Association for Information Systems AIS Electronic Library (AISeL)

AMCIS 1996 Proceedings

Americas Conference on Information Systems (AMCIS)

8-16-1996

Allocation of IT resources: Insights from DEA Analysis

Arun Rai Department of Management, College of Business and Administration, Southern Illinois University, arunrai@siu.edu

Nainika Patnaykuni Department of Management, College of Business and Administration, Southern Illinois University, naina@siu.edu

Ravi Patnayakuni Department of Management, College of Business and Administration, Southern Illinois University, ravip@siu.edu

Follow this and additional works at: http://aisel.aisnet.org/amcis1996

Recommended Citation

Rai, Arun; Patnaykuni, Nainika; and Patnayakuni, Ravi, "Allocation of IT resources: Insights from DEA Analysis" (1996). AMCIS 1996 Proceedings. 59. http://aisel.aisnet.org/amcis1996/59

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted for inclusion in AMCIS 1996 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

Allocation of IT resources: Insights from DEA Analysis

<u>Arun Rai</u> (arunrai@siu.edu) <u>Nainika Patnayakuni</u> (naina@siu.edu) <u>Ravi Patnayakuni</u> (ravip@siu.edu) Department of Management College of Business and Administration Southern Illinois University Carbondale IL 62901 Phone: 618-453-3307 Fax: 618-453-7835

Introduction

The question of how IT creates value has been the subject of an ongoing debate ever since economists pointed out the productivity paradox at the end of the last decade. Firms were spending more and more on IT with little evidence of it=s impact on output statistics. Empirical studies undertaken in the area have yielded mixed results (Mooney, Gurbaxani and Kraemer, 1995). We apply Data Envelopment Analysis (DEA) to recent data so as to develop a better understanding of the differences between efficient and inefficient firms in their allocation of IT resources.

The DEA technique compares the efficiency of decision-making units (DMUs), hereafter referred to as firms. DEA converts multiple input and output measures to single measures of relative efficiency (Charnes et. al. 1978). It can be used to compare the relative efficiency of firms. Each firm is compared to an efficient frontier and a measure of relative efficiency is determined. Organizational firms in their utilization of IT inputs. Mahamood (1994) used DEA to identify and compare efficient and inefficient firms on eight IT investment inputs and ten firm strategic and economic performance ratios based on 1988 data. Banker and Slaughter(1995) used DEA to compare the most productive scale size for a set of maintenance projects. This paper uses DEA analysis to incorporate the increasing emphasis in IT-business value research on intermediate performance (Barua et. al. 1995). We compare efficient and inefficient firms based on multiple facets of performance and IT inputs and IT resource allocation such as expenditure on client server technologies and outsourcing. We use data collected by *Information Week* in 1994.

We focus our analysis only on manufacturing firms so as to maintain sample homogeneity. Data for each firm was obtained from two sources. The Compustat database was used to obtain firm performance data. Measures of performance considered include productivity (administrative, labor, and working capital), sales (sales, market share), and profitability (operating income before depreciation). *Information Week* was the source for number of IS employees, IS budgets, and expenditures on hardware, software, telecommunications, and IS staff. In addition to these input variables, the amount spent on client-server technologies and outsourcing were also obtained from *Information Week*. Table 1 summarizes the variables considered. There was some sample attrition due to missing values, giving us a final sample sample of 57 firms.

Results

Table 2 shows the results of the analysis. Due to space limitations, we present only the classification of firms as either efficient and inefficient by industry. 27 firms were classified as relatively efficient, while the other 30 were classified as inefficient. As can be seen, electrical and food processing industries have a greater proportion of efficient firms while the opposite is true for minerals, metals and manufacturing.

Variable Name	Definition as reported	Source	

IT Budget			ting budget of IS department control of the IS	Information Week		
Hardware Expenditure				Computed		
Software Expenditure	Percentage of IT budget devoted to each category			from	ĪΠ	
IS Staff Expenditure		of expe	Information	ĪΠ		
Telecom Expenditure				Week data	ĪΠ	
Other Comparison Variables	(% IT budget * IT	ĪΠ				
Outsourcing	Percentage of	f IT budget de	voted to outsourcing	Budget)	ĪΠ	
Client-Server	Percentage of	f IT budget de	voted to client-server		ĪΠ	
IS Budget as a Percentage of Revenue		f revenue devo er the control o	ted to IS budget that is f IS	Information Week		
Output Measures				·	$\exists \Box$	
Sales Based					$\bar{]}\bar{[}$	
Market Share			ercentage of aggregate sales e major SIC code.	Computed		
Sales	Total Sales			Compustat		
Profitability-based				·		
OIBDP	Operating in	come before de	epreciation	Compustat	$\exists \Box$	
Productivity Ratios				·	$\exists \Box$	
Working Capital Productivity	Sales/ (Acco Payable)	unt receivable-	Computed			
Labor Productivity	Sales / Total	Employees	Computed			
Table 2: Distribution of I	Firms Across I	ndustry				
Industry	Efficient		Inefficient			
Pharmaceutical	3	4				
Consumer Products	1	3				
Chemical	3	5				
Food Processing	6					
Electrical	5	1				
Manufacturing						

	3	3	
Aeronautics and Automobiles			
Actonautics and Automobiles	3	2	
Minerals, Metals and Mining	3	8	

 Administrative Productivity
 Sales / (Selling, General & Administrative Expenses-IT Budget)

Computed / Compustat

Table 3: Comparison of Efficient and Inefficient Firms (in millions)						
Variables	Efficient firms		Inefficient firms		t Test	
	Mean	SD	Mean	SD		
		Input Variables				
IS Budget	118.1	140.8	92	81.4	n.s.	
IS Employees (not in millions)	873.7	842	621	571.1	1.3*	
Hardware	25.3	36.6	18.1	14.2	n.s.	
Software	12.8	19.7	11.9	10.6	n.s.	
Staff	46.5	52.3	37.1	31.5	n.s.	
Telecom	14.6	21.8	10.1	10.5	n.s.	
Other Comparison Variables						
IS Budget as % of Revenue	1.36	1.2	2.06	1.4	-2.07 **	
Outsourcing	18.8	40.8	7.09	10.3	1.4 *	

Client-server	23.6	39.5	11.5	15.7	1.5*	
		Output Variables				
Market Share	33.1	27	15.3	14	3.1**	
Sales	7585	4632.2	4336.2	2587.7	3.22 **	
OIBDP	1181.7	1208.3	569.9	511.7	2.44**	
OIBDr	1101.7	1208.5	309.9	511.7	2.44	
Working Capital Productivity	8.9	7.4	6	3.2	1.84**	
Labor Productivity	261.6	171.3	170	68.6	2.7 **	
Administrative Productivity	16.7	25.2	9	10.8	1.46**	
Administrative Floductivity	10.7	23.2	Ŧ	10.8	1.40	

The efficient and inefficient units were compared in terms of the input variables, output variables, clientserver investments, and investments in outsourcing. Appropriate t test values were used after conducting Levene=s test for homogeneity of variances. Efficient units have higher measures for all performance variables. This difference is especially high for sales based measures. In contrast, inefficient units have fewer IS employees even though they invest more of their revenues on information technology. Interestingly, investment in client-server technologies, a technology that is receiving significant attention lately, is greater for more efficient firms. Similarly, efficient firms invest more in outsourcing, suggesting that outsourcing improves the IS units efficiency.

Discussion

DEA provides information on the input reduction and output augmentation efforts that managers of the inefficient units should examine. Further analysis of results revealed that size (mean number of employees in thousands) of efficient firms is significantly larger than for inefficient firms (39.6 and 29.2 respectively at p = .08) and the mean staff expenses per IS employee for inefficient firms is greater than for efficient firms (6.2 and 5.2 respectively at p = .06). This coupled with the fact that efficient firms spend a lower proportion of their revenue on IT indicates that a) since larger firms are more efficient than smaller firms and they have a lower IS budget as a percentage of revenue there may be some scale economies, b) though larger and more efficient firms have more IS employees their efficiency is not likely a result of spending more per IS employee, but may be a function of other factors such as outsourcing and expenditure on empowering technologies such as client-server systems. An examination of firms receiving the lowest efficiency ratings suggests that they may need to closely examine their allocation of resources between technology and people. It may well be that inefficient firms are not focusing adequately on the human resources required for systems delivery and maintenance which in turn would impact firm performance. Further there may be a need to reevaluate investments in emerging technologies and examine outsourcing options.

(References available upon request from first author)