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Abstract. Many online shops apply several sales support systems, e.g., recom-

mender systems, sorting and filtering tools, to support buyers during the shop-

ping process. Although, the research highlights the positive effect of such sys-

tems, the current study questions its applicability in online shops for products 

which serve users’ needs to be unique like apparel or luxury products. We ana-

lyze female users’ buying behavior of apparel products in a laboratory setting 

and find that users with high trendiness undertake in general more search steps. 

Further, we find that most users rely during their search process on different 

sorting and filtering as well as on keyword search tools than on personalized 

and non-personalized recommendations. Further, we find that users with high 

trendiness did not use top seller lists and “wear with it”-recommendations. 

Moreover, the assistance of top seller lists did not lead to final choice of prod-

ucts (i.e. zero conversion rates).  
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1 Introduction 

Many online shops apply several sales support systems, e.g., recommender systems 

[1, 2], sorting and filtering tools or interactive decision aids [3-5], to support buyers 

during the shopping process [6]. Such systems aim at reducing consumer’s search 

costs [7] to efficiently find products that match consumers’ preferences, and help to 

discover of new products which might be interesting for the consumer. As shown by 

previous research, such sales support systems can lead either to demand shifts from 

blockbuster to niche products and thus to increased sales diversity [6, 8-10] or to de-

mand concentration on blockbuster products [11]. 



However, consumers perceive the usefulness of such sales support systems differ-

ently depending on the type of product [12]. For example, search goods [13], such as 

electronics, which can be objectively described by their attributes, are easier to pro-

cess for recommendations than experience goods [13] (e.g. perfumes or books), which 

involve the subjective perspective of a consumer [12]. Some sales support systems 

utilize aggregated consumer preferences, like top seller lists or collaborative filters 

that generate product recommendations using the principle “customers who bought 

this item also bought…”. Although previous research has shown that such kind of 

quality cues have a positive impact on the buying decision [6, 11, 14], we expect that 

they might not be appropriate for products which serve consumer’s needs for unique-

ness [15], such as apparel or luxury products. Apparel has the function of expressing 

someone’s individuality (or the need to be unique) to the outside world [16] and thus 

consumers might not want to dress just like others. The identity signaling function of 

clothing may have an effect on the perception of the recommendation of popular 

products, so-called top sellers. Therefore, it is unclear, whether the generally believed 

benefits of sales support systems based on aggregated consumers’ preferences can be 

transferred to the apparel shopping domain without adjustment. Although some 

stream of research works on improving recommender systems for apparel products 

[17-19], to the best of our knowledge no study investigated, whether the sales support 

systems based on aggregated consumer preferences are appropriate for products 

which serve consumers’ needs for uniqueness and status signaling. 

The current paper reports the results of our explorative study. We observe shop-

ping behavior of female users in a laboratory setting to explore whether and how con-

sumers use sales support systems in online apparel stores. We find that sales support 

systems which are built on aggregated consumer preferences like top seller lists are 

related to lower conversion rates. Our findings provide us with a useful basis for the 

design of future studies to improve the design of sales support systems in online ap-

parel stores.  

Due to the expansion of shopping apparel online, our research is of high practical 

relevance. Recently, the share of apparel in the online shopping environment has ex-

perienced a boost in many parts of the world. In Germany, revenues have more than 

tripled from 2006 (2.81 billion Euros) to 2013 (10.3 billion Euros) [20]. Current web 

technology developments leverage long believed disadvantages related to buying 

apparel online e.g., unsatisfied need to touch, missing possibilities to find correct fit 

and shopping experience [21], and convince more and more consumers to shop 

clothes online. Examples for innovative approaches include “Upcload” 

(www.upcload.com), a system that measures body dimensions through a webcam to 

reduce consumer’s risk perception on correct fit and a virtual shopping assistant that 

interacts with the consumer, developed by “Fluid”, a US software company. On the 

website of aboutyou.de (http://www.aboutyou.de/) users can upload photos of celebri-

ties and get recommendations to copy their styles or user can design their own shoes. 

The remainder of the paper is structured as follows: In section 2 we embed our re-

search into the prior work on sales support systems. Section 3 summarizes fashion 

peculiarities and current sales support systems and discusses to what extent these are 

applicable to the apparel industry. Then, we describe our study setup. Section 5 pre-

http://www.aboutyou.de/


sents our results. Finally, we conclude our work by discussing the main findings and 

limitations of the current study and give an outlook for further research. 

2 Related work  

2.1 Sales Support Systems 

The vast amount of applied sales support systems in online stores can be classified 

along two dimensions: user’s involvement (active/passive) and the grade of personali-

zation (yes/no). Table 1 classifies different sales support systems along these two 

dimensions. 

 

Fig. 1. Examples of non-personalized recommendations in online apparel stores 

There are three types of recommender systems that are widespread and have been 

successfully used in many domains: collaborative filters, content-based recommender 

systems and hybrid recommender systems [2, 22]. Collaborative filters build consum-

er profiles based on similarities in consumers’ purchases or product ratings to gener-

ate recommendations [22]. Content-based systems build correlations among products 

the customer has previously purchased [23] or rated positively [24]. A combination of 

both is called a hybrid recommender system. Top seller lists and editors’ advice are 

non-personalized recommendations. Online apparel store specific recommendations, 

like banners with some outfit, style guides and recommendations for specific occa-

sions or seasons, are also examples of such non-personalized recommendations (see 

Fig. 1). 

Interactive decision aids are based on customer interaction [3-5]. They support the 

user in the decision what to buy and where to buy and aim generally at reducing the 

product consideration set. Simple sorting and filtering tools (e.g., on price, color etc.) 



are classified as such interactive decision aids, but also more sophisticated tools like 

comparison matrices [3, 4] pertain to this category. Generally they divide the search 

process into two steps: First a consumer views a range of available products quickly 

to determine which products are worth further consideration. In the second step the 

consideration set of products underlies “in-depth” comparisons, the review of product 

details, for example. Such interactive decision aids (if applied) improve decision qual-

ity as well as efficiency of purchase decisions [3-5].  

Table 1. Classification of sales support systems 

 Passive user involvement Active user involvement 

Personalized Recommender systems 

 

Personalized search engi-

nes 

Non-personalized Top seller lists 

Editors’ advice 

Banners, style guides 

Interactive decision aids 

Search tools 

Sorting and filtering tools 

 

In addition to comparison matrices and interactive recommender agents, online 

shops provide input text fields and search filters to facilitate consumers’ search as 

another type of sales support systems which require user interaction [6]. Personalized 

search engines which take user profile into account while searching are an example of 

personalized sales support systems requiring active user involvement. 

2.2 Recommender systems for fashion.  

Some stream of research works on improving recommender systems for apparel prod-

ucts, which is challenged by characteristics of apparel products. Constantly changing 

collections and product assortments [19] enforce weaknesses related to collaborative 

or content-based filters such as the “cold-start-problem” [25]. Furthermore, [19] argue 

that current online shops focus on transaction data instead of building customer pro-

files. This leads to recommendations that are very close to previously purchased 

products. As collaborative filters and content-based systems mostly do not offer 

enough data for cross-category recommendations, they develop a knowledge-based 

approach, which is based on styles extracted from marketing texts. In order to exploit 

the potential of recommender systems, they build a consumer model which is sup-

posed to recognize tastes and styles to suggest products on a cross-category level. 

Similarly, [18, 26] use consumer characteristics such as facial color or human mor-

phology to build an ontology for the generation of recommendations in form of style 

advice rules. Likewise, [17] develop a system with the aim to facilitate outfit combi-

nation. It is able to recommend a complete outfit suiting a new piece of garment the 

user has specified as well as new combination possibilities within the users’ wardrobe 

[17].  

Another approach to generate personal recommendations on a social shopping plat-

form offering fashion as well as other products is the use of Facebook profile data 

[27]. With the semantic interpretation of user profile data they achieve recommenda-

tion improvements up to 74% compared to randomly recommended items. This ap-



proach requires the user to be logged in on the shopping platform and to permit the 

linkage to his Facebook profile to obtain recommendations. 

All the presented approaches do not address the identity signaling characteristics of 

the apparel products. Further, they are in the development phase and are not imple-

mented in real online apparel shops. Hence, most of the real shops implement conven-

tional collaborative filters or top seller lists which are based on aggregated consumer 

preferences and do not take into account the need for uniqueness of the consumers. In 

the next section we discuss the appropriateness of the different sales support systems 

we identify as currently implemented in online apparel stores. 

3 Research Conceptualization 

Individuals pursue uniqueness through consumption of goods which differentiate 

them from others [15, 28]. [28] found that consumers’ need for uniqueness is associ-

ated with buying of “scarce, innovative, and customized products and to consumers’ 

preferences for unusual shopping venues” [28]. Especially clothing has an identity 

signaling function. This is manifested in two ways: In desire for social identity and in 

desire for uniqueness [16]. People often express group affiliation by wearing similar 

clothes, popular brands [29], and following clothing styles of prominent people e.g., 

of the Duchess of Cambridge [30]. Uniqueness desires evolve within these groups but 

also as demarcation of other social groups [16]. Consumers might then satisfy their 

needs for uniqueness using different colors [16] or even designing their own pieces of 

clothing or shoes. 

Table 2 lists sales support systems we identified in current online apparel stores. In 

the following we discuss their applicability to the apparel industry. In-shop keyword 

search and filters are options that facilitate the search process within the shop. They 

require the consumer’s interaction as well as determination on a product category (in-

shop keyword search) or measurable product attributes (filters). Therefore, they might 

highly support “directed buying” [31].  

Top seller lists and collaborative filters are widespread in different types of online 

stores and their success has often been examined in research. However, we hypothe-

size that the identity signaling function of apparel and the resulting need for unique-

ness constitute limitations for those systems in the apparel industry. [32] find that the 

users with higher social status in a virtual environment purchased rare and very ex-

pensive items. Such behavior is referred as “conspicuous consumption”. Vice versa 

one can expect that the individuals who are seeking to preserve their high social status 

would not buy products which are preferred by other consumers. [28] find that con-

sumers with higher need for uniqueness prefer less popular retail stores. 

Recently, new fashion specific support systems have evolved. These tend to group 

products by dimensions different from their product category. This approach requires 

a comprehensive perspective on apparel, for example considering a complete outfit 

instead of an individual product group. Products can be grouped by style, by occasion 

or by season. “Zalando” for example, the most popular German online fashion store, 



provides a “wear it with”- recommendation for each product 

(http://www.zalando.de/).  

 

Table 2.   Benefits and suggested applicability of sales support systems 

Sales Support System Expected benefit Applicability for apparel 

stores 

In-shop keyword search Help to find the searched 

product quickly 

Good 

Sorting filters Help to reduce the scope 

of the consideration set 

Good 

Top seller lists Non-personalized 

recommendation 

Might not function well, be-

cause users tend to be unique 

and do not want to buy prod-

ucts already bought by many 

others 

Collaborative recom-

mender 

Help to find new prod-

ucts 

Might not function well, be-

cause users tend to be unique 

and do not want to buy prod-

ucts already bought by many 

others 

„Wear it with“-

recommender 

Help to find suitable 

products – enables cross-

category purchases 

Good 

Unspecific banners Inspiration  Might support user’s need to 

be unique 

New In Help to explore new 

trends 

Might support user’s need to 

be unique 

Style Guide Help to follow “fashion 

idols” 

Might support user’s need to 

be unique 

Occasion/Event Help to find occasion 

adequate products, simul-

taneously reducing 

search costs 

Good 

Season Predicts consumers’ 

current interests 

Important, as collections 

change frequently 

 

4 Methodology and Data 

To study whether and how the consumers use different sales support systems we con-

ducted a video analysis of buying behavior. For this purpose we gave the participants 

a shopping task and recorded their buying behavior using “Camstasia Recorder 8”. 

The shopping task consisted in assembling an outfit online for a school reunion cele-

bration held in a beautiful restaurant. The only limitation was a 300 Euro budget re-



striction. There was no time limit and the participants were free in their choices of 

shops, number of items etc. Finally, the participants were asked to save links to their 

selected apparel items using the link fields in a small web application developed for 

this study. The number of link fields was unlimited. If a participant changed her mind 

on an already saved product, she could annotate the replacement in the subsequent 

link field. In addition, we asked for user demographics like age, education, income 

level and shopping habits. 

We decided to conduct a video analysis due to explorative nature of our study. An 

alternative measurement would be a clickstream analysis [31, 33, 34], which, howev-

er, is not applicable in our study, as we did not want to restrict participants in their 

choice of online shops. The setting of the study had to be as realistic as possible. 

By designing the study we controlled for several factors which might influence us-

er’s shopping behavior. First, [31] distinguish between directed and exploratory shop-

ping. Whereas directed search is associated with “a specific or planned purchase in 

mind” [31], exploratory search is related to hedonic browsing and knowledge building 

behavior [31]. To limit the interplay of other shopping behaviors we primed the shop-

ping task as a directed buying, i.e. the participants had to choose one outfit. 

As discussed by [16], people simultaneously strive for social group identification 

and differentiation within the group. With purpose to reduce the need for social iden-

tity and to intensify participants’ need for uniqueness and statuses signaling we gave 

the task to assemble an outfit for a school reunion celebration as the people want to 

present themselves from positive perspectives in such situations.  

Table 3. Measure of user’s trendiness 

Items 

1 Apparel plays an important role for me. 

2 In fashion I am one step ahead of others. 

3 I enjoy buying in selected apparel stores. 

4 I am fascinated by trying new roles with different clothes. 

5 I like wearing clothes that emphasize my body. 

6 My friends often buy clothes which they have seen at me. 

7 I enjoy trying new fashion brands. 

8 I always know what is "In" and what is "Out" in fashion. 

9 I am always looking for new apparel ideas. 

10 I read regularly fashion magazines and catch up on new trends. 

 

Third, user characteristics such as fashion involvement might influence to which 

extent the need for uniqueness arises [35, 36]. E.g., [35, 36] distinguish fashion fol-

lowers, fashion innovators, fashion opinion leaders and innovative communicators 

and find that fashion innovators and innovative communicators have higher needs for 

uniqueness than the other groups. Therefore, we control for user’s desire to be a 

trendsetter in apparel products. To measure this personal trait we constructed a scale 

using findings of [37] and [38]. Table 3 provides the used items. We measure user’s 

trendiness on a 5-point Likert [39] scale (1=strongly disagree, 5=strongly agree ). 



We limit the study to female participants because men and women differ in shop-

ping strategies and style categories [40, 41]. We raffled five Amazon vouchers in 

value of 20 Euros among participants. 

After the completion of the data collection phase, we coded the video records on 

several dimensions, like the number of visited stores, the number of the visited pages 

and products etc. and the usage of different sales support systems. Further, we put 

down whether a particular sales support system was used in the selection of the prod-

uct (conversion rate) or not. 

5 Results 

5.1 Participants and Sample Summary Statistics 

34 female participants took part in our study in December 2013. As 3 participants 

failed to accomplish the task of picking at least one single product we can only evalu-

ate 31 of the 34 result sets, which results in a 97% response rate.  

Participants’ age is between 14 and 39 with 78.9% being between 20 and 24. 

About three quarters of the participants have accomplished their “Abitur” as highest 

educational degree, while 21.2% own a graduate degree. Monthly income amounts 

from 500€ to 1500€ for 27.3% of the participants; 69.7% have less than 500€ per 

month at their disposal. 

Regarding online apparel shopping habits the participants buy apparel once in 3 to 

6 months (32%). Monthly expenses for apparel ranged from 50 to 100 Euros which is 

in line with the official statistics on shopping habits for clothing: In 2010, monthly 

expenses of German women amount to 41 – 57 Euros depending on their place of 

residence [42].  

The participants scored on average 2.67 with a standard deviation of 0.51 on our 

constructed trendiness scale. The internal consistency of the scale is quite well; 

Cronbach’s alpha [43] amounts to 0.7. To distinguish between different user groups 

we split the users according to their score on the trendiness scale into two groups: 

Users who scored more than 3 points on Likert scale were denoted as users with high 

trendiness. Seven persons are in this group. Research has shown that self-reporting 

often diverges from objective judgment. This phenomenon, affected by social desires 

and approval is known as the self-reporting bias or socially desirable responding 

[44].With purpose to check for possible self-reporting bias we asked an independent 

expert (a fashion design student) to evaluate the chosen outfits on the trendiness scale 

(1 = trendy, 0 = not at all). The agreement between our assignments of users to two 

groups and the expert evaluations was fair; Kohen’s kappa [45] amounts to 38% ( p < 

.01). 



5.2 General Shopping Behavior 

Table 4 presents summary statistics of general shopping behavior. The number of 

shops visited during a shopping session varied between 1 and 14 shops with an aver-

age value of 4.77 and a standard deviation of 3.41. The participants visited on average 

about 73 pages, about 25 product pages, about two brand pages and entered on aver-

age about 5 search terms during their search processes. About 5 products were on 

average chosen into the final outfit. 

Table 4. Summary statistics general shopping behavior 

Variable Mean SD Min Max 

Number of visited stores 4.77 3.41 1 14 

Total number of visited pages 72.81 49.07 6 207 

Number of entered search terms 4.55 4.11 0 18 

Number of visited product pages 24.61 17.90 1 73 

Share of distinct product pages .58 .27 .15 1 

Number of chosen products
1
 4.55 1.23 1 7 

Number of visited brand pages 2.06 2.42 0 9 

Number of visited category pages 32.26 24.31 1 114 

Average number of pages visited in one category 1.22 .31 1 2.6 

Table 5. Group differences 

 High trendiness Low trendiness 

P-values 

one-sided 

T-test 

Variable Mean SD Mean SD  

Number of visited stores 5.71 4.82 4.5 2.96 0.21 

Total number of visited pages 94.86 66.76 66.38 42.27 0.09
*2

 

Number of entered search 

terms 
4.71 4.03 4.5 4.22 0.45 

Number of visited product 

pages 
28.71 21.21 23.42 17.13 0.25 

Share of distinct product pages .54 .17 .59 .29 0.68 

Number of chosen products 4.86 .90 4.46 1.32 0.23  

Number of visited brand pages 1.43 2.30 2.25 2.47 0.78   

                                                           
1 Although some users managed to pick only one single product and not a complete outfit, we 

kept such observations in the sample. The focus of the study was to observe users’ search be-

havior and whether and how the users use sales support systems. We believe that the partici-

pants were motivated to find the best dress for the school reunion celebration, regardless of 

whether they eventually picked one or five products. 

 
2 Significance level 10% 



Number of visited category 

pages 
43.14 30.63 29.08 21.90 0.09

*
 

Average number of pages 

visited in one category 
1.21 .20 1.23 .34 0.54 

N 7 24  

 

Table 5 presents the summary statistics for the user groups with high and low 

trendiness. The groups are comparable in their shopping frequencies online; group 

mean differences tests were all insignificant. As we expected that consumers with 

high trendiness would exhibit more search steps, we conducted one-sided two group 

mean comparison t-tests with equal variances. However, most differences are insig-

nificant, with except for the total number of visited pages and the number of visited 

product category pages (for both variables p < .10). 

5.3 The Use of Sales Support Systems 

Table 6 displays the results of the usage of sales support systems. The percent of 

sample value is the percentage of participants that used the correspondent support 

system during their shopping session at least once. For the usage of filtering and key-

word search tools we additionally counted the absolute numbers.  

More than two-third (71%) of the participants used filtering tools and quarter of 

participants used keyword search tools. Participants used on average four filters and 

once the keyword search terms.  

Table 6. Summary statistics of sales support systems usage 

Variable Percent of sample Mean SD Min Max 

Number of filters .71 4 4.93 0 19 

In-shop keyword search .25 1.06 2.11 0 8 

Collaborative recommender .23 - - - - 

„Wear it with“-recommender .06 - - - - 

Top seller lists .19 - - - - 

Unspecific banners .06 - - - - 

New In .10 - - - - 

Style Guide .19 - - - - 

Occasion/Event .16 - - - - 

Season .03 - - - - 

 

The use of filters bears advantages for both the consumer and the store manager. 

As online stores usually provide a wide range of products, search costs may be high 

until a desired item is found [7]. Filters offer a mean to reduce search costs by reduc-

ing the number of items and hence faster reaching of the shopping goal. Additionally, 

they provide information about consumers’ preferences for the store manager.  



A filter is supposed to facilitate the consumer’s search process by the restricting 

the product offer. Hence, one would expect filters to accelerate the decision process in 

our study, affecting the number of viewed pages and chosen product percentage. Sur-

prisingly, the opposite effect is true: We observe a positive relation between filters 

and the number of pages and a negative relation between filters and the chosen prod-

uct percentage. Apparently, a high number of applied filters reduces the product con-

sideration set too strongly which then results in a lower percentage of chosen products 

among all viewed products. 

 

 

Fig. 2.  Frequency of used filter dimensions 

Fig. 2 displays product dimensions along which the participants of the experiment 

filtered their selection set in the online shopping environment. Fig. 2 shows that most 

people use color filters. The revelation of individual color preferences bears valuable 

information on consumers and enables store managers to create color profiles for 

consumers. This is due to the correlation of color preferences and consumers’ skin 

and hair types. There are colors, like violet for example, that support the appearance 

of pale skin - an effect that is probably not intended by the consumer. [18] suggest 

application of approved color types to build consumer ontologies based on colors and 

enabling recommendations that go beyond the purchase history. Further, the findings 

on the usage of color filters are in line with the study by [16] who find that people 

differentiate themselves through colors within a social group. 

23% of the participants used recommendations from collaborative filters and 6% 

recommendations from the “wear it with”-recommender. About 19% of the users 

clicked on the top seller lists and on “style guide” suggestions.  

Similarly to the previous section, we compared the sample means of used sales 

support systems between the users with high and low trendiness. Table 7 provides the 

summary statistics and shows the results of the one-sided t-tests. Very surprisingly, 

not one person from the high trendiness group used the top seller lists (p < .10) and 
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“wear it with”- recommendations (albeit insignificant group difference). The reason 

that group mean differences are insignificant despite the obvious differences might lie 

in the small sample size and high variances. In contrast, recommendations from col-

laborative filters, banners, “Style guide” and “Occasion/Event”-recommendations led, 

if used, to conversion rates of about 43%, 100%, 50%, and 100%, respectively. Alt-

hough the “wear it with”-recommendations were not so frequently used, they led in 

50% of cases to selection of a product into the final outfit set. 

 provides an overview of the conversion rates for the different sales support sys-

tems, if the support system led to the selection of an item for the final outfit. Although 

19% of the participants click on the top seller lists, the conversion rate amounts to 

0%, regardless of the user’s level of trendiness. This supports our hypothesis that top 

seller lists are not well suited for stores which sell products with identity-signaling 

characteristics as the people try to be unique. This finding has valuable implication 

that the motives to be unique cannot be ignored when implementing sales support 

systems. Similarly, even though 10% of participants clicked on the “New in”-

recommender, the conversion rate amounts to zero.  

Table 7. Group differences in sales support systems usage 

Variable High trendiness Low trendiness P-values one-

sided t-test Mean SD Mean SD 

Number of filters 4.71 5.65 3.79 4.89 0.34 

In-shop  

keyword search 

.86 1.57 1.13 2.27 0.61 

Collaborative 

recommender 

.14 .38 .25 .44 0.72 

„Wear it with“-

recommender 

0 0 .08 .28 0.22 

Top seller lists 0 0 .25 .44 0.08
*
 

Unspecific banners .14 .38 .04 .20   0.18 

New In .14 .38 .08 .28 0.33 

Style Guide .29 .49 .17 .38 0.75 

Occasion/Event .29 .49 .13 .34 0.84 

Season 0 0 .04 .20 0.70 

N 7  24   

 

In contrast, recommendations from collaborative filters, banners, “Style guide” and 

“Occasion/Event”-recommendations led, if used, to conversion rates of about 43%, 

100%, 50%, and 100%, respectively. Although the “wear it with”-recommendations 

were not so frequently used, they led in 50% of cases to selection of a product into the 

final outfit set. 



6 Summary, Conclusions, Limitations, and Further Work 

As many online stores apply sales support systems, the current study evaluates their 

applicability to the apparel industry. For this purpose we conduct video analysis of 

female users’ shopping behavior and gain some interesting insights. We distinguish 

thereby between users with high and low trendiness. Generally, we find that users 

with high trendiness undertake more search steps. Further, we find that most users 

rely more on different sorting and filtering as well as on keyword search tools than on 

personalized and non-personalized recommendations. Online apparel store specific 

tools like style guide, “new in” and occasion specific recommendations were used at 

moderate levels by the study participants. Users with high trendiness did not use top 

seller lists and “wear with it”-recommendations. Moreover, the assistance of top seller 

lists did not lead to the final choice of products (i.e. zero conversion rates). 

Table 8. Conversion rates of used sales support systems 

Sales support system Conversion rate 

Sorting filters 82.60% 

In-shop keyword search 62.50% 

Collaborative recommender 42.86% 

„Wear it with“-recommender 50.00% 

Top seller lists 0.00% 

Unspecific banners 100.00% 

New In 0.00% 

Style Guide 50.00% 

Occasion/Event 100.00% 

Season 0.00% 

 

Our findings allow us to draw implications for practice. Online shops might then 

avoid displaying “Top seller” and “customers who bought this also bought…”along 

the most popular products. Instead, they can try to serve users’ need for uniqueness 

creating unique shopping experiences. As shown in [16] and by our findings, people 

differentiate themselves from others through a choice of different colors. This would 

imply that online stores could extend their assortments by different colors. Generally, 

designers of sales support systems for online apparel stores should be aware and ac-

count for users’ different motives and needs (even opposing like e.g., for social identi-

ty and uniqueness) when buying clothes.  

Our work comes not without limitations. First, the evaluated result set is small. We 

only analyzed 31 shopping videos and the variation between the participants is lim-

ited. Hence, our findings indicate only a weak trend in the usage difference of sales 

support systems by users with different levels of need for uniqueness. Further, the 



users might behave in a constructed setting differently as in reality. Finally, there 

might be other factors which might influence users’ buying behavior. 

Nevertheless, we provide a contribution to current research by deriving improve-

ment opportunities for sales support systems from our study based on video analysis. 

A task for future research would be then to extent our research to a greater and diver-

gent range of participants. As the next step, we plan to conduct a series of computer-

assisted laboratory experiments using clickstream analysis to investigate the phenom-

ena which we revealed in this explorative study more deeply. 
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