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Introduction 

Software maintenance is an expensive problem for organizations. On a life cycle basis, more than three 
fourths of the investment in software occurs after the software has been implemented (Arthur, 1988). Thus, 
there is considerable interest in improving performance in software maintenance. However, software 
maintenance is an organizational activity that is notoriously difficult to perform and manage effectively 
(Swanson and Beath, 1989). In particular, it is difficult to plan for maintenance and to manage maintenance 
requests. In part, this is because managers have very little a priori knowledge about the demand for 
maintenance work and about the ease with which the work can be accomplished.  

If managers could forecast the demand for changes to a system, they could plan and allocate workforce, do 
more effective change management, and estimate the need for re-engineering or replacement of systems 
(Martin and McClure, 1983). For example, the need for re-engineering could be signaled by large amounts 
of corrective maintenance. The need for replacement could be signaled by unusually large numbers of 
changes as well as growing user dissatisfaction, and increasing maintenance effort. Such indicators are 
consistent with theories of systems entropy (Checkland, 1981; Weinberg, 1975; Boulding, 1956) and 
economic models of software replacement (Gode, Barua and Mukhopadhyay, 1990) that predict the point at 
which it is more costly to update than to re-write the software. However, signals in the form of past patterns 
of maintenance are not normally made available to managers due to the effort required to accumulate, 
report and analyze detailed change data.  

In this study, we examine changes to software over time. Although the lifetime of installed software can 
extend across decades, many studies of software maintenance have been cross-sectional in nature due to 
difficulties in collecting longitudinal data (Kemerer, 1995). With this study, we intend to open the "black 
box" of software maintenance and gain an understanding of how software evolves. We investigate the 
following questions:  

• what are the antecedents of software change  
• are there certain subsets of systems that change most frequently, and if so, why  
• do changes to software follow "predictable" patterns over time  
• can the point of software entropy or replacement be predicted based upon the number and type of 

changes  
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Methodology 

To examine these questions, we have collected historical data on the types of changes made to an 
information systems portfolio in a commercial organization. The data have been extracted from change 
"histories" that were logged by programmers for each software module in the portfolio. The change 
histories were kept for 23 different COBOL business systems, including approximately 4,000 software 
modules, and beginning in the early 1970's (when many of the systems were originally written) until 1993. 
The kind of data available in the histories includes the original software module creation date and author, 
the function of the software module, the person making the change, the date of the change, and a 
description of the change. We have also collected data relating to the size, complexity, and development 
characteristics of the software modules to assess whether these factors are associated with the likelihood of 
change. 

To identify the number and patterns of changes to the systems, we employ a content analytic approach 
(Krippendorff, 1980). We have developed a coding scheme that relies on the standard industry 
categorization for software maintenance activities (ANSI/IEEE, 1983). The coding scheme is applied to the 
change histories to count the number of changes made to software modules on a monthly basis and to 
classify the changes according to the standard maintenance categories of corrective, perfective and adaptive 
work. We have also allowed for finer distinctions within the three main categories. For example, we sub-
classify adaptive work into data related and logic related changes. 

Because the coding of change histories for thousands of modules is a non-trivial effort, we have selected 
several systems with rich change histories for our exploratory analysis. Two coders have been given the 
change history coding scheme and its description. To assess coding reliability, several modules have been 
randomly sampled from the systems selected for the exploratory analysis. The change histories from these 
modules were used by the coders to achieve sufficient inter-coder reliability regarding the categories of 
maintenance work. Initially, the coders independently coded a random sample of two modules each. After 
the independent coding, the Cohen coefficient of agreement for nominal scales (Cohen, 1960) was 
computed to assess the relative agreement between the coders. Differences in coding were resolved, and the 
coders independently coded two additional modules. After another round of independent coding, agreement 
between the coders was 100 per cent with regards to maintenance categories. Subsequently, the change 
histories for software systems in the pilot analysis were divided between the coders, and were coded 
independently. 

We analyze the antecedents of software change using correlation and regression analysis. The number and 
pattern of changes over time for each system will be analyzed graphically and using ARIMA 
(autoregressive integrated moving average) models. ARIMA models are flexible and are widely used in 
time series analysis to identify systematic patterns in data (Box, Jenkins, and Reinsel, 1994). The particular 
form of the ARIMA model for each system will be initially selected based upon the autocorrelation and 
partial autocorrelation functions, and coefficients of the model will be estimated using maximum-likelihood 
procedures. Model specification will be checked in multiple ways. Residuals will be examined to ensure 
that the autocorrelation and partial autocorrelation functions are not significantly different from zero, and 
the Box-Ljung Q statistic (Ljung and Box, 1978) will be calculated to ensure that the residuals are without 
pattern. The Akaike information criteria statistic (Akaike, 1974) and the Schwarz Bayesian criterion 
statistic (Schwarz, 1978) will be calculated to assess goodness of fit for the model. If necessary, alternative 
forms of the ARIMA models will be estimated and assessed in a similar manner. 

Preliminary Results 

We have finished the coding for several systems and are in the process of analysis. Our data indicate that 
software modules that have received corrective maintenance once are highly likely to be repaired 
repeatedly over their entire lifetimes. Only a small percent (about 10-20% of the modules in the systems) 
received corrective work, but those modules were continually repaired. This has an interesting implication 
for software management: it may be more cost effective to identify and re-write error-prone software 



modules as soon as possible, because it is likely that these modules will require constant and expensive 
repairs over their lifetimes.  

Another pattern that we have discerned relates to the amount of modification. Most software modules in the 
applications we studied were modified less than twice over their lifetimes. However, a small number of 
modules were frequently modified. We are examining data on function, size, complexity, and development 
characteristics to analyze why some modules receive frequent modification. Such a pattern is consistent 
with the systems concept of stress localization whereby systems have relatively independent subsystems. 
This allows changes to be localized and minimized by confining them to parts of the system, rather than 
having global effects on the system. We are creating "stress" diagrams for each system that can be used to 
identify the "hot spots" in the application. Such an analysis could be useful to managers who wish to 
identify areas of applications that are most likely to change. 

We are in the process of applying ARIMA models to our data. ARIMA analysis will help us to determine 
whether there are systematic patterns in the series of software changes such that a mathematical model can 
be built to explain the past behavior of the series and forecast its future behavior.  

Implications and Contributions 

Our study has the potential to make important and interesting contributions relating to the management of 
software maintenance. Results will indicate how software evolves over time, and whether that evolution is 
consistent with theories of systems entropy and with mathematical models of time series. From a 
managerial perspective, information on software change histories can be used by software managers to 
more effectively plan for software maintenance. Knowledge of change history patterns can be used to 
improve change request management, to plan workloads for software maintainers, and to make decisions 
regarding software re-engineering and replacement.  
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