
Association for Information Systems
AIS Electronic Library (AISeL)

Wirtschaftsinformatik Proceedings 2015 Wirtschaftsinformatik

3-5-2015

Understanding the Elusive Black Box of Artifact
Mutability
Jens Pöppelbuß

Matthias Goeken

Follow this and additional works at: http://aisel.aisnet.org/wi2015

This material is brought to you by the Wirtschaftsinformatik at AIS Electronic Library (AISeL). It has been accepted for inclusion in
Wirtschaftsinformatik Proceedings 2015 by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Pöppelbuß, Jens and Goeken, Matthias, "Understanding the Elusive Black Box of Artifact Mutability" (2015). Wirtschaftsinformatik
Proceedings 2015. 104.
http://aisel.aisnet.org/wi2015/104

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fwi2015%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2015?utm_source=aisel.aisnet.org%2Fwi2015%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi?utm_source=aisel.aisnet.org%2Fwi2015%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2015?utm_source=aisel.aisnet.org%2Fwi2015%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2015/104?utm_source=aisel.aisnet.org%2Fwi2015%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

12th International Conference on Wirtschaftsinformatik,

March 4-6 2015, Osnabrück, Germany

Understanding the Elusive Black Box of

Artifact Mutability

Jens Pöppelbuß
1
 and Matthias Goeken

2

1 University of Bremen, Bremen, Germany

jens.poeppelbuss@uni-bremen.de
2 University of Applied Sciences of Deutsche Bundesbank, Hachenburg, Germany

matthias.goeken@bundesbank.de

Abstract. Statements on artifact mutability are considered a core component of

design theories, but the understanding of this phenomenon is fragmented and

limited. To mitigate this issue, we build a framework of artifact mutability that

is structured into six generic dimensions: paradigmatic perspective, intentionali-

ty, drivers, scope, temporality, and artifact layers. We review existing design

theories in the light of these dimensions. With this paper, we show that our cur-

rent knowledge about artifact mutability is still disconnected and mostly linked

to specific artifact types. We are also able to characterize artifact mutability as a

multi-facetted topic that has found little attention in existing articles that pro-

pose design theories. From a theoretical perspective, we advance the under-

standing of this phenomenon. From a practical perspective, the framework is

expected to help tackling mutability in the design and adaptation of IT artifacts.

Keywords: Mutability, Artifact, Framework, Design Theory, Design Science.

1 Introduction

IT artifacts exhibit mutability [1] as they usually cannot be used “out of the box” ([2],

p. 48) in specific organizational contexts and evolve over time while being used. In

Information Systems (IS) research, the phenomenon of artifact mutability has re-

ceived increasing attention through the proposition of the anatomy of design theory

by Gregor and Jones in 2007 [3]. This anatomy defines artifact mutability as one of its

core components and thus explicitly urges IS researchers to make statements about

artifact mutability when developing new design theories.

However, looking at design theories published in recent research articles suggests

that the understanding of artifact mutability is still fragmented and limited. On the one

hand, design-oriented researchers have developed approaches to deal with artifact

mutability in various contexts already for a long time, especially in the fields of con-

ceptual modeling [4], method engineering [5], and software engineering [6]. These

different existing research streams have progressed independently from each other

and have rarely been connected to design theorizing yet. On the other hand, research

from a more behavioral perspective has just recently begun to investigate the role of

users in tinkering and tailoring IT artifacts in use [7–9]. Correspondingly, Gregor and

Jones emphasize that “the ways in which IT artifacts emerge and evolve over time

[…] are key unresolved issues for our field and ones that will become even more

problematic in these dynamic and innovative times.” ([3], p. 326).

As to now, artifact mutability remains a vague and elusive concept that is not well

understood [10] and needs to be defined more clearly. It currently serves as a black

box that encompasses a broad range of phenomena related to the design and use of

various artifacts. Even the term artifact alone can refer to very different things [11],

rendering the term artifact mutability even more unclear. Furthermore, it is criticized

that existing guidelines for design science research are not sufficient for devising

robust design theories that account for artifact mutability [7]. Although artifact muta-

bility is considered a core component of a design theory, there are no established

guidelines how to flesh this out. In this regard, Sjöström et al. [10] recommend that IS

researchers should combine design theorizing with existing knowledge from fields

like software engineering where many works already promote artifact mutability.

Against this backdrop, we inductively develop a framework of artifact mutability

that is grounded in existing knowledge on the mutability of four specific artifact types

including constructs, models, methods, and instantiations. We further apply this

framework in a review of articles that propose design theories. This paper contributes

to a better understanding of artifact mutability that will hopefully help researchers in

preparing the statements about this phenomenon in their design theories.

In the remainder, we discuss the background of design theory and artifact mutabil-

ity (2). After presenting our research approach (3), we gather artifact type-specific

dimensions of mutability and consolidate them into a generic framework (4). We

provide a first applicability check of this framework by using it as the analytical lens

in our literature review (5). The paper closes with a discussion and conclusions (6).

2 Theoretical Background

Since its publication in 2007, “The Anatomy of a Design Theory” by Gregor and

Jones [3] has gained much attention and can be considered as the de-facto blueprint

for design theories. A design theory “gives explicit prescriptions (e.g., methods, tech-

niques, principles of form and function) for constructing an artifact” ([12], p. 620),

based on knowledge of both IT and human behavior [3]. The anatomy defines eight

components of a design theory, including six core components (purpose and scope,

constructs, principles of form and function, artifact mutability, testable propositions,

justificatory knowledge) and two additional ones (principles of implementation and

expository instantiation). Artifact mutability is one of the core components and is

defined as the “changes in state of the artifact anticipated in the theory, that is, what

degree of artifact change is encompassed by the [design] theory.” ([3], p. 322) Includ-

ing artifact mutability into design theorizing was a novel aspect of their anatomy [3].

To better reflect the dynamic nature of artifacts, Gregor and Iivari [1] introduce the

new term semizoa. They conceptualize semizoa as “mutable systems that exhibit

some of the characteristics of living creatures and that are only in part designable.”

([1], p. 3) They further distinguish between eight different degrees of mutability that

semizoa as a design product can exhibit, from rather stable nilpotent systems to highly

mutable systems that can be easily redesigned (see p. 17 in [1] for an overview).

In existing literature, we further find different perspectives on artifact mutability. A

key distinction is that between artifact mutability as the purposeful design of adapta-

ble artifacts (in-design) and the evolution of artifacts (in-use) over time [10]. As for

the former, mutability-in-design refers to the design ideal of mutable and flexible

artifacts that are adaptable to various organizational contexts. As for the latter, muta-

bility-in-use reflects that IT artifacts are typically not immutable end results of design

processes, but inherently dynamic [1]. Here, the term secondary design can be used to

describe changes “where functions and content emerge during interaction, modifica-

tion, and embodiment of the system in use” ([8], p. 662). As such, artifact mutability

refers to the behavior of the artefact when implemented in a specific context [13].

According to Sjöström et al. [10], both mutability-in-design and mutability-in-use

can be subject to either a process or a product view. The process view focuses on how

designers design and users appropriate the artifact. The product view focuses on the

artifact as the result of these processes which exhibits, e.g., a flexible software archi-

tecture developed by the designers or features that can be configured by the users.

3 Research Approach

In this study, we follow an inductive research approach that comprises the following

phases (Fig. 1). First, we search for existing works from various fields for potential

dimensions of artifact mutability. We structure our search according to the four spe-

cific types of IT artifacts that are commonly distinguished as outputs of design sci-

ence research in the IS discipline (constructs, models, methods, and instantiations [14,

15]). By focusing on the specific artifact types we avoid the vagueness of IT artifacts

in general and bring together so far disconnected research streams. The first phase

results in a set of 19 IT artifact type-specific dimensions that provide the grounding

for the following phase. Second, we consolidate this set into an artifact type-generic

framework. We do this by collating the specific dimensions in search for similarities,

resulting in six generic dimensions. Third, we apply the consolidated framework in a

review of existing design theories. This review serves as an applicability check for the

proposed framework and also points to the merits and shortcomings of existing design

theories with regard to the core component of artifact mutability.

Identification of spe-

cific dimensions of IT

artifact mutability

19 IT artifact-specific

dimensions and

categories

Section 4.1

Development of a

framework of IT

artifact mutability

Framework with 6

generic dimensions of

mutability

Section 4.2

Application of the

framework

(Demonstration)

Section 5

Applied and checked

framework

Activity

Deliverable

Fig. 1. Research Approach

4 Developing a Framework for IT Artifact Mutability

4.1 Identifying specific dimensions of IT artifact mutability from related work

In the following, the four artifact types of constructs, models, methods, and instantia-

tions serve as a structure for our search for possible artifact type-specific dimensions

of mutability. The resulting set of dimensions is summarized in Table 1.

Construct Mutability. Constructs form the vocabulary or the set of symbols of a

domain. They build the basis for defining problems and specifying solutions [15]. In

the IS discipline, constructs are mainly designed in the form of modeling notations,

but also glossaries, taxonomies, and ontologies. The mutability of constructs can be

observed based on modeling notations evolving over time. For example, the Business

Process Model and Notation (BPMN) has gone through some evolutionary steps since

its initial publication, the latest version being 2.0 published in 2011. At the same time,

many of the constructs offered by such a semantically rich notation like BPMN are

hardly used in practice [16]. Organizations and individual users obviously adapt and

trim available modeling notations by only using a subset of constructs that appears

useful. Hence, we identify the drivers of mutability as one dimension of construct

mutability. Precisely, we distinguish between developer-driven, user-driven, and in-

termediator-driven mutability (D01 in Table 1). In the first case, a developer (this can

be individuals or institutions) of a notation effectuates a change due to deficiencies or

enhancement needs. In the second case, users modify (sets of) constructs according to

their needs or preferences. In the third case, a tool developer that implements a nota-

tion that deviates from the original specification or an instructor that teaches a model-

ing notation differently from the original specification can be intermediators that also

lead to a mutation of constructs. Furthermore, so called meta-models can be used to

give a formalization of the constructs of a modeling notation, e.g., an Entity-

Relationship-Model (ERM) that describes the elements of the Event-Driven Process

Chain (EPC) used for process modeling [4]. Accordingly, modeling notations can take

two different roles in artifact mutability, being a subject of mutability or a supporting

tool for documenting and /or achieving mutability (D02 in Table 1).

Model Mutability. Models are sets of statements expressing relationships between

constructs [15]. They are abstractions and representations that help describe as-is and

to-be states. Business process models, for instance, can be used for analyzing pitfalls

in current activities and for devising improved ways of operations. Model mutability

has been a key interest to researchers in the field of reference models. Reference

models are conceptual models that are developed with the intention of being reused

for different, but similar purposes. They provide best or common practices and thus

frequently serve as a starting point and blueprint for the creation of organization- or

project-specific models. The adaptation of reference models to specific application

contexts, e.g., in terms of business characteristics and user groups, can be supported

by configuration and adaptation mechanisms [4] (D03). Configuration mechanisms

rely on predefined configuration points that are already included in the reference

model. They reduce a total model containing information for all application contexts

by selecting only the information that is actually needed for the specific context [4].

In contrast to configuration mechanisms, adaption mechanisms do not tailor a total

model but allow for creative freedom (D04 in Table 1) in the adaptation process [4,

17]. Such mechanisms can be applied to different modeling layers [4], i.e., the model

layer, the meta model layer and the meta-meta model layer (D05). Apart from refer-

ence models, we also find discussions on model mutability in the field of model-

driven software engineering. Wenzel and Kelter, for instance, see a key challenge of

model evolution in tracing the changes that happen to model elements during the

software development process [18]. In database management, schema evolution has

also been subject of a long discussion [19]. Schema evolution refers to the problem of

evolving a database schema in response to changes in the modeled reality. Approach-

es to schema evolution have frequently been transferred to ontology evolution, which

is defined as the “timely adaptation of an ontology and a consistent propagation of

changes to the dependent artifacts.” ([20], p. 12). From the existing works we can also

derive different directions of action (D06): In a proactive manner, the model is the

blueprint for change (model change is supposed to have an impact on reality, e.g.,

people work according to a revised process model), whereas a reactive change is giv-

en if the model change follows a change in the modeled reality. Noy and Klein [19]

further distinguish between traced (where the series of changes is known) and un-

traced ontology evolution (where two versions of an ontology exist without any

knowledge about intermediate steps) (D07 in Table 1).

Method Mutability. Methods are sequences of steps used to perform a task [15].

Typical examples are algorithms, procedures, or guidelines. The field of method en-

gineering (ME) has emerged since the early 1990s with the intention to design and

adapt methods for systems development. As it is unlikely that a method designed at a

particular time will fit all future circumstances, this stream of research has been ex-

panded by ideas of situational method engineering (SME) in the last decade [5]. As

for SME, Bucher et al. [21] distinguish between situational method configuration and

situational method composition (D08). In the former case, situation-specific changes

have to be foreseen and planned when a situational method is developed. In the latter

case, spontaneous and more liberal combination of method parts or fragments (or-

chestration) happen that are not foreseen at design-time [21]. Henderson-Sellers et al.

[5] further distinguish between two ways of engineering a method: creating a method

ab initio (starting with a set of method parts), and method tailoring (modifying an

existing method). The former contains the mechanisms configuration and composition

as discussed above [5]. Furthermore, mutability can either happen on the level of

method design (i.e., the artifact described in a design theory) or on the instance of a

method (i.e., the “method in action”), used by a particular group of people [22].

Summarizing these aspects, we identify three levels of method mutability: mutability

defined at the meta-level of a method (through configurations or compositions), muta-

tion which takes place at the level of the method (especially through tailoring), and

mutation at the level of the method instance (“method in action”; D09). A further

related aspect is raised by Börner et al. [23] who describe the concept of an “emergent

method”. They consider a method as emergent if a pattern develops in the absence of

intentions or even despite them. This is contrasted with a predetermined method, i.e.,

a “settled/statutory method” (D10)

Instantiation Mutability. Instantiations are realizations of constructs, models, or

methods [15]. They are valuable for demonstrating the utility of artifacts of other

types (e.g., methods) and the general feasibility of their implementation in software.

The mutability of instantiations has been discussed in Computer Science under the

terms software product lines and software evolution. The basic idea of software prod-

uct lines (SPL) is that software can be constructed from reusable parts that allow for

variability [24]. A software product line contains a certain amount of variation points

and preplanned mechanisms allowing for (intended) mutability. The following varia-

bility dimensions are observable from the literature on SPL (D11-D15):

 Locus of variability: Bühne et al. [25] distinguish different loci, e.g., variability in

functionality (basic vs. extended functions) or variability in processes (variations in

processes due to external factors leading to the same result).

 Direction of accomplishment: Negative variability means that features are masked

or removed. Positive variability describes the selection of features [26].

 Focus of variability: While essential variability is related to the requirement of the

client, technical variability is what occurs in the process of realizing it [27].

 Phases of the SPL development process: Variability can be found in different phas-

es, including domain analysis, domain design, and domain implementation [28].

 Binding time: This dimension describes the point in time when the variability is

bound by selecting an appropriate variant [29].

In addition, research on software evolution investigates the long-term changes and

transformations of a software product throughout its life cycle. The basic assumption

is that applications cannot be implemented once and for all. Instead, new releases are

deployed resulting from maintenance activities. The following dimensions (D16-D19)

are observable from the literature on software evolution:

 Viewpoints: The descriptive viewpoint represents a “nounal view” focusing on

understanding the evolution of software. The design-oriented viewpoint takes a

“verbal view” and deals with the means to direct and control software evolution [6,

30, 31].

 Categories of maintenance: Mens [31] distinguishes between perfection mainte-

nance (modification to improve performance or maintainability), corrective

maintenance (reactive modification to correct discovered faults), adaptive mainte-

nance (modification to keep software usable in changing environments), and pre-

ventive maintenance (modification for preventing problems before they occur).

 Software type: Lehman and Ramil [6] distinguish between different software types,

including socially embedded systems (E-type programs, “E” stands for “evolving”)

and unambiguously specified systems (S-type programs, “S” stands for “speci-

fied”).

 Areas of evolution: Lehman and Ramil [6] furthermore distinguish between soft-

ware ab initio implementation (e.g., incorporation of user feedback during software

development), software system evolution (new versions, releases, and upgrades

during run-time), evolution of the application in its domain (co-evolution with the

contextual processes and domains), software process evolution (related to devel-

opment processes, methods, software paradigms, and technologies), and process

model evolution (models describing development processes are also subject of evo-

lution).

Table 1. IT Artifact-Specific Mutability Dimensions

 ID Dimension Categories

co
ns

tr
uc

ts

D01
Drivers of

mutability
Developer-driven

Intermediator-

driven mutability
User-driven

D02 Role of notation
Mutability of the

notation itself

Mutability utilizing a nota-

tion

m
o

d
el

D03 Mechanism type Configuration Adaptation

D04
Degrees of free-

dom

Low: Selecting components

from a predefined total

model

High: Creative modifica-

tions, extensions, revisions,

and tailoring

D05 Model layer Model layer Meta model layer
Meta-meta model

layer

D06
Direction of

action
Proactive and normative Reactive and descriptive

D07 Mutability trace Traced Untraced

m
et

h
o

d
 D08

Ways to engi-

neer a method

Creating a method ab initio

(configuration / composi-

tion)

Method tailoring

D09
Level of method

mutability

Meta level of

method design

Level of

method design

Instance level

of a method

D10
Origin of meth-

od
Settled/statutory method Emergent method

in
st

a
n

ti
a

ti
o
n

D11
Locus of

variability

Func-

tionali-

ty

Pro-

cesses
Quality

Data

for-

mats

User

inter-

faces

Infor-

mation
…

D12
Direction of

accomplishment
Negative variability Positive variability

D13
Focus of

variability
Essential variability Technical variability

D14
Phases of SPL

development

Variability in

domain analysis

Variability in

domain design

Variability in

domain imple-

mentation

D15
Binding time of

variability
Build time

Compile

time
Startup time Run time

D16

Viewpoints on

software evolu-

tion

Nounal view Verbal view

D17
Categories of

maintenance
Perfection Corrective Adaptive Preventive

D18 Software type
S-type programs

(non-mutable)

E-type programs

(mutable)

D19
Scope/areas of

evolution

Software ab

initio

implemen-

tation

Software

system

evolution

Evolution

of the

application

in its

domain

Software

process

evolution

Process

model

evolution

4.2 Consolidation of Dimensions into a Generic Framework

In what follows, we develop a generic framework of artifact mutability that is

grounded in the previously gathered artifact type-specific dimensions. We generalize

them into a set of generic dimensions for artifact mutability. We do this by referring

to the specific dimensions (D01 to D19) and further related literature. Table 2 gives

an overview of the resulting six generic dimensions of our framework.

Table 2. Generic Mutability Dimensions

Mutability Dimensions Reference to Artifact

Type-specific Dimensions

Reference to Further

Literature

Paradigmatic perspective D06, D07, D16, D03,

D04, D08. D12, D17

[13]

Intentionality D01, D07, D10, D17 [1, 7, 9]

Scope D11, D18, D19

Drivers D01 [32]

Temporality D15 [10]

Artifact layers D02, D05, D09, D14 [1]

First, we identify two paradigmatic perspectives to deal with artifact mutability

(D16): One perspective is describing and explaining (and possibly predicting) artifact

mutability as a phenomenon in the sense of behavioral research. This perspective also

covers the identification of successful strategies to deal with mutability, e.g., whether

to tackle it proactively or reactively (D06) and whether to trace it systematically or

not (D07). The other perspective is to focus on mutability as a design objective, e.g.,

by developing adaptation and configuration mechanisms to better cope with the phe-

nomenon and, in doing so, to manage mutability (D03, D04, D08. D12, and D17).

Second, we identify the dimension of intentionality, which is grounded in D01,

D07, D10, D17, and [9]. On the one hand, scholars argue that there are unintended

mutations of an artifact caused by “tinkering and secondary design” and “bricolage”

[7]. D01 and D10 point out that users in particular can be drivers of unintended (or at

least unplanned) artifact mutability. On the other hand, mutability can be intended and

be designed into an artifact to some degree [9]. Correspondingly, IS and Computer

Science researchers have been continuously developing mechanisms for artifact

maintenance, configuration, composition, adaption, and tailoring in order to better

manage and control mutability (see above, D03, D04, D08. D12, and D17). The inten-

tionality dimension is related to traceability (D07), supposing that unintended muta-

tions of artifacts are often also untraced. In addition, there is a relation between inten-

tionality and the origin of method (D10) or the origin of artifacts in general.

Third, we identify the dimension of scope. D11 exhibits that mutability can refer to

various objects and aspects of an artifact (functions, quality, processes). The broader

conceptualization of Lehman and Ramil [6] (see D18 and D19) also illustrates the

various areas of mutability, incorporating entities ranging from users, technologies,

task, domain, and context to development processes and process models.

Fourth, we identify the dimension of drivers. Based on D01 and [32], the previous-

ly mentioned entities (e.g., users and technology) not only define the scope, but can

also be seen as relevant drivers of mutability.

Fifth, we identify the dimension of temporality. D15 distinguishes different points

in time where evolution can take place and where variability is bound to a specific

variant. Different points in time with respect to mutability can also be found in [10].

Finally, we identify the dimension of artifact layers. Generally, the notion of layers

seem applicable to different types of artifacts (e.g., constructs (D02), models (D05),

methods (D09), or instantiations (D14)). Similarly, Gregor and Iivari [1] discuss arti-

fact mutability in the light of two layers: changes to the IS structure/schema and

changes to the IS state.

5 Review of Design Theories

In this section, we review design theories that make statements concerning artifact

mutability. To identify relevant academic articles, we conducted a structured literature

search with the help of Google Scholar, ISI Web of Knowledge, and EBSCOhost

(using the Business Source Premier database). First, we selected the paper by Gregor

and Jones [3] as the starting point for our search in all three databases as it represents

the de-facto blueprint for design theories and we assume that papers proposing a de-

sign theory within IS are very likely to cite it. The paper has been cited 702/161/3

times according to Google Scholar/ISI Web of Knowledge/EBSCOhost (as of 2014-

11-09). As we were particularly interested in papers that not only propose design

theories but also make statements regarding artifact mutability, we searched for the

terms “artifact mutability” and “artefact mutability” (to cover both British and Ameri-

can English) within the set of 702/161/3 manuscripts. Unfortunately, EBSCOhost

does not offer a dedicated feature for this and analyzing the titles and abstracts of the

three citing papers yielded no article that proposes a design theory at all. In ISI Web

of Knowledge, the “Refine Results” feature using the two search terms did not return

any results as it does not support a fulltext search of the citing articles. For our further

search for relevant articles, we therefore relied on Google Scholar only as we assume

that it is very likely that their 702 hits also cover the 161/3 hits of the other databases.

Searching the 702 citing articles for “artifact mutability” and “artefact mutability” led

us to 109 and 37 hits. We scanned the total of 146 hits for articles that present design

theories (or at least novel artifacts) and discuss artifact mutability. We excluded the-

ses (Master/PhD) and book chapters to guarantee that the papers have undergone a

review process. As a result, we got a short list of 8 journal and 12 conference papers.

We categorized them according to the different IT artifact types. One paper each pro-

poses a set of constructs and a model. With ten manuscripts, design theories for meth-

ods are presented most often. We found eight papers on instantiations (Table 3).
All of the 20 manuscripts address artifact mutability explicitly. Many only devote

one sentence or a bullet point (e.g., [33, 34]), while a few others give a complete par-

agraph on this component (e.g., [32, 35–37]). The one paper that presents constructs

(a technique for modelling intents for strategic alignment) does not discuss mutability

in detail. The authors refer to it as the evolution and maturation of models that can be

created with the proposed technique over time [38]. The one paper that presents a

model (a template for collecting teaching cases) points to specific sections of the tem-

plate accounting for mutability. Unfortunately, this is not discussed any further [39].

Table 3. Categorization of Artifacts

Artifact

Type

Artifact Descriptions

Constructs 1  Reference architecture of enterprise intent (vocabulary, rules, and struc-

ture) [38]

Model 1  Teaching case collection template [39]

Method 10  Method framework and models for context-aware process design [33]

 Guidebook on managing IS integration [40]

 End-to-end demand management process [32]

 Prescriptive knowledge for guiding organizations to implement Enter-

prise Architecture Management [35]

 Evaluation guidelines for futures research [41]

 Framework for performing an IS analysis [42]

 Approach to analyzing and designing business processes [43]

 Customer satisfaction-oriented IT vendor management [44]

 Multi-ontology topology of the strategic landscape [36]

 Technological process of creating business software based on core func-

tionality known from web 2.0 [45]

Instantiation 8  Educational on-line information security laboratories [46]

 Health care quality registers [47]

 application for mobile devices [48]

 IT systems that support convergent and divergent thinking [37]

 Collaborative systems [34]

 Two-factor authentication system [49]

 System that monitor and manages vehicles [50]

 Sales configurator [51]

As for methods, we find many manuscripts that point to a fit between the method

and its application context. One paper presents three variants of a process that may be

applicable in varying contexts [32]. Another paper identifies four factors that can lead

to an adaptation of the proposed method, including the organizational setting, the type

of process under consideration, the degree of formalization of the respective process

description, and organizational change [35]. [44] mention that varying goals, organi-

zational routines, and governance structures may have an impact on the implementa-

tion of their design theory. [42] also mention that their framework must be adapted to

fit the environment. [43] state that there are both generic guidelines relevant for sev-

eral kinds of processes and domain-specific ones with a limited applicability. Some

further authors point to the generic capability of their methods: [36] write that the

method that they initially designed and tested for businesses is equally applicable in

public organizations, while [45] write that paying respect to special needs is inherent

to the method itself. Moreover, we find one reference to suggestions for improvement

from users as a source for method mutability [40]. Finally, [41] refer to artifact muta-

bility as a matter of future research as their framework has not been applied yet.

As for instantiations, suggestions for improvements from (prospective) users dur-

ing build-time and run-time are frequently mentioned as a source of artifact mutability

[46–48]. [49] write that trial runs of their system may lead to refinements. Some man-

uscripts also emphasize a context-dependence when implementing an instantiation

that follows the proposed design theory (e.g., [37]). [51] describe the “built-in flexi-

bility” (p. 72) of their sales configurator that is achieved through internal interface

that allow for the replacement of major software components. Dealing with collabora-

tive technologies, [34] write that system features will change as teams evolve.

Analyzing the mutability of different artifact types based on the six generic dimen-

sions, we can ascertain the following (as information given by the papers on con-

structs and models is limited, we focus on mutability of instantiations and methods):

Paradigmatic perspective: We see that mutability of an instantiation is mainly de-

scribed as something that happens during build-time (e.g., due to user feedback [40,

46–48, 50]) or will happen during run-time (e.g., future trial runs [49]). However, it

seems not to be proactively managed, rather, it is observed, documented, and reacted

upon (except for [51] who refer to system flexibility). In contrast, mutability of meth-

ods for varying contexts is a feature that is explicitly addressed in the design process.

Intentionality: We cannot identify any reference to unintended changes in our sam-

ple. The mutability of instantiations in response to user feedback is generally present-

ed as a positive and accepted phenomenon in our set of papers. We also see that mu-

tability is purposefully designed into artifacts, especially in methods to make them

applicable in different contexts (e.g., [32]).

Scope: The scope of mutability is frequently not defined clearly. Authors mostly

point to suggestions for improvements (esp. for instantiations), but do not limit these

to specific aspects or components of the artifact. An exception is the design theory for

systems that support convergent and divergent thinking [37], where the authors clear-

ly point to some core constructs (i.e., different data sources, tags, and tag trees for

retrieving data) that are expected to vary depending on different contexts. Two papers

mention specific mutability points for methods, i.e., selection of different random

distributions for calculations [42] or the definition of specific guidelines [43].

Drivers: Many papers mention possible drivers of mutability. In our sample we see

that multiple factors of the organizational context can trigger mutability. Possible

factors comprise industry (e.g., business vs. public administration, [36]), organiza-

tional setting and complexity [32], goals, organizational routines, and governance

structures [32, 44]). Context is also considered as something dynamic, i.e., it also

evolves over time [34, 35] leading to the mutation of artifacts as a result.

Temporality: We see that instantiations are mutable in build-time (e.g., during an

iterative development process) and run-time (e.g., through modifications based on

user feedback). Mutability of methods seems to be rather a matter of startup-time, if

we transfer this term from SPL (see also D15). Methods are typically selected and

tailored at the beginning of a project in response to the project-specific context.

Artifact layers: We do not find explicit discussions in our sample that mutability

can happen on different layers. However, we see that complex artifacts comprising

both constructs and models [38] naturally address multiple layers, i.e., a model and a

meta-model layer. The corresponding paper, however, points to the mutability of

models only, as these mature in a specific organization over time [38]. As for the

template proposed by [39], this is not expected to change. However, it encompasses

fields that can be used to document changes in the way teaching cases have been per-

formed, i.e., mutability only happens on the instance layer and not on the type layer.

6 Discussion and Conclusions

From this study, we identify the following themes that also stimulate future research.

First, artifact mutability is a multi-facetted topic that has been subject to research

already for some time. We were able to identify different research streams that have

dealt with the variability, configuration, adaptation, and evolution of artifacts and that

provided the grounding for our framework. Hence, artifact mutability can be consid-

ered an umbrella term that has the potential to connect different fields like reference

modelling, situational method engineering, and software evolution. To bring this idea

forward, we plan to extend and revise the presented framework in future work.

Second, our current knowledge about mutability is still closely linked to the artifact

type and this also shapes the varying understandings of this term. To give an instance,

the mutability of methods is a common objective of (primary) design, whereas the

mutability of instantiations is mostly considered as something that happens after the

implementation in a specific context, e.g., through secondary design processes.

Third, IS researchers have devoted little attention to artifact mutability so far when

developing design theories. Although the anatomy of a design theory [3] has been

cited hundreds of times, we only found 20 design theory articles that address mutabil-

ity. There is also an unbalanced distribution with a majority of articles dedicated to

methods and instantiations, but rarely constructs and models. Future research should

investigate the underlying reasons for both the low adoption level and the imbalance.

Fourth, the core component of artifact mutability is only a side issue in design the-

ory articles. Those researchers who address it do this only briefly. It seems that they

feel obligated to comment on mutability without making it truly a subject matter of

their research. In this regard, our framework can help IS researchers in formulating

more substantive statements on artifact mutability as part of design theories. It also

provides a reference for review and publication processes of design theory articles

that discuss artifact mutability. However, future research is also needed that reflects

on the general relevance of the artifact mutability component for design theories.

The presented work is beset with some limitations. First, the framework’s ground-

ing is probably not exhaustive. We presented existing approaches prominent to IS

research and related disciplines, in particular Computer Science. Our intention was to

lay a foundation and show that there are already works on artifact mutability although

they do not use this exact term. Second, the identification of dimensions and our sug-

gestions for a framework are subjective in nature. Other researchers might have come

to a different set of dimensions with different categories. As for now, we also do not

present categories for the generic dimensions. Third, with our search strategy, we

excluded design theory articles published prior to Gregor and Jones [3] that possibly

also address artifact mutability. Forth, we relied on the popular categorization of IT

artifact types by March and Smith [15] although there are alternative ones [11, 52].

Concluding, this study contributes a framework that comprises six generic dimen-

sions of artifact mutability, grounded in a larger set of dimensions from existing work.

Both might be used as a reference and guidance for researchers when addressing mu-

tability in their work. Furthermore, we demonstrated the usefulness of the framework

as an analytical lens for reviewing existing design theories. These contributions ad-

vance the understanding of mutability in the IS discipline and will inform researchers

and reviewers when developing, presenting, or reviewing design theories.

References

1. Gregor, S., Iivari, J.: Designing for Mutability in Information Systems Artifacts. Infor-

mation Systems Foundations: Theory, Representation and Reality. pp. 3–24. ANU E Press,

Canberra, Australia (2007).

2. Ahlemann, F., El Arbi, F., Kaiser, M.G., Heck, A.: A process framework for theoretically

grounded prescriptive research in the project management field. International Journal of

Project Management. 31, 43–56 (2013).

3. Gregor, S., Jones, D.: The anatomy of a design theory. Journal of the Association for

Information Systems. 8, 312–335 (2007).

4. Becker, J., Delfmann, P., Knackstedt, R.: Adaptive reference modeling: integrating config-

urative and generic adaptation techniques for information models. Reference Modeling. pp.

27–58. Springer (2007).

5. Henderson-Sellers, B., Ralyté, J., Agerfalk, P., Rossi, M.: Situational Method Engineering.

Springer (2013).

6. Lehman, M.M., Ramil, J.F.: Software evolution and software evolution processes. Annals

of Software Engineering. 14, 275–309 (2002).

7. Hovorka, D.S., Germonprez, M.: Tinkering, tailoring and bricolage: Implications for

theories of design. AMCIS 2009 Proceedings. (2009).

8. Germonprez, M., Hovorka, D., Gal, U.: Secondary design: A case of behavioral design

science research. Journal of the Association for Information Systems. 12, 662–683 (2011).

9. Germonprez, M., Hovorka, D., Collopy, F.: A theory of tailorable technology design.

Journal of the Association for Information Systems. 8, 351–367 (2007).

10. Sjöström, J., Agerfalk, P.J., Lochan, R.A.: Mutability Matters: Baselining the Consequenc-

es of Design. MCIS 2011 Proceedings (2011).

11. Alter, S.: The concept of “IT artifact” has outlived its usefulness and should be retired now.

Information Systems Journal. (2014).

12. Gregor, S.: The nature of theory in information systems. MIS Quarterly. 611–642 (2006).

13. Piirainen, K.A., Briggs, R.O.: Design theory in practice – making design science research

more transparent. Service-Oriented Perspectives in Design Science Research. pp. 47–61.

Springer (2011).

14. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems re-

search. MIS Quarterly. 28, 75–105 (2004).

15. March, S.T., Smith, G.F.: Design and natural science research on information technology.

Decision Support Systems. 15, 251–266 (1995).

16. Zur Muehlen, M., Recker, J.: How much language is enough? Theoretical and practical use

of the business process modeling notation. Advanced information systems engineering. pp.

465–479. Springer (2008).

17. Vom Brocke, J.: Design principles for reference modeling: Reusing information models by

means of aggregation, specialisation, instantiation, and analogy. Reference Modeling for

Business Systems Analysis. 47–75 (2007).

18. Wenzel, S., Kelter, U.: Analyzing model evolution. Proceedings of the 30th International

Conference on Software Engineering. pp. 831–834. ACM (2008).

19. Noy, N.F., Klein, M.: Ontology evolution: Not the same as schema evolution. Knowledge

and Information Systems. 6, 428–440 (2004).

20. Maedche, A., Motik, B., Stojanovic, L.: Managing multiple and distributed ontologies on

the Semantic Web. The VLDB Journal. 12, 286–302 (2003).

21. Bucher, T., Klesse, M., Kurpjuweit, S., Winter, R.: Situational Method Engineering. Situa-

tional Method Engineering: Fundamentals and Experiences. pp. 33–48. Springer (2007).

22. Offermann, P., Blom, S., Levina, O., Bub, U.: Proposal for Components of Method Design

Theories. Business & Information Systems Engineering. 2, 295–304 (2010).

23. Börner, R., Goeken, M., Rabhi, F.: SOA Development and Service Identification. Situati-

onsspezifische Methoden zur Serviceidentifikation in serviceorientierten Architekturen. pp.

115–171 (2012).

24. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product Lines.

Springer, Heidelberg (2013).

25. Bühne, S., Halmans, G., Lauenroth, K., Pohl, K.: Variabilität in Software-Produktlinien.

Software-Produktlinien – Methoden, Einführung und Praxis. pp. 13–24. dpunkt Verlag,

Heidelberg (2004).

26. Schaefer, I.: Variability Modelling for Model-Driven Development of Software Product

Lines. VaMoS 2010 Proceedings. pp. 85–92. , Linz, Austria (2010).

27. Halmans, G., Pohl, K.: Communicating the variability of a software-product family to

customers. Software and Systems Modeling. 2, 15–36 (2003).

28. Thiel, S., Hein, A.: Architekturentwicklung. Software-Produktlinien – Methoden, Einfüh-

rung und Praxis. pp. 81–92. , Heidelberg (2004).

29. Svahnberg, M., Van Gurp, J., Bosch, J.: A taxonomy of variability realization techniques.

Software: Practice and Experience. 35, 705–754 (2005).

30. Lehman, M.M., Ramil, J.F.: Software evolution—Background, theory, practice. Infor-

mation Processing Letters. 88, 33–44 (2003).

31. Mens, T.: Introduction and Roadmap: History and Challenges of Software Evolution.

Software Evolution. Springer (2008).

32. Legner, C., Löhe, J.: Improving the Realization of IT Demands: A Design Theory for End-

to-End Demand Management. ICIS 2012 Proceedings. , Orlando, Florida (2012).

33. Ploesser, K., Recker, J., Rosemann, M.: Supporting Context-Aware Process Design: Learn-

ings from a Design Science Study. Business Process Management Workshops. pp. 97–104.

Springer (2011).

34. Zhang, X., Venkatesh, V., Brown, S.A.: Designing collaborative systems to enhance team

performance. Journal of the Association for Information Systems. 12, 556–585 (2011).

35. Löhe, J., Legner, C.: Overcoming implementation challenges in enterprise architecture

management: A design theory for architecture-driven IT Management (ADRIMA). Infor-

mation Systems and e-Business Management. 12, 101–137 (2014).

36. Aaltonen, M., Holmström, J.: Multi-ontology topology of the strategic landscape in three

practical cases. Technological Forecasting and Social Change. 77, 1519–1526 (2010).

37. Müller-Wienbergen, F., Müller, O., Seidel, S., Becker, J.: Leaving the beaten tracks in

creative work–A design theory for systems that support convergent and divergent thinking.

Journal of the Association for Information Systems. 12, 714–740 (2011).

38. Woolridge, R.W., Hale, J.E., Hale, D.P.: Towards a reference architecture of intent for

information systems strategic alignment. AMCIS Proceedings. Toronto, Canada (2008).

39. Molka-Danielsen, J., Mundy, D., Hadjistassou, S., Stefannelli, C.: Good Practice in Virtual

Worlds Teaching: Designing a Framework through the Euroversity Project. IRIS Selected

Papers of the Information Systems Research Seminar in Scandinavia. pp. 41–52 (2012).

40. Carlsson, S.A., Henningsson, S., Hrastinski, S., Keller, C.: Socio-technical IS design

science research: Developing design theory for IS integration management. Information

Systems and e-Business Management. 9, 109–131 (2011).

41. Piirainen, K.A., Gonzalez, R.A., Bragge, J.: A systemic evaluation framework for futures

research. Futures. 44, 464–474 (2012).

42. Närman, P., Buschle, M., Ekstedt, M.: An enterprise architecture framework for multi-

attribute information systems analysis. Software & Systems Modeling. 1–32 (2013).

43. De Bruyn, P., Huysmans, P., Oorts, G., Mannaert, H., Verelst, J.: Using Entropy’s Justifica-

tory Knowledge for a Business Process Design Theory. HICSS 2014 Proceedings. pp.

3717–3726 (2014).

44. Urbach, N., Ahlemann, F., El Arbi, F.: Towards a Design Theory for Customer Satisfac-

tion-Oriented IT Vendor Management. AMCIS 2014 Proceedings (2014).

45. Böhringer, M.: Towards a design theory for applying web 2.0 patterns to organisations.

ECIS 2011 Proceedings. , Helsinki, Finland (2011).

46. Iqbal, S., Päivärinta, T.: Towards a design theory for educational on-line information

security laboratories. Advances in Web-Based Learning (ICWL 2012). pp. 295–306.

Springer (2012).

47. Keller, C., Gäre, K., Edenius, M., Lindblad, S.: Designing for complex innovations in

health care: Design theory and realist evaluation combined. DESRIST Proceedings (2009).

48. Andersson, B., Keller, C.: Harness mobility: managing the off-task property. Global Per-

spectives on Design Science Research. pp. 258–269. Springer (2010).

49. Ting, S.L., Tsang, A.H.: A two-factor authentication system using Radio Frequency Identi-

fication and watermarking technology. Computers in Industry. 64, 268–279 (2013).

50. Andersson, B.: Harnessing handheld computing–managing IS support to the digital ranger

with defensive design. Service-Oriented Perspectives in Design Science Research. pp. 62–

76. Springer (2011).

51. Tiihonen, J., Männistö, T., Felfernig, A.: Sales Configurator Information Systems Design

Theory. 16th International Configuration Workshop. pp. 67–74. , Novi Sad, Serbia (2014).

52. Offermann, P., Blom, S., Schönherr, M., Bub, U.: Artifact types in information systems

design science–a literature review. Global Perspectives on Design Science Research. pp.

77–92. Springer (2010).

	Association for Information Systems
	AIS Electronic Library (AISeL)
	3-5-2015

	Understanding the Elusive Black Box of Artifact Mutability
	Jens Pöppelbuß
	Matthias Goeken
	Recommended Citation

	tmp.1426601164.pdf.2UD0B

	p:
	0: 1557
	1: 1558
	2: 1559
	3: 1560
	4: 1561
	5: 1562
	6: 1563
	7: 1564
	8: 1565
	9: 1566
	10: 1567
	11: 1568
	12: 1569
	13: 1570
	14: 1571

	Citation: Pöppelbuß, J.; Goeken, M. (2015): Understanding the Elusive Black Box of Artifact Mutability, in: Thomas. O.; Teuteberg, F. (Hrsg.): Proceedings der 12. Internationalen Tagung Wirtschaftsinformatik (WI 2015), Osnabrück, S. 1557-1571

