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Despite the fact that software has become one of this countries major industries, difficulties still exist with 
delivering quality software within budget and on schedule [18]. As a result, improving software processes 
is a major focus for many organizations. Software project managers are concerned with questions such as:  

• What development phases are essential? Which phases could be skipped or significantly 
minimized in order to reduce costs without sacrificing quality?  

• Are inspections worthwhile?  
• What is the value of applying tools to support development activities? Will these tools be worth 

the cost? 
• How do we predict the benefit associated with implementing a process change before a substantial 

commitment of resources and effort is made? 

Given a number of potential process changes, how do we prioritize these changes? 

These questions are examples of the general questions addressed by our research. These are:  

• How do we compare alternative software processes?  
• What is the impact of a potential process change on process performance?  
• How do we prioritize process changes? 

To evaluate these questions, quantitative models which deal with process level issues are required. We 
review several quantitative approaches that have been used to model software development projects. 
Although these modeling approaches do support certain project management decisions, process modeling is 
shown to be superior for addressing the process focused questions posed above. We then present a dynamic 
simulation based quantitative process model that has been used to predict the impact of a process 
improvements using a benchmark software process and the results from the study.  

Alternative Modeling Approaches  

Three distinct approaches have been used to quantitatively model software development projects. They are 
Analytic Summary Models, Analytic Structural Models, and Process Models.  

Most existing quantitative models are analytic summary models (as defined in [11]) which focus on high-
level quantitative relationships between input and output parameters. These models support management 
decision making regarding issues relating to project planning and productivity such as expected manpower, 
schedule, and so forth. Some examples of models in this category are COCOMO [3] and SLIM [20] which 
are probably the most widely known models of this type. These models view the software process as a 
"black box" that is not specified in detail. As a result, these models do not capture many important details 
which are related to process changes.  

Analytic Structural Models are another class of models which have been used to capture the interrelations, 
dependencies, and structure of software development projects at a deeper, more detailed level than Analytic 
Summary Models. The best known example of this type of model is the systems dynamics model 
developed by Abdel-Hamid and Madnick [1]. This work richly captures relationships between manpower, 
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programmer productivity, and work activities completed. Segments of the model are devoted to high level 
process blocks of software development, quality assurance, and testing. However, no process details are 
included. If Analytic Summary Models consider the software process as a "black box", then Analytic 
Structural Models consider the process as "several black boxes making up a system". Other recent work 
using Analytic Structural Models which has been based on the work by Abdel-Hamid and Madnick 
includes [15] and [19]. 

Process Models [3] support process improvement by providing operational guidance regarding the critical 
sequence of process steps, information flows, and organizational responsibilities. These models are distinct 
from Analytic Summary and Analytic Structural Models because they delve into the details of the process 
used to develop software [17], [16], [2], [14], [8] and [6]. Much of this work to date has been in developing 
tools and methods for modeling software processes. However, process models can be used to quantitatively 
analyze and assess a variety of issues.  

Work conducted by Kellner shows how process models could be used to support management planning and 
control activities [12] using both deterministic and stochastic cases. The model presented in this paper 
extends Kellner's work [12], and incorporates analytic and empirical components into process models as 
well. This creates a synergistic combination which expands the range of issues that can be quantitatively 
assessed using a process modeling approach. The results obtained from this quantitative assessment can be 
used to develop a business case to obtain management support and "buy in" of a process change effort.  

Evaluation of Alternative Models 

In order to quantitatively assess the tradeoffs associated with a change in a software development process, 
models which capture process level information and details will be required. In addition, the ability to (1) 
conduct sensitivity analyses for testing different process assumptions in varied operational contexts, and (2) 
capture complex and uncertain interrelationships found in software processes, will be necessary. 

Process modeling using a stochastic simulation based approach offers the desired level of granularity to 
capture salient features of process dynamics while being able to scope up to a level that is useful for 
planning and management activities. In addition, process modeling addresses uncertainties related to task 
durations, effort, number of errors, outcomes of reviews and tests, etc., which are inherent in real world 
processes.  

Although Analytic Summary and Analytic Structural Models are valuable and provide predictive power to 
support certain management decisions, they do not capture process details. Capturing process level issues is 
the key ingredient to being able to make decisions which evaluate the effectiveness process alternatives, the 
value of particular process phases or the impact of a particular process change.  

Modeling Approach and Application 

Our approach uses dynamic simulation models of each process alternative. The approach features careful 
modeling of process steps, information flows, and organizational responsibilities. In addition, there is 
explicit modeling of complex interdependencies among process components. Using this information, the 
model predicts development costs (effort), project schedule, and quality (remaining defects) that results 
from the process being used. 

The quantitative predictions are made possible using a new technique called Task Element Decomposition 
which was developed to manage the computation of interdependent operation times in large-scale projects. 
The Task Element Decomposition technique enables a variety of product and process factors to be taken 
into account [21]. These factors can include source code size, quality, and complexity and developer skill. 
Looping and operation time dependencies with uncertainties are constructed to quantitatively measure 
important performance characteristics of the system and to support extensive sensitivity analyses. This 



enables the process model to be used to evaluate alternative processes and to assess the impact of potential 
process changes.  

Once this model is developed, realistic process scenarios can be run to test important process related 
contingencies. A multi-attribute decision making framework (employing utility functions) is then used to 
tradeoff among the three performance measures of cost, quality, and schedule in order to compare the 
overall performance of the process alternatives.  

Using this approach decisions such as: 

• Comparing process alternatives based on similar process parameters  
• Go/no-go on individual proposed changes  
• Prioritization and selection from among several proposed changes can be supported. Moreover, the 

results obtained from this quantitative assessment can be used to develop a business case to obtain 
management support and "buy in" of a process change effort.  

This approach has been applied to the benchmark ISPW-6 Software Process Example developed by Kellner 
et al. [13]. This process "was carefully designed to incorporate examples of eighteen important process 
aspects and issues" and contains "a diversity of process aspects encountered in real-world software 
processes" [5]. The example process contains, "a relatively confined portion of the software change 
process. It focuses on the designing, coding, unit testing, and management of a rather localized change to a 
software system"[12]. The main steps of the "original" process include: Schedule and Assign Tasks, 
Modify Design, Review Design, Modify Code, Modify Test Plans, Modify Unit Test Package, Test Unit, 
and Monitor Progress. The "alternative" process used for comparison contains the above steps plus steps for 
a code inspection. 

Parameters for the model were developed from sources in the literature [3, 7, 10] to test the impact of 
inserting a source code inspection process on overall process performance. Dynamic simulations of the 
process models were run using a variety of process scenarios. The questions which were investigated 
included:  

• Do source code inspections offer an improvement in process performance (using data reported in 
the literature)?  

• What would be the impact if the error detection capability of Source Code Inspections was 
reduced? 

• Would Source Code Inspections still be worth while if the lowest reported error detection 
capability in the literature was achieved?  

• If there was only time to conduct either a Source Code Inspection or a Unit Test, which method 
would be more effective?  

• Would Source Code Inspections still be beneficial if the starting source code had more errors?  

Quantitative results were provided in the form of distributions for the three process performance measures 
studied - cost (effort), quality (remaining defects), and schedule (task duration). The results of the study 
showed the following: 

• Source Code Inspections significantly increase the quality of the resulting code. 
• The Source Code Inspection process is an efficient error detection method if implemented 

correctly. 
• Inspections make even greater impact when the starting quality of the code is poor.  
• Even if poor Inspection performance is realized as compared to results reported in the literature, 

the process with Source Code Inspections and Unit Test offers an overall improvement.  
• If pressed for time, it is better to reduce Unit Testing rather than reduce Inspections.  



• It is worth implementing inspection procedures well in order to obtain the maximum return. 
Inspections are a high leverage activity. 

The results obtained compared well with results reported from actual field studies of source code 
inspections found in the literature.  

Conclusion 

A quantitative process modeling approach is being developed. Preliminary tests show the approach to be 
well suited for analyzing process level issues in software development. Using this process modeling 
approach, decisions such as: 

• Consistent comparisons of process alternatives based on similar process parameters  
• Go/no-go on individual proposed changes  
• Prioritization and selection from among several proposed changes 

can be addressed. The results obtained from this quantitative assessment can be used to develop a business 
case to obtain management support and "buy in" of a process change effort.  
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