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Abstract. The amount of electrical energy consumed by Cloud computing re-

sources keeps rising continuously. To exploit the full potential of reducing the 

carbon footprint, technical optimization of data center load and cooling distribu-

tion is not sufficient. We propose a method that motivates Cloud service pro-

viders to invest in energy-efficient infrastructure, which then allows for increas-

ing revenue. The differentiation between conventional and green services offers 

the possibility to apply price discrimination approaches known from Revenue 

Management literature. Applying bid-price controlled pricing for the provider’s 

decision on accepting an incoming request bears the potential of increased rev-

enue. We demonstrate the efficacy of the developed artifact through an experi-

mental evaluation for various settings of supply and demand. 

Keywords: Cloud Computing, Revenue Management, Energy-efficiency, Bid-

Price Control 

1 Introduction 

Since the amount of IT devices and their electrical energy consumption are continu-

ously increasing [1], a lot of efforts dedicated to GreenIT have been carried out to 

reduce the carbon footprint [2]. Energy-aware computation has spread further since 

the advent of Cloud computing with its data centers epitomizing the huge amount of 

energy consumed by today’s IT. The literature already provides methods to increase 

energy efficiency on a technical level [3]. From an economic perspective, however, 

there is additional potential of reducing the carbon footprint by bringing the optimal 

set of contractors together. 

Business practitioners are beginning to realize the importance of sustainability [4] 

and recent studies show strong evidence that the willingness to pay for green labeled 

products is higher than for conventional ones [5]. An increasing number of Cloud 

service providers, e.g. green.ch and GreenQloud, are propagating the carbon free 

resource consumption of their offered services. Various levels of willingness to pay 

for contractually guaranteed energy-efficient Cloud service provision bear potentials 

to increase the providers’ revenues by applying price discrimination methods. As 

these Cloud service providers don’t reveal their internal pricing strategy, we found no 

evidence that this green aspect is also used for price discrimination. Green resources 



allow Cloud service providers to offer green services, but may also host services for 

which no special energy clause has been included in the service level agreement. For 

the Cloud service provider, this versatility leads to the decision problem whether to 

accept an incoming request that has to be hosted on green resources, though it 

wouldn’t be necessary from a contractual perspective. Each new contract binds re-

sources also in future time periods, and thus may hinder future requests with a higher 

willingness to pay for green services. Fig. 1 shows a brief example of two potential 

service consumers that request services from a provider, both with different prioritiza-

tions on the energy-efficiency. The provider on the other hand has two different kinds 

of resources at disposal to deliver contracted services. 

For modeling and simulating the distributed nature of this scenario, approaches 

from multiagent research are suitable [6]. Drawing from Revenue Management (RM) 

literature, we propose a method for the decision over accepting an incoming request 

with the aim to maximize revenue as an extension of existing pricing mechanisms. 

Previous work has shown that the principles of RM can be purposefully adapted to 

model Cloud computing scenarios [7]. We extent the proposed model by including 

two types of resources and by supporting long-term requests with an apriori unknown 

contract length. In contrast to other approaches that require a trusted third party, the 

method can be implemented by a provider with different kinds of resources without 

changing the way of propagating its services, e.g. the usage of green or conventional 

resources may be promoted by different brands of the same corporation. Hence, price-

discrimination based on energy-efficiency parameters is not necessarily observable by 

the consumer and, thus, avoids the risk of negative side-effects. 

We show that rejecting requests for conventional services in certain demand situa-

tions increases the provider’s revenue and, thus, the method motivates providers to 

rely on energy-efficient service provision from an economical perspective with the 

consequence of an increased ecological sustainability. In summary, the objectives of 

this research are (1) to develop a method that increases expected revenues through 

price discrimination based on energy-efficiency and (2) to demonstrate the efficacy of 

the method through an experimental evaluation. 

The remainder of the paper is organized as follows. Section 2 discusses related 

work. Section 3 introduces the formal framework. The proposed method is presented 

in Section 4 and evaluated in Section 5. Section 6 concludes. 
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Fig. 1. Service requests for different kinds of energy efficiency 



2 Theoretical Background 

The theoretical background is three-fold: (i) Section 2.1 discusses related work on 

energy-ware pricing for Cloud computing, (ii) due to the conceptual similarities to 

Cloud scenarios, Section 2.2 introduces the paradigm of multiagent organizations for 

software agents, and (iii) Section 2.3 paves the way for the application of methods 

from RM. 

2.1 Energy-Aware Pricing for Cloud Computing 

We use the term Cloud computing in accordance with the NIST-definition [8] and 

require a Cloud service to satisify the following criteria: (i) automatization, (ii) stand-

ardization, and (iii) scalability. A distinction between Infrastructure as a Service 

(IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) is not neces-

sarily required for a provider that hosts the whole infrastructure, but may be relevant 

for a SaaS provider that needs to rent green infrastructure to offer energy-efficient 

services to its customers. 

The terms green and energy-efficient are used synonymously throughout this work, 

and as the decision problem itself is independent from the various available metrics 

[9], we do not define or chose any. The expectations on Cloud computing are differ-

ent for the main two groups of actors. Customers aim at moving fixed costs to varia-

ble costs and gain the ability of nearly unlimited resource scaling. This change in cost 

structure is achieved through short-term contracts with a typical duration of at least 

one hour. Providers on the other side focus on lower overall prices through standardi-

zation and automatization, i.e. there is a standardized set of offered services which are 

provisioned in an automated fashion. 

Most existing approaches related to energy-efficiency in Cloud computing aim at 

reducing total energy consumption by optimizing load and cooling distribution within 

a single data centre [10], [11]. However, some already consider the contract negotia-

tion phase as an essential step towards sustainability. Garg et al. [12] suggest intro-

ducing a Cloud broker that behaves on behalf of the service consumer and selects the 

most energy-efficient Cloud provider for each request. However, the use of a trusted 

third party is an obstacle for the successful implementation, as not every consumer is 

willing to give up sovereignty. An approach that can be applied to nearly any Cloud 

service scenario is provided by Haque et al. [13], who propose Green Service Level 

Agreements (SLA) with a quantifiable green rate. The proposed infrastructure enables 

the differentiation of green and conventional services based on electrical energy in a 

single datacenter, while a service provider has the possibility to accept or reject a 

request depending on the requested service level. The authors show that a price dis-

criminating approach based on energy-efficiency promises increased revenues, but 

lack a method to handle an oversupply of green resources. 



2.2 Multiagent Organizations 

A multiagent system (MAS) serves as a platform for autonomous software agents that 

allow representing scenarios with distributed authority and, hence, fits into the context 

of Cloud service providers and consumers [14]. We consider autonomous software 

agents that are able to act and react within a MAS deputizing a natural person or an-

other legal entity. There are conceptional similarities between the negotiations be-

tween a provider and a consumer, as well as between software agents within a MAS, 

also providing services to each other. The provider independent TOSCA standard 

(Topology and Orchestration Specification for Cloud Applications) enables the appli-

cation of software agents that may autonomously search and contract Cloud services. 

Even if none of the actors in the Cloud computing context would actually apply 

agent-technologies, we may draw from MAS literature for the development of our 

decision model. 

In a business context, however, it is not always suitable to have a totally flexible 

MAS, where software agents are only loosely coupled. Instead, research in the area of 

MAS takes the direction of stabilizing structures within MAS drawing from organiza-

tional theory. There are two main differences in the context and approaches in litera-

ture: (a) The aim of the organizational structure within the MAS is to represent the 

organizational structure of a social system with clearly defined boundaries [15], [16], 

e.g. a company with employees that are represented by a software agent, or (b) ap-

proaches from social science are used to adapt the behavior of software agents [17], 

e.g. to form coalitions or groups potentially across company borders. 

Horling and Lesser [17] discuss the differences between different terms related to 

multiagent organizations, namely the most widespread ones coalitions [18], [19], 

teams [18], [20] and congregations [21]. They all have in common that software 

agents form some kind of organizational structure allowing an improved cooperation 

between the participants. We define a multiagent organization as a long term orientat-

ed structure that compensates software agents for providing services to the organiza-

tion. Thus, we denote all software agents that have a contractual binding with a multi-

agent organization to provide services as its participants. However, we do not require 

that the goals or any subset of the goals of the multiagent organization and those of its 

participants are necessarily the same. 

From the perspective of a single autonomous software agent a decision has to be 

made whether the participation in a certain multiagent organization is expected to be 

beneficial for the agent. In a Cloud computing context this corresponds to the decision 

of a provider respectively a consumer whether an offer of the counterpart will be ac-

cepted. For multiagent systems Kraus [22] suggests to adapt methods from game the-

ory and Operations Research. While game theoretic concepts are broadly used for 

multiagent systems, there are fields of Operations Research that are paid much less 

attention. The next section presents the background on Revenue Management as part 

of Operations Research and its application to multiagent organizations in the context 

of energy-aware Cloud computing. 



2.3 Revenue Management 

RM has its origins in the airline industry, where due to regulations in the late 1970s, 

companies were searching for new ways to increase revenues, e.g. by overbooking 

existing resources [23]. Since then, RM has been extensively developed and has a 

firm place in pricing of various other goods and services, including hotel rooms as 

well as rental cars. 

All applications of RM share some common characteristics: The provided good or 

services is (i) perishable, (ii) can be booked in advance and (iii) resource are scarce. 

The base example in an airline scenario is one scheduled flight. Empty seats on the 

flight cannot be stored for later use, so the revenue for this service is lost (i). Custom-

ers are able to book the flight in advance (ii), but the totally available amount of seats 

on the airplane is limited (iii). RM now aims at maximizing revenue by extending the 

set of potential customers with price discrimination, e.g. offering the same flight in 

various booking classes with different cancellation policies. However, the main chal-

lenge arises with the risk of selling too many low priced services and, thus, the need 

for an appropriate procedure to select the offered booking classes. 

An approach to enhance pricing in the context of formation and extension of multi-

agent organizations has been part of previous work [24]. The method uses principles 

of RM aiming at optimizing profits and, thus, utility for each agent applying the 

method. Another previous work [6] addresses the application of RM for Cloud ser-

vices. Both methods assume that the requested Cloud service or organizational mem-

bership is set for a specific time horizon. However, in many Cloud computing scenar-

ios a Cloud service usually is requested without a long lead time and doesn’t have a 

specified end point at the time requesting the service. Instead, a Cloud service is gen-

erally requested immediately and contracted for an uncertain amount of time. 

Another requirement for the application of RM methods is the presence of a possi-

ble discrimination criterion. For a Cloud service, nearly all aspects of a SLA may 

serve as a discrimination criterion [6]. However, pricing according to energy-related 

variables are already common for some industries like logistics. A higher willingness 

to pay of a certain set of customers for green services offers the possibility to skim off 

additional profit and, thus, sets the basis for the application of RM methods [13]. 

Hence, we draw from literature on RM, to design a pricing method for an energy-

aware Cloud computing context. 

3 Formal Framework 

Conventional RM methods are focused on a certain type of product or service, like 

one single flight or the provision of a hotel room for one night. These products or 

services have a fixed time span between the start and the end. It is quite uncommon, if 

not entirely impossible, to book a hotel room for an unlimited time. However, this 

marks a difference between conventional RM applications and Cloud computing: A 

Cloud service is usually requested immediately for an uncertain amount of time. The 

applicability in general of RM methods is not affected by this difference as the main 

requirements pointed out in Section 2.3 are still satisfied. However, models common-



ly used in RM must be adapted to the energy-aware Cloud computing context. We 

rely on previous work connecting RM with Cloud services [7] as well as multiagent 

organizations [24], and adapt the models to cover requests for an unlimited time span. 

3.1 Services and Resources 

We consider software agents that represent Cloud providers and that provide services 

to a multiagent organization while receiving compensation in return. We assume that 

the Cloud provider has a fixed set of services S = {s1,…,sN}, while the exact type of 

service is not further specified and, thus, each service might be SaaS, PaaS or IaaS. 

The discrete time axis is represented by t ∈ {0,…,T}, while each t represents a certain 

time span depending on the type of service. 

For each service, the provider can guarantee a certain minimum level of energy-

efficiency for the devices used for service provision. We draw from RM literature 

and, thus, call the different categories booking classes. It is also possible to combine 

energy-related discrimination criteria with other contractual side conditions usually 

used in service level agreements, e.g. availability, response time, etc. These additional 

criteria could be combined to increase the discriminating distance between two con-

secutive booking classes. Despite the general possibility for an arbitrary number of 

discrimination levels, for the sake of simplicity, we only consider two booking classes 

b ∈ B = {Green, Conv}, while Conv represents a conventional operation without any 

energy-considerations and Green the sole execution on energy-efficient devices. 

Each booking class has a fixed price ps,b for each service s and booking class b that 

is constant for all t ∈ {0,…,T}. There are no withdrawal restrictions, so every service 

consumer may choose to withdraw anytime without a penalty.  

The service providing agent has to rely on resources to be able to fulfill its contrac-

tual obligations. We assume that there are two types of resources: Conventional re-

sources that are only able to be used for booking class Conv as well as energy-

efficient resources that comply to both booking classes and, hence, are more flexible 

for the provider. The capacity left for both resources at time t is represented by the 

vector 
t

Green

t t

Conv

x

x

 
  
 

x . 

The concrete type of differentiation between the two resource pools is not relevant for 

the presented method. There are numerous possible criteria to measure the energy-

efficiency of IT resources, e.g. PUE for a whole computation center or SPECpower 

for a single server [9]. The expected capacity left in t for some future time t̂  with 

ˆt t T   is represented by the function  ˆ,t
t bE x t . 

We assume that each service consumes a certain amount of resources independent-

ly of the chosen booking class. The vector 

1

N

m

m

 
 
 
 

m  



expresses how much resources each service consumes. One service s1 in booking 

class b = Green will, thus, reduce the capacity left t
Greenx  by 1 1s m . In booking class 

b = Conv the same service would be able to reduce t
Greenx  or t

Convx  by the same 

amount. 

3.2 Requests 

The value network of a service consumer requesting a Cloud service may be refer-

enced to a multiagent organization that requests services offered by another agent. 

The service can be requested in both possible booking classes, while the amount of 

requested services is represented by the vector 

1

t

t
t

N

r

r

 
 
  
 

r . 

In accordance with RM literature, we assume that there is at most one request per 

time . However, this restriction does not limit the applicability as the time span be-

tween two time points can be arbitrary small. The acceptance of an incoming request 

will reduce the available resources of the service provider and, hence, limit his scope 

for future usage. The vector ct serves as an indicator whether and what kind of a con-

tract has been signed in t with ct = (1,0)⊤ for green services, respectively ct = (0,1)⊤   

for conventional services and ct = (0,0)⊤ if no contract has been signed. The capacity 

left for the next time period is recursively calculated by 

 

   

1

0

1
.

00

t

Green

t t t t tt

Conv

t
t

tGreen

t Conv

x

x

x
x otherwise



  
    

  
 

   
       

  

c mr x c mr

x

mr

  (1) 

The second alternative in Equation (1) formalizes the possibility of the service pro-

vider to use green resources also to cover conventional service contracts. The total 

capacity of the provider is given in t = 0 with x0. 

4 Pricing Mechanism 

This section presents the pricing mechanism that allows a software agent representing 

a Cloud service provider to increase its revenue by improving the decision whether to 

accept or decline an incoming request. We propose a bid-price approach that calcu-

lates some sort of reservation prices for each resource and that does not affect the 

commonly used process of requesting a service and a response within a narrow time 

frame. 



4.1 Decision Model 

The decision that has to be made is whether to accept an incoming request or to reject 

it. Most Cloud service providers will accept any incoming request for a fixed price 

level as long as resources are available to serve the request. However, the differentia-

tion in two different booking classes as presented in the preceding section enables 

more complex decision models with the aim to increase revenue. Bid-price control 

from RM literature uses a reservation price for each of the resources to control book-

ing class availability. If conventional resources are available that cannot be used for 

providing green services, a request for the corresponding booking class should always 

been accepted. The more advanced green resources, however, might be used to pro-

vide conventional or green services and, thus, are the focus of the decision that has to 

be made. The bid-price πt at time t represents the reservation price for green resources 

under which it is expected to be suboptimal to sell the lower priced conventional 

booking class. 

For an incoming requests that involves the usage of green resources, the offering 

condition at time t for booking Class Conv is 

 

  ,

0

N
t

t t s s Conv

s

r p


mr  (2) 

where the vector multiplication mrt maps the requested services to the amount of re-

quired resources and the right part of the inequation represents the price for the in-

coming request in the conventional booking class. 

4.2 Decision Mechanism 

The decision about refusing a request even though resources would have been availa-

ble has a huge difference compared to traditional RM applications: The resources 

saved temporally by a refused flight request, might be used to provide higher priced 

booking classes later on. Of course, there is the risk that the resources remain unused, 

but in the present case, the rejection of a request has the consequence of immediate 

revenue loss. This revenue has to be gained later on, and this is only possible with 

higher priced booking classes.  

For a differentiable valuation function Vt(xt) the bid-price is defined as the partial 

differentiation with respect to the relevant resource variable. As the only relevant 

resource for the decision in time t is t
Greenx , we can adapt Littlewood’s rule [25] for 

the present case with long-term contracts and immediate service provision: 

 

      1
ˆ: ,t

t t t Green Green t Greent

Green

V p P D t E x t
x

 


    


x   (3) 

with the average price per resource 
bp  , the expected demand Db(Δt) and the lower 

limit of the expected capacity left based on the current contracts  ˆ ,t
t bE x t  each for a 

future time span Δt and booking class Green. 



4.3 Forecasting Strategy 

The forecasting strategy is based on the ideas of Littlewood [25], but has to be fun-

damentally adapted for the present case as withdrawals may occur continuously. The 

decision mechanism presented in the previous section is mainly determined by the 

quality of the demand and withdrawal forecasting, as Equation (3) is dependent on 

these two functions. The probability that the demand for green services will be higher 

than the expected resources left can provide is settled by multiple variables: (i) the 

distribution of both functions, (ii) their parameters, and (iii) the considered time span 

Δt.  

We assume that the expected withdrawals follow an exponential distribution with 

expected mean contract length t
b  in t. As the actual contract length is not previously 

known, the expected mean contract length t
b  is determined by the average contract 

length of already terminated contracts. With the assumption that these past events can 

be used to forecast future withdrawal events, we can reformulate  ˆ,tE x t  in t for all 

upcoming periods t̂  to 

    ˆ
ˆ, 1

t
b t t

tE x t x e
 

  . 

As stated before, the rejection of an incoming request for a lower priced booking class 

can only be beneficial for the Cloud service provider if he manages to create enough 

revenue with future higher priced contracts instead. With an expected contract length 

for green services of t
Green  and a price relation between green and conventional book-

ing classes of Conv

Green

p

p
 the time frame in which a higher priced contract should be signed 

is set to  1 Conv

Green

pt
Green p

t    . If the provider has to wait longer than Δt for a higher 

priced request, the time span is not long enough to gain more revenue despite the 

higher price for green services. 

The demand is expected to be normally distributed with mean μb and standard de-

viation σb for booking class b. Both variables can be determined – analogously to the 

mean contract length t
b  – by the observation of past requests. For the calculation of 

πt, the relevant variables μGreen and σGreen for booking class Green are observed for 

each time period and the convolution of multiple independent distributions has to be 

calculated. With the assumption that requests are equally distributed among the in-

volved number of service providers NProvider, the convolution of the demand distribu-

tion functions for the time interval Δt has the following two parameters: 

ˆ

ˆ .

Green

Provider

Green

t

N

t




 




 

 

With the simplification that the capacity left in the interval Δt is regarded as the mean 

of  ˆ,t
t GreenE x t  in the corresponding interval, the probability that the expected de-

mand in ˆt t t    exceeds the expected capacity left can be calculated by 



 

    

 
2

ˆ,

ˆ1ˆ

ˆ21ˆ , 1
ˆ 2

t
t GreenE x t

x

t

Green t GreenP D t E x t e dx





 

 
  

 



      . 
(4) 

With Equations (3) and (4), the bid-price πt can be calculated in each time interval t 

and provide the input for Equation (2) to decide whether an incoming request will be 

accepted or rejected.  

5 Evaluation 

This section presents an experimental evaluation of the proposed artifact. We describe 

the experimental setup, report the simulation results, and discuss the findings. 

5.1 Experimental Setup 

For the simulation of the Cloud computing scenario, we used the agent-based simula-

tion framework Repast Simphony [26]. Service consumer agents sent service requests 

to service providers, which may have made an offer depending on their decision mod-

el. There were two types of service providers: (1) A regular provider that offered 

services if the remaining capacity allowed it and (2) a bid-price provider that used the 

proposed method and that beside capacity restrictions also involved the forecasting of 

future requests. We simulated a competitive duopoly Cloud service market with one 

regular and one bid-price provider. 

To minimize the amount of relevant variables that influence results, providers only 

offered one type of service that exactly used one type of resource when contracted 

implying m1 = 1 for s1. As only the more versatile green resources are of interest to 

price discrimination purposes, we considered one energy efficient computation centre 

and set 0 0Convx   respectively 0 1,000Greenx  . The planning horizon of the provider 

agents was T = 5,000. 

The service consumer agents requested the service in one of the two booking clas-

ses and chose the cheapest proposal respectively chose randomly when receiving two 

or more equivalent proposals. Service consumers of type C1 requested only lower 

priced conventional services while those of type C2 requested green services. De-

mand had been generated with the following parameters for the probability distribu-

tion: 

 Every consumer agent generated one request in every time period with a probabil-

ity of 10 percent. 

 The amount of services requested was normally distributed with mean 10 and 

standard deviation 5. 

 The contract length that was not apriori known to the providers was normally dis-

tributed with mean 1,000 and standard deviation 500. 



The price for one unit of service s1 in booking class Green was set to 10 monetary 

units per time period while the one for booking class Conv was reduced by 5 % with 

respect to the first one. 

5.2 Results 

The simulation was performed 100 times and for each run the values of the time peri-

od between ticks 1,000 and 3,000 have been used for evaluation to sort out fading in 

and out effects. Average revenue per tick was the first value we investigated. Fig. 2 

shows the percentage of average revenue that the bid-price provider exceeded the 

average revenue of the regular provider depending on the demand setting. The num-

ber of both types of service consumer agents has been varied on an exponential scale 

from 1 to 1,024. Negative values represent a surplus of the regular provider and only 

occured if requests for the green booking class were very rarely. In all other settings 

the bid-price provider gained a surplus over the regular provider. The highest surplus 

of 3.91% has been gained with 1,024 consumers of type C1 and 64 of type C2. Fig. 3 

shows the percentage of the standard deviation of the periodically gained revenue in 

relation with the mean value. The bid-price approach had a significantly higher stand-

ard deviation of revenue. 

While in the first scenario demand heights and contract length were generated using a 

normal distribution, we examined a second scenario where those two variables have 

been generated using a Poisson distribution with the same mean parameters. Hence, 

the expected distribution by the bid-price provider and the actual one differed and a 

lower performance of the proposed approach was expected. However, the results 

showed the same structure as Fig. 2, given Poisson distributed demand variables and 

even exceeded the optimal setting for the first scenario with a surplus of 4.40%. 

 

 

Fig. 2. Surplus of bid-price provider in relation to regular provider with respect to revenue 
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Fig. 3. Standard deviation in relation to mean for C1 = 1024 
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Fig. 4. Average revenue surplus of bid-price provider depending on average contract length 

We also examined the impact of the relation of contract length and the amount of 

services per request on the average revenue of the provider. The providers faced 10 

consumers of each type and the average contract length has been varied negatively 

correlated to the amount of requested services to remain the average demand un-

changed. Fig. 4 shows the percentage of average revenue of the bid-price provider 

exceeding the average revenue of the regular one. 

5.3 Discussion 

When looking at the results of the previous section, one has to keep in mind that the 

price difference between the two booking classes was only 5%. This difference marks 

an upper limit for the proposed method and its advance is not able to exceed this limit. 

Fig. 2 shows that the advantage of the approach is strongly dependent on the relation 

between consumers with a higher and those with a lower willingness to pay. The 

highest surplus was gained when the amount of C1 consumers was high and the 

amount of C2 consumers was above a certain limit, approximately 8. In this case, 

most requests sent to the providers aim at the conventional booking class and blocked 

the resources of the regular provider, while the bid-price approach denied most of 

those requests. When additionally the number of C2 consumers increased, the proba-

bility that a request achieved a higher revenue increased analogously and, hence, re-

duced the advantage of the proposed method. Even in non-optimal settings the bid-

price approach achieved a positive surplus in nearly all cases. 



Even with a demand distribution function that the bid-price provider did not apriori 

anticipated, he gained a significant surplus in many settings. The standard deviation 

of the periodical revenue was significantly higher, but on an extremely low level with 

respect to the mean value. 

The average revenue was of course highly dependent on the average contract 

length. If all or most contracts only last one period, there would be no need to reserve 

capacity for future requests. The same holds for the number of requests per time peri-

od, as a rejected request has to be compensated by another higher priced request with-

in a relatively short amount of time. The reasonable applicability of the proposed 

method, thus, depends on the relation between contract length and request frequency. 

However, we did not observe significant drawbacks in settings that do not meet these 

requirements. 

6 Conclusion 

This paper presents a method to increase expected revenues of a Cloud service pro-

vider using price discrimination. We adapted and applied approaches from Revenue 

Management and used the varying willingness to pay for ecologically sustainable 

services as the discrimination criterion. The model successfully introduced a rolling 

time horizon that is not common for Revenue Management methods, but necessary to 

represent real-world Cloud computing scenarios. We evaluated the proposed method 

in a multi-agent simulation and showed its efficacy depending on different settings of 

supply and demand. The method gains an advantage on regular approaches by reject-

ing lower priced requests when higher future revenue is expected. 

The demand for an enhanced sustainability of corporate IT keeps increasing con-

tinuously and Cloud service provider cannot ignore this trend [4]. Our research has 

three implications for practice. First, the proposed method increases revenues for 

Cloud service providers that are hosting green computing resources. Second, the pos-

sibility of higher revenues additionally motivates providers to invest in more versatile 

energy-efficient infrastructure fed with carbon free produced electrical energy and 

incorporating price discrimination possibilities. Third, the individual optimizing of 

Cloud service providers in terms of revenue leads to a substitution of old inefficient 

resources by new versatile ones and, thus, a society-wide improvement of ecological 

sustainability. 

The approach is limited to markets where demand exceeds supply as the scope is 

restricted to accepting or rejecting a request, while there are no significant drawbacks 

in other situations and may thus also be used in scenarios with apriori unknown de-

mand-supply ratio. Another prerequisite is that a new contract reserves sufficient 

resources in relation to the request frequency, while otherwise a compensation of a 

rejected request is rarely possible. The discrimination criterion energy-efficiency may 

even be combined with other aspects that are usually part of SLAs and, hence, justify 

a higher price difference than 5% with a simultaneously increased revenue potential. 

Extensions that involve decommitment penalities into the negotiation phase of 

Cloud service provision show major similarities to cancelation respectively withdraw-



al fees known from traditional RM applications and may further enhance results [6]. 

The bid-price control approach and thus the proposed model is easily extendable and 

adaptable, e.g. by adding additional discrimination levels. The proposed method is 

highly depending on the quality of demand forecasting, hence, advanced forecasting 

methods [27] promise to further increase revenue especially in non-optimal settings of 

supply and demand. Selling more services than the available resources may deliver is 

practiced in traditional RM domains as overbooking. Findings from RM indicate that 

combining the proposed method with overbooking positively affects revenue [28]. 
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