evaluation (P3) cuts down into preparation, application, and reporting.

Figure 1 summarizes the evaluation process including the intermediate results. Additionally, it includes
the assignment of the processes and activities to the related paper sections to provide a fast overview.

Figure 1. Evaluation and Selection Process of CASE Tools (IEEE 2010)

4 EVALUATION OF OPEN SOURCE DWH UNIT TESTING
TOOLS

In the following the three major processes ‘preparation’, ‘structuring’ and ‘evaluation’ of the IEEE
14102-2010 guidelines for evaluation and selection of CASE tools are described in detail including all
activities and intermediate results.

4.1 Preparation Process

The preparation process consists of the two activities ‘goal setting’ and ‘establishing selection criteria’
which are presented in the following subsections.

4.1.1 Goal Setting

Following the instructions given by IEEE (2010), we answer the questions ‘Why a DWH unit testing
tool should be used?’ and ‘Of what type should it be?’ to obtain the high level goals of the evaluation.
The answer to the first question sets our first high level goal (G1): Automate the verification and vali-
dation process of the DWH system lifecycle to ensure high software quality. The answer of the second
question includes two high level goals. First, the unit testing tool should not charge the budget for DWH
development and maintenance (G2). Second, the usage of the testing tool should not cause any security
issues, since DWHs contain sensitive data as explained above (G3).

Table 2 summarizes the high level goals.

ID Goal

G1 Automate the verification and validation process of the DWH system lifecycle to ensure high software
quality

G2 Free of charge

G3 Meet security policies

Table 2. High Level Goals

4.1.2 Establishing Selection Criteria

We deduce the selection criteria from the high level goals. To meet Goal 1 we try to find a tool which
is able to specify test cases through the definition of so-called test scripts (S1) and which is able to
execute the test cases automatically (S2). In addition, it has to be suitable for DWH testing and therefore
supports the testing of all necessary DWH test objects (S3). To meet Goal 2 the tool should be open
source (S4). To avoid security issues (Goal 3), the tool should either not require database credentials at
all or provide the possibility to encode them (S5).

Table 3 gives an overview about the selection criteria and describes the selection criterion S3 in more
detail.

4.2 Structuring Process

The structuring process consists of the activities ‘requirements definition’, ‘CASE tool information gath-
ering’, and ‘evaluation candidates identification’. Since we do not want to exclude any promising DWH
unit testing tools a priori from our evaluation, our information gathering activity directly results in the
list of evaluation candidates. Hence, the description of these two activities is merged and presented in
Section 4.2.2.

ID Selection Criteria

S1 Specify test cases

S2 Automatically execute test cases

S3 Suitable for DWH testing, i.e. it is possible to test the correctness of:
 the data within the DWH,
 the database schema,
 stored procedures, and
 views.

S4 Open source

S5 Security

Table 3. Selection Criteria

4.2.1 Requirements Definition

IEEE (2010) provides product characteristics which should be taken into account when evaluating and
selecting CASE tools. These characteristics are divided into different characteristic groups related to
(A) life-cycle process functionalities, (B) CASE tool usage functionalities, (C) general quality, and
(D) general characteristics not related to quality. Each characteristic group is further differentiated in
several sub-characteristics (IEEE 2010).

We select the following sub-characteristics (cf. Table 4) and structure them with regard to the five se-
lection criteria (S1–S5). Since not all of the by IEEE (2010) suggested sub-characteristics are clearly
defined for unit testing tools, Table 4 also contains the specific questions which we assess in our specific
case.

Sub-Characteristic Definition by IEEE (2010) // Assessment questions

Requirements Class C1: Sub-characteristics related to the CASE tool use (IEEE 2010) (S1)

Hardware and
Software
Environment of
Tool Products

Attributes related to the set of hardware and software items on which or with which
products the tool can be used.
Question: Which software is necessary to define and execute test cases?

Languages
Supported

Attributes related to its ability to support specific languages.
Divided into the following questions:
Question1 (Source Code): In which programming language is the tool written?
Question2 (Test Case Definition): Which (programming) language is used to define the

test cases?

Databases
Supported

Attributes relating to its ability to support specific databases.
Question: Which specific DBMSs and/or generic database driver are supported?

Requirements Class C2: Sub-characteristics related to the construction activity (IEEE 2010) (S1)

Report Generation Attributes related to its ability to automate the development of reports to be produced by
the system under development (as opposed to the CASE tool).
Question: Is it possible to automatically generate reports about implemented test suites

and test cases?

Requirements Class C3: Sub-characteristics related to the validation process (IEEE 2010) (S1 & S2)

Test Case and
Expected Result
Entry

Attributes related to its ability to support user entry of test cases and entry of expected
test case results.

Test Case and
Expected Result
Generation

Attributes related to its ability to automatically generate test cases based upon existing
requirements and/or design specification data available to the tool and to automatically
generate expected test case results.

Test Traceability Attributes related to traceability of test activities and data.

Sub-Characteristic Definition by IEEE (2010) // Assessment questions

Test Driving Attributes related to its ability to execute and/or replay test cases.

Run-time Analysis Attributes related to its ability to analyze the performance of a program as it executes.

Regression Testing Attributes related to its ability to support regression testing.

Automatic Result
checking

Attributes related to its ability to automatically compare expected test case results and
actual test case results.

Requirements Class C4: Sub-characteristics related to the DWH testing suitability (S3)

Test Object ‘Data’ Question: Is it possible to test the correctness of the data contained within the DWH?

Test Object
‘Database schema’

Question: Is it possible to test the correctness of the database schema of the DWH?

Test Object ‘Stored
procedures’

Question: Is it possible to test the correctness of the stored procedures within the DWH?

Test Object ‘Views’ Question: Is it possible to test the correctness of the views within the DWH?

Requirements Class C5: Sub-characteristics related to the acquisition process (IEEE 2010) (S4)

Cost of Tool
Implementation

Attributes related to the cost of implementing the tool.
Question: What is the purchase price of the tool?

Licensing Policies Attributes related to the supplier’s licensing policies.
Question: Under which specific OS license is the tool published?

Requirements Class C6: The criterion ‘Security’ from general quality characteristics (IEEE 2010) (S5)

Security Attributes related to its ability to prevent unauthorized use or misuse of itself.
Question: Is it unnecessary to provide database credentials or is it at least possible to

encode them?

Table 4. Structured Requirements

For an additional comprehensive set of potential evaluation criteria for software testing tool evaluation,
i.e. suitable for an organization tailored evaluation, we refer to (Illes et al. 2005).

4.2.2 DWH Unit Testing Tool Information Gathering and Selection of Evaluation Candidates

Starting from the lists of possible DWH unit testing tools identified in Section 2 (Meszaros 2007; Crispin
& Gregory 2008; Collier 2011; Krawatzeck 2013), we first merge the lists and afterwards select the OS
solutions. Resulting in: AnyDbTest (n.d.), BI.Quality (ORAYLIS n.d.), DbFit (n.d.), DbUnit (n.d.),
NDbUnit, (n.d.), SQLUnit (n.d.), TSQLUnit (n.d.), and utPLSQL (n.d.).

The candidates can be classified into ‘external third party tools’ which have to be integrated in an addi-
tional integrated development environment (IDE), ‘external standalone third party tools’ and ‘in-data-
base tools’ which have to be installed on the corresponding database management system (DBMS).

Table 5 summarizes the evaluation candidates in alphabetical order.

Tool Name Tool Version URL Class

AnyDbTest 2.4.5 http://anydbtest.codeplex.com/ standalone

BI.Quality 2.0.1 http://biquality.codeplex.com/ external (IDE)

DbFit 2.0.0 http://benilovj.github.io/dbfit/ standalone

DbUnit 2.4.9 http://www.dbunit.org/ external (IDE)

NDbUnit 1.6.7.0 http://code.google.com/p/ndbunit/ external (IDE)

SQLUnit 1.5 http://sqlunit.sourceforge.net/ standalone

TSQLUnit 0.91 http://sourceforge.net/apps/trac/tsqlunit in-database

utPLSQL 2.2 http://utplsql.sourceforge.net/ in-database

Table 5. List of Candidates

4.3 Evaluation Process

The evaluation process cuts down into the preparation activity and the actual evaluation resulting in the
final evaluation report as described below.

4.3.1 Preparing for Evaluation

In order to provide an adequate starting point for subsequent tailored evaluations performed by organi-
zations, we chose mainly Boolean metrics for each sub-characteristic, i.e. a characteristic is fulfilled to
its full extent or not. In some cases, where a strict Boolean decision is not possible, we additionally use
the third value ‘partly support’. In doing so, we give organizations the opportunity to decide on their
own, to which extend these characteristics have to be supported. Hence, we do not exclude possibly
valuable tools.

For the assessment of each characteristic mainly the tools websites and documentations are used (cf.
Table 5). Hence, our evaluation plan consists of the three steps: (1) checking the tool website, (2) ob-
taining tool documentation, and finally (3) assessment for each of the eight evaluation candidates.

4.3.2 Evaluation DWH Unit Testing Tools and Evaluation Report

The results of the evaluation are presented within Table 6. It is noticeable that the evaluated tools exhibit
similar assessments regarding the requirements addressing the validation process itself (requirements
class C3). All tools allow the manual specification of test cases but no tool provides functions for auto-
mated test case generation from test case or system specifications. On the contrary, test results are
checked automatically by all tools.

The requirement class C1 shows that not all tools are applicable in all IT environments. The possible
range depends on either which DBMS is supported by the tool or if the tool is vendor or language
independent, respectively. Language-specific tools like in-database tools allow the definition of test
cases in the same SQL syntax as the objects they test, e.g. TSQLUnit tests are written in TSQL and
utPSQL tests are defined using PLSQL. Other tools like DbUnit and NDbUnit use well-known program-
ming languages such as Java and .NET for test case definition. However, most testing tools specify test
cases through the Extensible Markup Language (XML). DbFit represents a notable exception. DbFit test
cases are defined using a wiki-like syntax. By doing so, the communication between developers and end
users should improve which leads to a better testing acceptance and in conclusion to a system under test
with fewer defects (DbFit n.d.).

The generation of reports containing the test results (class C2) is only partly supported by DbFit, SQLU-
nit, and TSQLUnit.

All tools allow the testing of the correctness of data stored within a DWH (class C4). All other DWH
test objects can only be tested indirectly. Again as a notable exception, only DbFit fully supports the
testing of the database schemata by providing special functions for this purpose. All other tools can
fulfill this job only indirectly via tweaked SQL statements, i.e. try to insert a data record with a missing
or additional attribute into a table to verify the tables’ structure. No tool provides native support for
database view testing.

Furthermore, it is remarkable that only three tools, namely DbFit, TSQLUnit and utPLSQL fulfill the
security criterion (class C6). TSQLUnit and utPLSQL are in-database tools and hence are installed
within the database under test and therefore need no additional credentials. DbFit – as an external stand-
alone tool – is the only tool evaluated which allows the encoding of necessary database credentials.

C1 Hardware and
Software Environment

Text-Editor MS Visual
Studio

Java Java & IDE
like Eclipse

MS Visual
Studio

Text-Editor Database
under test

Database
under test

Languages Supported
(Source Code)

C# C# Java / .NET
Code

Java Code .NET Code Java Code TSQL Code PLSQL Code

Languages Supported
(Test Case Definition)

XML XML Wiki-Syntax Java .NET XML TSQL PLSQL

Databases Supported MS SQL
Server

 MySQL
 Oracle

Database
 ProstgreSQL

 MS SQL
Server

 OLEDB-
supported
databases

 DB2
 Derby
 HSQLDB
 MS SQL

Server
 MySQL
 Oracle

Database
 PostgreSQL

 DB2
 Derby
 FrontBase
 H2
 HSQLDB
 Informix
 InterBase
 MS SQL

Server
 MySQL
 Oracle

Database
 OpenBase
 PostgreSQL
 SAP MaxDB
 Sybase

 MS SQL
Server

 MySQL
 Oracle

Database
 SQLite
 OLEDB-

supported
databases

 DB2
 HSQLDB
 Informix
 MS SQL

Server
 MySQL
 Oracle

Database
 PostgreSQL
 Sybase
 databases

with a JDBC-
driver

 MS SQL
Server

 Oracle
Database

 Sub-Characteristics AnyDbTest BI.Quality DbFit DbUnit NDbUnit SQLUnit TSQLUnit utPLSQL

C2 Report Generation

C3 Test Case and
Expected Result Entry

Test Case and
Expected Result
Generation

Test Traceability

Test Driving

Run-time Analysis

Regression Testing

Automatic Result
Checking

C4 Test Object ‘Data’

Test Object ‘Database
schema’

Test Object ‘Stored
procedures’

Test Object ‘Views’

C5 Cost of Tool Imple-
mentation

0,- 0,- 0,- 0,- 0,- 0,- 0,- 0,-

Licensing Policies Microsoft
Public

License

Microsoft
Public

License

GNU GPL GNU Lesser
GPL

Apache
License

GNU GPL GNU Lesser
GPL

GNU GPL

C6 Security

Table 6. Evaluation Report (= supported; = partly supported; = not supported)

 Sub-Characteristics AnyDbTest BI.Quality DbFit DbUnit NDbUnit SQLUnit TSQLUnit utPLSQL

To provide a fast overview, the evaluation results are additionally visualized as radar charts covering all
Boolean sub-characteristics (the requirements class C1 and the licensing policies as part of class C5 are
excluded). For better comprehensibility, the results are visualized within three separate radar charts,
each covering one of the tool classes as presented in Table 5: standalone tools (cf. Figure 7), external
tools which need an IDE (cf. Figure 8), and in-database tools (cf. Figure 9).

Figure 7. Evaluation Report – Tool Class ‘Standalone’

Figure 8. Evaluation Report – Tool Class ‘External (IDE)’

0

0,5

1

C2: Report Generation
C3: Test Case & Expected

Result Entry

C3: Test Case & Expected
Result Generation

C3: Test Traceability

C3: Test Driving

C3: Run-time Analysis

C3: Regression Testing

C3: Automatic Result
Checking

C4: Test Object ‘Data’

C4: Test Object ‘Database
Schema’

C4: Test Object ‘Stored
Procedures’

C4: Test Object ‘Views’

C5: Cost of Tool
Implementation

C6: Security

AnyDbTest DbFit SQLUnit

0

0,5

1

C2: Report Generation
C3: Test Case & Expected

Result Entry

C3: Test Case & Expected
Result Generation

C3: Test Traceability

C3: Test Driving

C3: Run-time Analysis

C3: Regression Testing

C3: Automatic Result
Checking

C4: Test Object ‘Data’

C4: Test Object ‘Database
Schema’

C4: Test Object ‘Stored
Procedures’

C4: Test Object ‘Views’

C5: Cost of Tool
Implementation

C6: Security

BI.Quality DbUnit NDbUnit

Figure 9. Evaluation Report – Tool Class ‘In-database’

5 CONCLUSION AND FURTHER WORK

In the paper at hand we have motivated the importance of DWH testing and identified a gap between
scientific approaches for this purpose and the actual implementation within real world scenarios. Fur-
ther, we have performed an evaluation of OS DWH unit testing tools to address this issue. It has been
shown, that some promising tools suitable for DWH testing exist, whereby only DbFit, TSQLUnit and
utPLSQL fulfill the security requirement (no need to provide database credentials or the possibility to
encode them). Since DbFit is the only DBMS vendor independent tool among these, it seems to be the
most promising one. The presented results can be used as a starting point by organizations which plan
to evaluate and finally select a DWH unit testing tool.

Within the support of management’s decision-making processes further applications besides a DWH are
involved. Analogously to DWHs these applications are subject to adaptions. Hence, additional evalua-
tions of testing tools suitable for such application domains, like reporting, online analytical processing
(OLAP), or information presentation (dashboards), should be conducted. In addition, our evaluation
revealed that none of the assessed tools provides functions for automated test case generation from test
case or system specifications. Since automated test case generation has the potential to further reduce
costs in terms of time and money for DWH testing, further work should evaluate if such tools exist and
may suggest or develop an appropriate solution, respectively.

References
Abran, A., Moore, J. W., Bourque, P., Dupuis, R. and Tripp, L. L. (Eds.) (2004). Guide to the Software

Engineering Body of Knowledge (SWEBOK). IEEE, Los Alamitos.
AnyDbTest (n.d.). http://anydbtest.codeplex.com/.
Collier, K.W. (2011). Agile Analytics: A Value-Driven Approach to Business Intelligence and Data

Warehousing. Addison-Wesley, Upper Saddle River.
Crispin, L. and Gregory, J. (2008). Agile Testing: A Practical Guide for Testers and Agile Teams. Ad-

dison-Wesley, Upper Saddle River.

0

1

C2: Report Generation
C3: Test Case & Expected

Result Entry

C3: Test Case & Expected
Result Generation

C3: Test Traceability

C3: Test Driving

C3: Run-time Analysis

C3: Regression Testing

C3: Automatic Result
Checking

C4: Test Object ‘Data’

C4: Test Object ‘Database
Schema’

C4: Test Object ‘Stored
Procedures’

C4: Test Object ‘Views’

C5: Cost of Tool
Implementation

C6: Security

TSQLUnit utPLSQL

DbFit (n.d.). http://benilovj.github.io/dbfit/.
DbUnit (n.d.). http://www.dbunit.org/.
Du Plessis, A. (1993). A method for CASE toll evaluation. Information & Management, 25(2), 93–102.
Dustin, E., Garrett, T. and Gauf, B. (2009). Implementing Automated Software Testing: How to Save

Time and Lower Costs While Raising Quality. Addison-Wesley, Upper Saddle River.
ElGamal, N., Bastawissy, A. El and Galal-Edeen, G. (2012). Towards a Data Warehouse Testing Frame-

work. In: Proceedings of the 9th International Conference on ICT and Knowledge Engineering, pp.
65–71, ICT-KE’2011, Bangkok, Thailand.

ElGamal, N., ElBastawissy, A. and Galal-Edeen, G. (2013). Data Warehouse Testing. In: Proceedings
of the Joint EDBT/ICDT Workshops 2013, pp. 1–8, EDBT/ICDT’2013, Genoa, Italy.

Golfarelli, M. and Rizzi, S. (2011a). Data Warehouse Testing: A Prototype-based Methodology. Infor-
mation and Software Technology, 53(11), 1183–1198.

Golfarelli, M. and Rizzi, S. (2011b). Data Warehouse Testing. International Journal of Data Warehous-
ing and Mining, 7(2), 26–43.

Gupta, S. L., Pahwa, P. and Mathur, S. (2012). Classification of Data Warehouse Testing Approaches.
International Journal of Computers & Technology, 3(3), 381–386.

Haertzen, D. (2012). The Analytical Puzzle: Profitable Data Warehousing, Business Intelligence and
Analytics. Technics Publications, Westfield.

IEEE (2010). Information Technology – Guideline for the Evaluation and Selection of CASE Tools
(IEEE Std 14102-2010). IEEE, New York.

Illes, T., Herrmann, A., Paech, B. and Rückert, J. (2005). Criteria for Software Testing Tool Evaluation
– A Task Oriented View. In: Proceedings of the 3rd World Congress for Software Quality, Vol. 2.,
pp. 213–222, 3WCSQ, Munich, Germany.

Inmon, W.H. (1996). Building the Data Warehouse. 2nd Edition. Wiley, New York.
ISO, IEC (2008). Information technology – Software Product Evaluation (ISO/IEC 14595-5:1998).

ISO/IEC, Geneva.
ISO, IEC, IEEE (2008). Systems and Software Engineering – Software Life Cycle Processes (ISO/IEC

12207:2008). ISO/IEC-IEEE, Geneva.
Kimball, R., Reeves, L., Ross, M. and Thornthwaite, W. (1998). The Data Warehouse Lifecycle Toolkit

– Expert Methods for Designing, Developing, and Deploying Data Warehouses. Wiley, New York.
Krawatzeck, R (2013). Pilotstudie: Praktiken und Herausforderungen beim Testen von BI-Systemen.

BI-Spektrum, 8(3), 10–14.
Le Blanc, L. and Korn, W. (1994). A phase approach to the evaluation and selection of CASE tools.

Information and Software Technology, 36(5), 267–273.
Manjunath, T., Hegadi, R. and Ravikumar, G. (2011). Analysis of Data Quality Aspects in Data Ware-

house Systems. International Journal of Computer Science and Information Technologies, 2(1), 477–
485.

Marcozzi, M., Vanhoof, W. and Hainaut, J.-L. (2012). Test input generation for database programs using
relational constraints. In: Proceedings of the Fifth International Workshop on Testing Database Sys-
tems, Article No. 6, DBTest’2012, Scottsdale, USA.

Meszaros, G. (2007). xUnit Test Patterns: Refactoring Test Code. Addison-Wesley, Upper Saddle River.
Moss, L.T. and Atre, S. (2003). Business Intelligence Roadmap – The Complete Project Lifecycle for

Decision-Support Applications. Addison-Wesley, Boston.
NDbUnit (n.d.). http://www.code.google.com/p/ndbunit.
ORAYLIS (n.d.). BI.Quality, http://biquality.codeplex.com/documentation.
Schutte, S., Ariyachandra, T. and Frolick, M. (2011). Test-Driven Development of Data Warehouses.

International Journal of Business Intelligence Research, 2(3), 64–73.
SQLUnit (n.d.). http://sqlunit.sourceforge.net/.
TSQLUnit (n.d.). http://sourceforge.net/apps/trac/tsqlunit/.
utPLSQL (n.d.). http://utplsql.sourceforge.net/.
Wang, Y., Buranawatanachoke, S., Colle, R., Dias, K., Galanis, L., Papadomanolakis, S. and Shaft, U.

(2009). Real application testing with database replay. In: Proceedings of the Second International
Workshop on Testing Database Systems, Article No. 8, DBTest’2009, Providence, USA.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2015

	An Evaluation of Open Source Unit Testing Tools Suitable for Data Warehouse Testing
	Robert Krawatzeck
	Anja Tetzner
	Barbara Dinter
	Recommended Citation

	An Evaluation of Open Source Unit Testing Tools Suitable for Data Warehouse Testing

