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Abstract. The use of electric vehicles as reasonable alternatives to conventional 

vehicles with combustion engines will become more attractive in the near fu-

ture. In addition, the ongoing energy turnaround increases the required amount 

of regulation reserves to stabilize the power grid. In this paper, we employ an 

Energy Informatics approach to construct an IS-centric business model to coor-

dinate the charging processes of thousands of electric vehicles and sell this ag-

gregated storage at an energy market. Furthermore, we analyze the effect of 

various management strategies for the IS artifact. We demonstrate that the busi-

ness model can yield high revenues by utilizing electric vehicles as distributed 

storage devices for frequency regulation. This additional revenue stream for ve-

hicle owners further increases the appeal of this sustainable technology. 

Keywords: Sustainability, Green IT/IS, Business model, Electric vehicles 

1 Introduction 

The use of electric vehicles
1
 (EV) as reasonable alternatives to conventional vehicles 

with combustion engines will become more attractive in the near future. In recent 

years, electrified transportation has expanded enormously due to an increasing scarci-

ty of fossil fuels, such as oil, which induces higher prices. The willingness to reduce 

CO2 emissions as well as millions of government subsidies have made electric mobil-

ity more attractive. In addition, the establishment of an extensive charge point infra-

structure has raised the sales figure of pure electric vehicles in the United States by 

more than 500% within a single year (Electric Drive Transportation Association 

2013). It is anticipated that approximately one million EVs will drive on the roads of 

various countries like the USA, Germany, UK, or China by 2020 (The White House 

2011; Federal Government of Germany 2009; HM Government 2009). While current-

ly, charging sessions strain the power grid just marginally, handling additional energy 

demand caused by thousands of charging EVs will become one of the main challenges 

in the near future (Lopes et al. 2011). 

At the same time, incisive events like the nuclear disaster in Fukushima speed up 

the energy turnaround in many countries. Because of the substantially increased gen-

                                                           
1 In the context of this paper, we use electric vehicles for all kinds of purely electrified cars. 



eration through renewable sources like wind and solar power, the power grid has to 

deal with very volatile amounts of electricity during the course of a day. Because 

renewable energies depend on exogenous environmental circumstances, the power 

grid has to adjust to sudden supply shocks if, for instance, the weather changes in an 

unanticipated way. These supply shocks cause the grid frequency to deviate from its 

balanced state of 50 Hz. Therefore, frequency regulation (FR), which already is an 

important continuous process to stabilize the electrical power grid by using additional 

energy reserves, will increase in relevance. While minor frequency disturbances can 

be compensated by small adjustments in power plants, large deviations have to be 

corrected using special resources. This process needs to be executed in both direc-

tions. To rebalance increased frequencies the overall energy demand has to be in-

creased or the power supply must be reduced (negative regulation). On the other hand, 

to balance the power grid during a decreased frequency level, energy consumption has 

to be reduced or supply has to be increased by feeding in additional energy reserves 

(positive regulation). 

Thinking about the aforementioned changes in the transportation and energy sector 

leads us to the following questions, which drives the subsequent research: Is it possi-

ble to combine these changes in order to establish a profitable business? Since electric 

cars store electricity, these vehicles are naturally distributed storage devices and can 

be used for frequency regulation. In fact, a bi-directional energy transfer enables the 

option to draw current during increased frequencies and provide electricity to the grid 

at decreased frequencies (Hinkle et al. 2011). This technology is called vehicle-to-grid 

(V2G). While a single EV only has a marginal effect on the power grid, an aggrega-

tion of a reasonable amount of vehicles must be achieved to participate in the regula-

tion market. 

In this paper, we introduce a business model for the coordinated aggregation of 

EVs as distributed storage devices to enter the market for frequency regulation. 

Thereby, we bridge the gap between adequate charging of EVs, while at the same 

time generating revenue from providing grid regulation. We apply known scheduling 

strategies to the new problem of coordinated charging of electric vehicles. This pro-

cedure is classified as “Exaptation” of the Knowledge Contribution Framework of 

Shirley and Alan (2013), while the business model itself directly contribute to the 

emerging IS research field of Energy Informatics as introduced by Watson et al. 

(2010). 

The core of our business model consists of an information system, illustrated in 

Figure 1, that acquires and analyzes data on the usage of EVs on the one hand and the 

regulation market behavior on the other hand. It processes this data subject to con-

straints posed by the physical system and employs management strategies to derive 

charging strategies that attempt to maximize revenues. For evaluation of the business 

model, we use more than 34 million privately used EV data points including, for in-

stance, GPS coordinates and state of charge (SoC) values to construct a realistic envi-

ronment. The data was collected and evaluated in cooperation with an industry part-

ner. Furthermore, we assess the profitability of the business model within the German 

Control Reserve Market (GCRM). We use historical data regarding the actual re-

quired energy demands and the paid regulation prices from 2012, accessed from Vat-



tenfall Europe Information Services (2013). Eventually, we are able to show the cur-

rent potential and benefits from aggregating EVs for frequency regulation to the own-

ers of the vehicles, as well as the operator of the business model. Thereby, we show 

that IS research as a whole can provide major contributions towards the application of 

known technologies to new problems. 

Hence, this paper investigates the following research questions: 

• How can IS support a business model for the utilization of electric vehicles 

as distributed storage devices in the energy market? 

• To what extent can different management strategies for vehicle charging 

increase the revenues of this business model? 

• What revenues can be generated for the vehicle owners and what are the 

incentives to participate in this business model? 

 

 

Fig. 1. Positioning of the Information Framework in the Energy Market 

The paper is structured as follows. The next section presents an overview of past 

research directly related to this paper. Afterwards, we define the business model and 

the mathematical description of core information system. This is followed by an in-

troduction of various strategies to charge EVs concurrently, taking into account dif-

ferent user and grid related constraints. Afterwards, we determine simulation settings 

containing model constraints, EV properties, and customer agreements that have to be 

fulfilled by the management strategy. This is followed by a presentation of our simu-

lation results, which also allow inferences on the profitability and feasibility of this 

approach for the near future. Finally, we conclude this paper and provide an outlook 

on our upcoming research. 

2 Related Work 

The contribution of IS research towards a sustainable energy paradigm has become 

more pronounced in recent years. Particularly Watson et al. (2010) have drawn atten-

tion to applying IS techniques to increase energy efficiency and to develop sustaina-

ble IT-centered business models. Employing skills from Computer Science, Electrical 



Engineering, and certainly Information Systems Energy Informatics links different 

research fields to investigate a topic of enormous relevance to society. Kossahl et al. 

(2012) analyze the domain of Energy Informatics and present an overview of existing 

literature and research agendas for IS and business studies. They find that particularly 

the potential of electric mobility still needs to be addressed employing the toolbox of 

IS research. Corbett (2011) emphasizes the importance of communication technology 

and information systems and argues that this will play a central role in the realization 

of smart grids, in which electrical infrastructure is supported by information and 

communication technology. In [Removed] we have already analyzed the technical and 

market related requirements to use EVs to participate in the frequency regulation 

market, which form the core of the IS-centric business model presented in this paper. 

In addition to IS research, scholars of other disciplines have investigated the poten-

tial of EVs for ancillary services, such as frequency control, as well. One of the first 

pilot projects trying to apply such an approach was realized by Brooks (2002) who 

finds that EVs are well suited for frequency regulation, because of their short ramp-up 

time in contrast to conventional regulation sources. Depending on individual driving 

activities,  annual gross revenues from $ 1,000 to $ 5,000 can be achieved. Further-

more, Kempton and Tomić (2005a, 2005b) compare different energy markets and 

formulate fundamentals to calculate revenues from using EVs for regulation purposes. 

They argue that vehicles are parked during 96% of the day. Thereby, EVs are able to 

generate annual revenues of $ 2,554 per vehicle from frequency regulation. However, 

the high volatility of regulation energy prices is not addressed in their research. Kam-

boj et al. (2011) estimate revenues of $ 1,200 to $ 2,400 per year, assuming a vehicle 

participation of 15 hours a day and a regulation price twice as high as normal. How-

ever, in all of the above publications there are no charging management strategies 

applied to maximize revenues. We argue that this is one of the main flaws in as-

sessing the results from previous studies on the use of EVs for frequency regulation. 

Research on the coordination of charging processes of EVs has been discussed 

quite extensively (Flath et al. 2013; Schuller et al. 2012; Su and Chow 2012; 

Sundstroem and Binding 2012), but without reference to a particular business model. 

To fulfill power grid constraints even with a high penetration of EVs, Han et al. 

(2012) proposes two management approaches that optimize charging schedules and 

charging rates. Additionally, to consider deterministic arrival, departure, and charging 

characteristics, Chen et al. (2012a; 2012b) formulate a deadline-scheduling problem 

for EVs. A utility based pricing scheme was simulated with Earliest-Deadline-First 

and First-Come-First-Served strategies to fulfill customers’ requirements. Further-

more, Flath et al. (2012a) formalize the coordination of charging processes as a mini-

mum revenue management problem and simulate this approach within a stochastic 

setup. In a further research, Flath et al. (2012b) formulate different charging strategies 

according to their requirements about future price and upcoming trip information. 

Their evaluation shows that even with low information requirements, individual ener-

gy costs can be reduced by using charging strategies. They also found that for charg-

ing management accurate trip information is more important than electricity price 

forecasts. Furthermore, Sanchez-Martin and Sanchez (2011) focus on optimal charg-

ing management for EVs and Plug-in Hybrid Electric Vehicles at parking facilities. 



Unfortunately, in almost all publications, business models are neither based on real 

data nor evaluated with real market prices for frequency regulation. Therefore, the 

calculated revenues of the aforementioned research fluctuate from 34 Euros to several 

thousands. Hence, one of our main contributions is to perform a simulation based on 

an adequate benchmark set for both EV usage behavior and regulation prices, utilizing 

a comprehensive information system for charging management. 

3 Business Model 

3.1 Model Architecture 

In the following section, we introduce a model including an information system, 

which is responsible for decision making illustrated by Figure 2. The model is based 

on the assumption that each vehicle participates in the V2G regulation program, once 

it enters a parking lot in the parking facility. As an incentive, the vehicle owner will 

be rewarded with cheap electrical energy. A parking facility has the necessary billing 

infrastructure already in place, which only needs to be adapted. The IS-operator offers 

the aggregated energy reserves at the regulation market (1). The market operator may 

purchase the offered control reserves as an option. If this energy is requested to stabi-

lize the power grid after a frequency disturbance, the aggregator uses the connected 

vehicles to provide regulation (2). At this point, the charging control unit (CCU) se-

lects a reasonable number of EVs, depending on strategy and customer constraints 

(3). Assuming that the current EV reserves are not sufficient, conventional control 

reserves can be used in addition to support the regulation process (3). Although this 

possibility is considered by the model architecture, we will not go into further details 

for brevity. Finally, the aggregator is paid for the provided regulation service by the 

energy market (4). 

 

 

Fig. 2. Business model architecture 

In the further course of this paper we will focus primarily on step 3 and 4, the ac-

quisition of energy and the generation of an optimal revenue through EVs, because 



the market position is already described in detail by [Removed]. More importantly, 

bringing up enough energy to participate at the GCRM, while fulfilling customer 

charging requests, is an essential requirement for deriving a feasible business model. 

3.2 Mathematical Description 

The IS-operator has to react immediately to current grid conditions, once the of-

fered control reserves are requested by the energy market. As mentioned above, a 

single instance, the charging control unit, monitors the charging process of each vehi-

cle on the one hand and decides which EVs are used for regulation on the other hand 

(see Figure 2). Hence, the CCU is also responsible for the power management of the 

parking facilities by economically providing power to parked vehicles. In order to 

operate each EV separately, the CCU sends a signal to the respective CPs within its 

network. To formulate such a coordination scheme, we define each CP as a 5-tuple 

(∑, 𝑆, 𝑠0, 𝛿, 𝐹), with 

Σ = {𝑖0, 𝑖1, 𝑖2, 𝑖3, 𝑖4}, 
𝑆 = {𝑠0𝑖𝑑𝑙𝑒 , 𝑠1𝑐ℎ𝑎𝑟𝑔𝑒 , 𝑠2𝑟𝑒𝑔−𝑢𝑝, 𝑠3𝑟𝑒𝑔−𝑑𝑜𝑤𝑛 , 𝑠4𝑑𝑟𝑖𝑣𝑒}, 

𝑠0 = 𝑠0𝑖𝑑𝑙𝑒 , 

𝛿 ∶  𝑆 × Σ → 𝑆, 

𝐹 = {𝑠4𝑑𝑟𝑖𝑣𝑒}. 

(1) 

Vehicles will be initialized with 𝑠0𝑖𝑑𝑙𝑒 , the idle state, and finish the parking session 

in the final state 𝑠4𝑑𝑟𝑖𝑣𝑒. Depending on the coordination by the CCU, an EV will be 

set to the charge state 𝑠1𝑐ℎ𝑎𝑟𝑔𝑒  or to one of the regulation states 𝑠2𝑟𝑒𝑔−𝑢𝑝 , 

𝑠3𝑟𝑒𝑔−𝑑𝑜𝑤𝑛 , if frequency regulation is required. By applying the state transition func-

tion 𝛿, the CP changes its current state to the next state with respect to the input signal 

𝑖 ∈ Σ. Further, we define an electric vehicle 𝐸𝑘 as the following 4-tuple 

𝐸𝑘 = {𝐸𝑐𝑎𝑝 , 𝐸𝑆𝑜𝑐 , 𝐸𝑝𝑇𝑖𝑚𝑒 , 𝐸𝑝𝐷𝑢𝑟}, (2) 

with a constant capacity 𝐸𝑐𝑎𝑝, an initial state of charge 𝐸𝑆𝑜𝐶 , a start time value 𝐸𝑝𝑇𝑖𝑚𝑒 

and a parking duration value 𝐸𝑝𝐷𝑢𝑟. 

For each state the model calculates an individual revenue depending on the state 

duration, CP power, price for providing regulation, and price for the charged electrici-

ty. Hence, depending on a current state 𝑠𝑖 ∈ 𝑆, at a specific time 𝑡𝑗, the regulation 

algorithm calculates for each vehicle 𝐸𝑘, the corresponding revenue 𝑅(𝑠𝑖 , 𝑡𝑗, 𝐸𝑘), as 

follows 

𝑅(𝑠0𝑖𝑑𝑙𝑒 , 𝑡𝑗 , 𝐸𝑘) = 0, (3) 

𝑅(𝑠1𝑐ℎ𝑎𝑟𝑔𝑒 , 𝑡𝑗, 𝐸𝑘) = 0, (4) 

𝑅(𝑠2𝑟𝑒𝑔−𝑢𝑝, 𝑡𝑗 , 𝐸𝑘) =

{
 
 

 
 2 ⋅ ∫ (𝐶𝑃𝑃(𝑡) ⋅ 𝑝𝑟) 𝑑𝑡,

𝑡1

𝑡0

if st−1  =  𝑠1𝑐ℎ𝑎𝑟𝑔𝑒

∫ (𝐶𝑃𝑃(𝑡) ⋅ 𝑝𝑟) 𝑑𝑡,
𝑡1

𝑡0

otherwise

 (5) 

𝑅(𝑠3𝑟𝑒𝑔−𝑑𝑜𝑤𝑛 , 𝑡𝑗, 𝐸𝑘) = ∫ (𝐶𝑃𝑃(𝑡) ⋅ (𝑝𝑟 + 𝑝𝑒)) 𝑑𝑡
𝑡1

𝑡0

, (6) 



with 𝐶𝑃𝑃(𝑡) as the actual CP power at 𝑡 between the start, 𝑡0, and the end, 𝑡1, of 

the respective state duration. In Equation 5 and 6 the revenue is determined by 𝑝𝑟 for 

a given positive or negative regulation price on the one hand and 𝑝𝑒 representing the 

normal electricity price on the other hand. Since Equation 6 defines the negative regu-

lation state, the IS-operator is able to achieve revenue from both the vehicle owner for 

charged electricity and the energy market for regulate the grid frequency. To calculate 

the total revenue for a sequence of state transitions, the following recursive function is 

applied 

𝑅(𝑠𝑗 , 𝑡𝑗 , 𝐸𝑘) =  

{
 
 

 
 
𝑅(𝑠𝑖−1, 𝑡𝑗−1, 𝐸𝑘) + 0,                                      

𝑅(𝑠𝑖−1, 𝑡𝑗−1, 𝐸𝑘) + 𝑅(𝑠2𝑟𝑒𝑔−𝑢𝑝, 𝑡𝑗, 𝐸𝑘),    

𝑅(𝑠𝑖−1, 𝑡𝑗−1, 𝐸𝑘) + 𝑅(𝑠3𝑟𝑒𝑔−𝑑𝑜𝑤𝑛 , 𝑡𝑗, 𝐸𝑘),

𝑅(𝑠𝑖−1, 𝑡𝑗−1, 𝐸𝑘) + 0,                                      

 

(7) 

using an initial timespan 𝑡0, … , 𝑡𝑚  with 𝑡0 = 𝐸𝑘,𝑝𝑇𝑖𝑚𝑒  and 𝑡𝑚 = 𝐸𝑘,𝑝𝑇𝑖𝑚𝑒 + 𝐸𝑘,𝑝𝐷𝑢𝑟 , 

an initial revenue of 𝑅(𝑠0, 𝑡0, 𝐸𝑘) = 0 and a final revenue of 𝑅(𝑠4𝑑𝑟𝑖𝑣𝑒 , 𝑡𝑚, 𝐸𝑘) = 0. 

Starting at 𝑖, 𝑗 = 1, while 𝑠0 is the initial state, according to Definition 1. 

Hence, we are able to translate each parking session into a sequence of state transi-

tions and, thus, calculate for each state the corresponding revenue. According to the 

above recursive function, the last state determines the total revenue of the parking 

session. However, the forecast of future events is limited and past decisions regarding 

the next state cannot be reversed in reality. Thus, finding a sequence of state transi-

tions to determine the maximum possible revenue is a major challenge. In reality, a 

precise forecast depends on various environmental conditions and is not achievable in 

an appropriate manner. Nonetheless, an accurate forecast regarding frequency devia-

tions is only important for the positive regulation case. This is because discharging 

EVs to free more capacity, while there is no need for regulation, is not practicable in 

any case. Due to various uncertainties like the rather stochastic behavior of frequency 

deviations on the one hand and uncertainties in accurate parking duration and driving 

behavior forecasts on the other hand (Goebel and Voß 2012; Feixiang et al. 2011), it 

is hardly possible to find an optimal sequence of state transitions. 

4 Electric Vehicles Charging Strategies 

In this section, we introduce different management strategies to coordinate the 

charging process of EVs concurrently. Each of the following strategies preferred dif-

ferent vehicles based on their current properties. All properties were calculated based 

on real data. We collected for example GPS coordinates and the battery state of 

charge of real electric vehicles in a fine granulated manner (minutely basis). We de-

termine a specific schedule that handles existing energy resources, while taking into 

account the charging urgency of certain EVs. All strategies are commonly known in 

disciplines like computer science to schedule different processes and are now applied 

to a new problem. In terms of costs, we will not consider any investment costs, since 

they do not differ across the subsequent strategies. While they must be considered 

when assessing the overall profitability of the business model, this is not necessary 



when comparing different charging strategies regarding pure revenue. Operational 

costs, such as charge point maintenance and battery degradation, are likely close to 

constant across charging strategies, as well. Furthermore, costs, such as battery degra-

dation, depend on factors like the type of the battery, temperature, or the current of 

the charging process itself. 

Figure 3 illustrates the need of charging strategies under certain conditions using a 

simple example. We see eight EVs with different state of charges and parking dura-

tions. All of these vehicles are connected to the grid and request energy from the 

parking facility. However, we assume that the operator is only able to provide full 

power to four of these EVs at the same time. The reason why it is quite likely to need 

a prioritization of charging requests in the near future is that once several thousand 

EVs attempt to charge concurrently, the current power grid is not able to provide such 

sudden spike of energy demand. Thus, to prevent a breakdown the power outlet of 

each parking facility in our framework is limited. Considering driving requirements, 

the empty EVs should be charged first. However, considering to the IS-operator’s 

total revenue, EVs with low batteries cannot be used for positive regulation. Parking 

time is another critical instance because if a long parking duration is given, the EV 

charging request can be shifted to a later point. Furthermore, EVs will be implicitly 

prepared for upcoming frequency disturbances, depending on the charging manage-

ment strategy. 

 

 

Fig. 3. Charging management example 

One of the simplest ways to manage charging requests is first-come-first-served 

(FCFS). In this strategy, EVs will be charged in the order in which they enter the 

parking facility. Hence, the only vehicle property which determines the charging 

order (CO) of a number of EVs is the start time value 𝑝𝑇𝑖𝑚𝑒 . We define the CO as 

follows 

𝐶𝑂𝐹𝐶𝐹𝑆 = 𝐸1,𝑝𝑇𝑖𝑚𝑒 < 𝐸2,𝑝𝑇𝑖𝑚𝑒 < ⋯ < 𝐸𝑛,𝑝𝑇𝑖𝑚𝑒 (8) 

The parking facility enables energy transfers for requesting CPs as soon as the 

maximum power utilization is reached. The CCU stores all remaining charging re-

quests in a queue and handles them gradually, once a sufficient amount of resources is 

available again. Since FCFS does not consider any other vehicle properties like the 

state of charge, we use this strategy as a baseline to compare the subsequent strate-

gies. 



The earliest-deadline-first (EDF) management considers the duration of each park-

ing session. In this strategy, the charging request of vehicles with short time con-

straints are enabled first. Thus, the departure times of customers are considered for 

scheduling. Therefore, the algorithm uses the parking duration property 𝑝𝐷𝑢𝑟  to de-

cide which EVs will be charged. The main advantage of this strategy is the prioritiza-

tion based on the customers time constraints. Note that because short charging ses-

sions are preferred, EDF results in high frequently changes. Vehicles with long park-

ing times will be shift to a later point. The charging order using EDF is determined by 

the property 𝐸𝑝𝐷𝑢𝑟 as 

𝐶𝑂𝐸𝐷𝐹 = 𝐸1𝑝𝐷𝑢𝑟 < 𝐸2𝑝𝐷𝑢𝑟 < ⋯ < 𝐸𝑛𝑝𝐷𝑢𝑟. (9) 

The lowest-SoC-first (LSoCF) management is the first strategy that considers the 

battery status of each vehicle. The charging order is determined by the SoC values in 

such a way that the EV with the lowest battery will be charged first. This strategy is 

very reasonable regarding the importance of driving purpose for the vehicle owner, 

since EVs with very low batteries have to be charged in order to leave the parking 

facility again. In contrast to EDF charging, this strategy entails low frequently chang-

es, due to preference of low batteries, which in turn results in long charging activities. 

The charging order CO using LSoCF is determined by the property 𝐸𝑆𝑜𝐶  as follows 

𝐶𝑂𝐿𝑆𝑜𝐶𝐹 = 𝐸1𝑆𝑜𝐶 < 𝐸2𝑆𝑜𝐶 < ⋯ < 𝐸𝑛𝑆𝑜𝐶 . (10) 

The highest-SoC-first (HSoCF) strategy is the counterpart to the abovementioned 

LSoCF strategy. This charging management considers high battery status of custom-

ers EVs and prioritizes based on the SoC value. Similar to EDF the frequency of 

changes will be quite high, due to short charging durations on average. This schedul-

ing procedure may not be reasonable for vehicle owners, due to the deprivation of EV 

with low batteries. However, the main advantage of this charging management is that 

more positive regulation resources will be available in contrast to any other strategy. 

This is because EVs with low battery capacity cannot be used for positive regulation 

considering customers driving requirements. In simple terms, if the battery is low on 

reserves, a vehicle owner would not offer the remaining energy to the market; other-

wise the vehicle would not be able to leave the parking lot. The charging order CO 

using HSoCF is determined by the property 𝐸𝑆𝑜𝐶  as follows 

𝐶𝑂𝐻𝑆𝑜𝐶𝐹 = 𝐸1𝑆𝑜𝐶 > 𝐸2𝑆𝑜𝐶 > ⋯ > 𝐸𝑛𝑆𝑜𝐶 . (11) 

5 Electric Vehicle Properties and Constraints 

5.1 Capacity 𝑬𝒄𝒂𝒑 

The maximum capacity of each EV is given by 𝐸𝑐𝑎𝑝 and depends on the vehicle 

type. Table 1 shows the different types we use within the simulation based on proba-

bility distributions. The selection was chosen in a way that the differences of the indi-

vidual capacities differ substantially. Moreover, these vehicle types are already in 

series production and the model can be freely adjusted to current or future conditions. 

Since other vehicles on the market differ only slightly with respect to capacity, the 

simulation output would change only marginally using a larger selection of EV types. 



 

Table 1. Vehicle Types 

Type Capacity 𝑐𝑎𝑝 

(kWh) 

Probability 

(%) 

Mitsubishi i-

MiEV
2
 

16 35 

Nissan Leaf
3
 24 35 

Mini E
4
 35 29 

Tesla Roadster
5
 56 1 

5.2 State of Charge 𝑬𝑺𝒐𝑪 

The initial state of charge value 𝐸𝑆𝑜𝐶  declares the current battery capacity, once the 

vehicle has entered a parking lot. In order to derive a probability distribution for the 

simulation, we determine the SoC values based on a histogram obtained from our data 

set. Figure 4 shows the calculated distribution for a quantity of 40,000 EVs. As we 

can see, the distribution shows an increased probability for a SoC > 50%. This results 

from the evaluation of the data points regarding EV usage behavior. Thus, the EVs in 

the simulation have 𝐸𝑆𝑜𝐶  values between 50% and 90% with particularly high proba-

bilities. 

 

Fig. 4. Initial state of charge distribution 

5.3 Parking Time 𝑬𝒑𝑻𝒊𝒎𝒆 

The parking time 𝐸𝑝𝑇𝑖𝑚𝑒  of each vehicle defines the initial starting time at which 

the customer connects the EV to the grid. Hence, this value also determines the occu-

                                                           
2 http://www.imiev.de/docs/iMiEV-daten.pdf, accessed 8 August 2014. 
3 http://www.nissanusa.com/electric-cars/leaf/versions-specs/, accessed 8 August 2014. 
4 http://www.mini.co.uk/about-us/miniefficiency/mini-e/, accessed 8 August 2014. 
5 http://www.teslamotors.com/en_AU/roadster/technology/battery, accessed 8 August 2014. 

http://www.imiev.de/docs/iMiEV-daten.pdf
http://www.nissanusa.com/electric-cars/leaf/versions-specs/
http://www.mini.co.uk/about-us/miniefficiency/mini-e/
http://www.teslamotors.com/en_AU/roadster/technology/battery


pancy rate of the parking facilities. To make the simulation as realistic as possible we 

used 37 different occupancy rates of urban parking facilities in Germany with more 

than 15,000 parking lots in total. Figure 5 illustrates two frequently used parking fa-

cilities in Frankfurt. Both figures show an almost normally distributed occupancy rate 

between 8 a.m. to 20 p.m., although the location as well as the overall number of 

parking lots differs. 

 
(a) 

 
(b) 

Fig. 5. Occupancy rates of two frequently used parking facilities in Frankfurt 

5.4 Parking Duration 𝑬𝒑𝑫𝒖𝒓 

The parking duration 𝐸𝑝𝐷𝑢𝑟  is the vehicle property, which declares the parking 

time during the simulation process. This value depends on many different user and 

facility related conditions. For example, the average parking duration at a central 

station is quite low, because central stations are typically characterized by arriving 

and departing passengers and, thus, show a high vehicle fluctuation on average. In 

contrast to that, parking lots located near malls are mainly used for shopping which 

leads to an increased parking duration. Hence, the purpose of parking and the location 

of the parking lot are two main factors influencing the EV property 𝐸𝑝𝐷𝑢𝑟. As we are 

only able to estimate the exact parking duration based on the calculated occupancy 

rates and 𝐸𝑝𝐷𝑢𝑟 depends on various user, environmental, as well as time related fac-

tors, we use a Chi-square distribution, illustrated by Figure 6. The distribution charac-

terizes a frequently used parking facility with parking durations between 20 and 60 

minutes. However, parking durations above 2h are also possible according to this 

distribution. Both the average and the maximum values depend on the chosen degree 

of freedom (DF). The DF allows to increase the overall parking duration and respec-

tively the vehicle fluctuation rate within the simulated parking facility. Note that an 

increased DF also results in an increased participation time in the V2G regulation 

approach. 

Finally, we are able to generate a predefined number of EVs based on the above 

properties. For example an EV created during simulation could have the properties 

𝐸𝑉1 = [EVcap = 24kWh, EVSoC = 76%, EVpTime = 1: 15 p.m. , EVpDur = 56min].  

As we can see, the maximum capacity of 𝐸𝑉1 is 24kWh, thus, the generated vehicle is 

a Nissan Leaf. The initial SoC is 76% and the vehicle enters the parking facility at 



1:15 p.m. The total parking duration is 56 minutes; hence, the IS-operator obtains an 

additional resource between 1:15 p.m. and 2:11 p.m. to regulate the power grid. 

 

 

Fig. 6. Initial parking duration distribution 

6 Simulation Results 

We simulated the introduced business model within the German Control Reserves 

Market to achieve a realistic scenario regarding timespan, duration, and magnitude of 

grid frequency deviations. Once a disturbance occurs and the energy market requested 

control reserves to balance the power grid, we determine the actual paid regulation 

price based on historical data. Thereafter, the algorithm calculates the revenue for the 

business operator based on the available regulation resources. Each EV within the 

parking facility will be considered with respect to the introduced management strate-

gies. 

Table 2 provides the simulation outcome concerning the total revenue as well as 

the maximum and average revenue per vehicle and day, respectively year. Two dif-

ferent levels of charging power – 3.6kw and 25kw – were used, while the highest 

revenues for 25kw charging is highlighted in green. As we can see, the highest reve-

nue for the business operator can be achieved by applying HSoCF. This charging 

management is approximately 20% higher than LSoCF, which provides the lowest 

total revenue (positive regulation). Such a result is caused by the fact that in contrast 

to other strategies most of the charged electricity can be used for positive regulation. 

The simulation also shows that charging management has just a negligible influence 

on negative regulation revenues. This is because we do not assume any restrictions in 

charging EVs batteries, since a vehicle owner would not complain about obtaining 

electricity. Hence, in contrast to positive regulation amounts the overall revenue of 

negative regulation always remains the same no matter which charging management 

is selected. Concerning the individual EV revenues per day and year, the best results 



are obtained by the LSoCF strategy. If we look at the baseline strategy FCFS, partici-

pating customers are able to obtain approximately € 0.66 to € 35 for negative and € 

3.75 to € 104 for positive regulation on a daily base. The standard deviations (SD) are 

€ 0.79 to € 4.53 for negative and € 3.36 to € 11.63 for positive regulation. The high 

variations largely depend on the day, parking time, duration, and initial SoC values of 

the EVs as well as on the rarity of frequency disturbances itself. Furthermore, a max-

imum annual gross revenue per EV of approximately € 1,081 for negative and € 2,970 

for positive regulation is calculated. These results confirm rougher estimates of previ-

ous studies (Brooks 2002, Kempton and Tomić 2005a, 2005b, Kamboj et al. 2011). 

The high deviations between average and maximum revenues are caused by the fluc-

tuating occurrence of frequency deviations. Therefore, the requested amounts of con-

trol reserves and, thus, the prices for providing regulation strongly differ. We found 

that FR shows a rather stochastic behavior including extraordinary peaks in both di-

rections. As a result, the major revenues are generated only on a few days, while also 

the revenues of customer’s EVs substantially depend on the time and date vehicles are 

connected to the grid. 

The simulation results can serve as an incentive to buy electrified cars and to in-

crease the sales figures of EVs. The model presented in this paper also provides an 

opportunity for new businesses to offer EV reserves within a micro energy market. 

This in turn opens a possibility for EV owners to offer their energy reserves in this 

micro market and to eventually generate revenues with parked cars. On the other 

hand, such a model is able to aggregate a large amount of regulation resources to 

secure the power grid. Particularly during times of a rapidly progressive energy turna-

round, due to the integration of a large number of renewables like wind and solar 

power, the provision of a reasonable amount of control reserves is one of the main 

challenges faced today. The business model introduced in this paper not only enables 

an opportunity to integrate EVs into the power grid, but also opens an option to ag-

gregate a large amount of energy to stabilize the grid. 

Table 2. Simulation results of each charging management strategy 

FCFS EDF LSoCF HSoCF 

Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos. 

Total revenue per EV and year (25kw first row; 3.6kw second row) 

14.66k 36.82k 15.35k 39.88k 15.29k 34.21k 14.86k 42.85k 

8,770 17.70k 8,406 17.9k 8,285 17.96k 8,421 18.08k 

Maximum revenue per EV and  year (25kw first row; 3.6kw second row) 

1,081 2,970 1,145 3,112 1,146 2,537 1,105 3,934 

627.88 2,189 656.56 2,312 602.43 2,404 669.46 2,308 

Average revenue per EV and year (25kw first row; 3.6kw second row) 

186.85 787.73 203.03 753.25 197.05 822.52 184.54 681.60 

64.45 136.66 63.48 142.14 62.68 139.52 66.03 139.21 

Maximum revenue per EV and day (25kw first row; 3.6kw second row) 

35.18 103.97 31.64 93.75 36.75 112.5 20.47 88.71 

10.8 35.53 12.87 29.60 13.85 32.76 16.20 21.60 

Average revenue per EV and day (25kw first row; 3.6kw second row) 



0.66 3.75 0.72 3.50 0.69 4.11 0.66 3.20 

0.22 0.58 0.22 0.58 0.21 0.59 0.23 0.59 

 

7 Conclusion 

In this paper, we have presented a business model to monitor charging processes of 

thousands of electric vehicles, while achieving high revenues by utilizing EVs as 

distributed storages for frequency regulation. We collected and analyzed millions of 

data points regarding the usage of EVs to derive realistic assumptions for our simula-

tion. We evaluated our business model within a real energy market using millions of 

historical data points concerning the amount of requested reserves and the prices paid 

for providing regulation. 

By applying different management strategies, we are able to show increasing bene-

fits for the vehicle owners and the business operator. Both operator and customer 

incentives were analyzed to find an adequate compromise between regulation out-

come and vehicle workload. It turns out that the HSoCF strategy generates the highest 

revenue for the business operator, which is up to approximately 20% higher than 

LSoCF, the strategy with the lowest revenue in total. We can see that there is a crucial 

difference in revenues among all strategies considering positive regulation. Consider-

ing the vehicle owner’s driving requirements, preferring charging requests of EVs 

with high state of charges is not practicable in any case. In addition, customer reve-

nues for vehicle per day or year are rather average, in contrast to the other strategies. 

Nevertheless, the highest customer related revenues on average would be achieved by 

applying the LSoCF strategy. With an outcome of approximately € 0.69 for negative 

and € 4.11 for positive regulation per day, the participation is quite profitable for EV 

owners. Although, we outlined the outcomes for different charging strategies inde-

pendently from costs, our simulation shows the theoretical potential of EVs participat-

ing in the energy market. 

A total outcome of more than one thousand euro per year for providing negative 

frequency regulation can be used for business strategies to increase the sales figures 

of EVs. However, our analysis shows that most of the revenue was generated only on 

a few days in the course of the year. This is because frequency regulation is a process 

characterized by major peaks and only at these peak-times prices for regulation are 

extraordinary high. Furthermore, strong frequency disturbances occur in both direc-

tions, thereby enabling revenues of up to € 1.50 per kWh, not only by providing elec-

tricity to the grid, but also by drawing electricity from the grid to the EV. 

In our future research we will include costs into our consideration to develop a 

comprehensive business model. Such costs include increased battery degradation, as 

well as investment and maintenance costs of the CP infrastructure. Furthermore, we 

will explore charging management strategies that combine elements of those present-

ed in this paper and investigate their revenue effects. 
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