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Abstract. Wikis are websites to develop content collaboratively. The question 

arises to what extent the reputation of participants influences the quality of wiki 

sites. We analyze the impact of author reputation using the example of Wikipe-

dia. We extend previous research by considering a set of different reputation 

metrics and a new model for aggregating reputation values. Since anonymous 

authors tend to have a lower reputation, we also quantify the level of participa-

tion of anonymous authors as an indicator for the reputation of the crowd. Our 

analysis finds out that reputation matters, but strongly depends on the used rep-

utation metric and therefore on the corresponding author characteristics. The 

study shows that the experience of authors in the development of high-quality 

articles is highly relevant whereas the number of edits and the quality of contri-

butions are of lower importance. Finally, our investigation proves the open edit-

ing model and the self-healing mechanism of wikis. 

Keywords: Wiki, Quality, Reputation, Wisdom of the Crowd 

1 Introduction 

Since the collapse of the dot-com bubble in the year 2000 Web 2.0 has been becom-

ing increasingly popular. The main characteristic of this specific part of the World 

Wide Web is the particular importance of user-generated content and user interaction 

[1]. Typical types of Web 2.0 applications are social network sites, wikis, blogs, and 

photo- and video-sharing portals [1]. The relevance of Web 2.0 can be seen in the user 

statistics of the World Wide Web. Thus, four (Facebook, YouTube, Wikipedia and 

Twitter) of the ten worldwide most visited websites belong to Web 2.0 [2]. 

An important factor of success of Web 2.0 is the so called wisdom of the crowd. 

This term refers to the phenomenon that under particular conditions a group of people 

is able to reach better decisions than individual experts. The reason for this phenome-

non is the aggregation of different skills and knowledge [3]. Since Web 2.0 applica-

tions involve a high number of users to create content, the wisdom of the crowd is 

particularly relevant. 

This paper focuses on wikis as a very popular Web 2.0 application. Wikis are web-

sites that allow viewers to edit content directly within the web browser. In comparison 

to HTML, Wiki syntax is less complex, so that users are able to contribute to wiki 

sites without having high technical knowledge [4]. The most famous wiki is the free 

online-encyclopedia Wikipedia. Wikipedia consists of more than 32 million articles 



worldwide in 287 different languages. The largest Wikipedia is the English version 

with about 4.5 million articles followed by the Swedish, Dutch and the German Wik-

ipedia each with about 1.8 million articles [5]. The entire Wikipedia attracts about 500 

million unique visitors monthly as of March 2014 [6]. Due to the high popularity and 

the large amount of data, Wikipedia is a particularly suitable example to investigate 

user behavior in wikis. For this reason, similar to most of the previous research on 

wikis, our study also focuses on Wikipedia. 

Despite the high relevance, the phenomenon of the wisdom of the crowd in wikis is 

not yet explored fully. It is still unexplained which characteristics of the crowd lead to 

a high content quality. Some research has investigated the impact of the number of 

authors on the quality [7–9]. The studies show that with an increasing number of au-

thors the quality grows. However, the impact of the reputation of authors is poorly 

understood and only one initial study was published by Stein and Hess [10]. 

In this paper, we extend the previous research and investigate the relevance of au-

thor reputation for the wisdom of the crowd in more detail. In our study, we apply a 

set of different reputation metrics to evaluate which editing patterns lead to a high 

quality of articles. The analysis helps to understand the editing process in wikis more 

detailed. Indeed, some publications [11, 12] discuss approaches that use author repu-

tation to assess the quality of articles, although it has not been fully explored how 

reputation matters. These publications [11, 12] do not specify any applicable reputa-

tion metrics for the quality assessment. This research gap is addressed by our analysis. 

The paper is structured as follows. Chapter 2 describes the related work and details 

present research gaps. Chapter 3 explains the metrics we use for reputation assess-

ment and introduces models to compute aggregated reputation values of a given arti-

cle. Chapter 4 describes our evaluation method and discusses the results of the study 

in detail. The paper concludes with a summary and an outlook on future research 

directions. 

2 Related Work 

Relating to the present research question, there are two relevant research directions: 

research on reputation assessment in wikis and research on the phenomenon of the 

wisdom of the crowd. 

Research on reputation assessment provides metrics to assess the reputation of 

Wikipedia authors automatically. The approaches introduced by Adler and Alfaro 

[13] and Javanmardi et al. [14] are based on the quality of the authors’ contributions 

which is measured by their persistence. It is assumed that a long lifetime of contribu-

tions indicates the acceptance of the edits within the Wikipedia community. Wöhner 

et al. [15] analyze a set of seven reputation metrics and evaluate their performance. 

Besides the research work that focuses on reputation assessment, some studies on 

the editing process in Wikipedia also consider the reputation of authors and, in doing 

so, they provide metrics for reputation assessment. In this context, the participation in 

the development of featured articles [10], the participation in discussions on talk pag-



es [16, 17] as well as the experience of authors [16] are suggested as features to assess 

the author reputation. 

Regarding the wisdom of the crowd, the first publication was published by Galton 

[18]. The paper describes an experiment in which a crowd of laymen estimates the 

weight of an ox. The results of the study show that on average the crowd could assess 

the weight more precisely than individual experts like butchers or cattle-dealers. [3] 

introduces the term of the wisdom of the crowd and investigates the decision types 

and criteria required to benefit from that phenomenon. The main criteria are diversity 

and independence of people, decentralized decision making and suitable aggregation 

of individual decisions. Wikipedia meets the criteria that have been defined by 

Surowiecki [3], but the quality of Wikipedia articles differs considerably. So the ques-

tion arises how the composition of the crowd influences the wisdom of the crowd. 

A large number of research papers focus on the quality of Wikipedia articles [8, 9, 

11, 12, 19–23]. Some of these papers provide first findings related to the phenomenon 

of the wisdom of the crowd in wikis. Thus, [8, 23] as well as [9] prove that with an 

increasing number of authors or edits the quality of articles tends to grow. This con-

nection can be explained by the aggregation of different knowledge and various skills. 

The most related work to ours is the study of Stein and Hess [10] in which the rela-

tion between the reputation of authors and the article quality has initially been inves-

tigated. The study concludes that reputation matters for the article quality. However, 

as the main limitation, [10] build their reputation assessment only on the participation 

of authors in the development of featured articles. The study was published in an early 

stage of Wikipedia research, so that recently introduced reputation metrics could not 

be applied and it is unknown in how far these metrics are relevant for the article quali-

ty. Furthermore, Stein and Hess [10] only focus on registered authors and disregard 

anonymous contributions. Finally, their findings are based on a simple comparison of 

means of reputation scores for high-quality and low-quality articles. Concluding from 

these issues, the impact of reputation on the wisdom of the crowd is not fully under-

stood. 

Considering the research gaps discussed above, in this paper we extend the previ-

ous research in three ways. Firstly, we apply a set of different reputation metrics from 

recent research. Secondly, since anonymous authors tend to have a low reputation 

[15], we also investigate the participation of anonymous authors to determine the 

impact of reputation. Finally, instead of a simple comparison of mean values, we 

introduce and use a new model to aggregate the reputation values of registered au-

thors of a given article. This model weights the authors according to their impact on 

the article. For the statistical analysis we employ a logistic regression and calculate 

the effect sizes by means of Cohen’s d. 



3 Reputation Assessment 

In this section, we describe the reputation metrics being used in our analysis. Subse-

quently, we present our models to aggregate the reputation values of authors of a giv-

en article. Finally, the section introduces our new metrics to measure the level of par-

ticipation of anonymous authors. 

3.1 Reputation Metrics 

Common reputation metrics differ in the considered editing patterns that represent a 

high reputation. The following three main sources of author reputation can be distin-

guished: the quality of contributions, the participation in the development of high-

quality articles and the experience of the author. To provide a comprehensive analy-

sis, our chosen set of reputation metrics comprises metrics from each category. 

Reputation metrics based on the quality of contributions are published in [13], [14] 

and [15]. Since the computation is less complex in comparison to the other approach-

es, we choose the efficiency R
eff

 from Wöhner et al. [15]. For the calculation of R
eff

, 

persistent and transient contributions are distinguished. Persistent contributions sur-

vive a time period of at least 14 days and are therefore assessed to be of high quality. 

Transient contributions are discarded within 14 days and thus judged as low-quality 

contributions. The threshold of 14 days was determined empirically [15]. Based on 

the definition of persistent and transient contributions, the efficiency R
eff

 is calculated 

as follows: 

 
total

pc
eff

A

A
R 

 (1) 

A
pc

 defines the amount of persistent contributions and A
total

 the amount of all con-

tributions of a given author. The amount of contributions is measured by the number 

of words that were inserted or deleted. Hence, R
eff

 refers to the fraction of the persis-

tent contribution of a given author. In [15] the reputation metric is evaluated by means 

of a classification of blocked and regular users. By using R
eff

, a high accuracy of about 

85% is achieved. 

Our second reputation metric 

 
total

qh
qh

N

N
R 

  (2) 

measures the participation of an author in the development of high-quality articles. 

The metric was introduced in [10]. It is calculated as the quotient of the number of 

edits on high-quality articles N
qh

 and the total number of edits N
total

 by a given author. 

As examples for high-quality articles [10] employed featured articles. In addition, in 



this study we consider good articles as a further example. Featured as well as good 

articles are of particularly high quality and were labeled by a community-based quali-

ty evaluation [24]. In contrast to featured articles, some minor inconsistencies in the 

quality are tolerated for good articles [25]. 

The last metric in our set [26, 27] 

 
eR  (3) 

denotes the number of edits of a given author. The metric is also currently being used 

in Wikipedia to quantify the experience of authors, for example to assign the adminis-

trator status [24]. 

3.2 Aggregation of Reputation Values 

To measure the impact of the reputation on the article quality, the reputation values of 

the authors of a given article have to be aggregated. The comparison of the aggregated 

reputation values of low-quality and high-quality articles shows whether the author 

reputation matters or not. In this study, we use two aggregation models. 

The simplest approach for aggregation is the average-based aggregation model 

R
r
avg that is calculated as follows: 

 





n

i

r
avg

r R
n

R
1

1

 (4) 

In this equation R
r 
refers to the reputation value of each registered author i = 1 .. n 

of an article, where r denotes the considered reputation metric (eff for R
eff

, qh for R
qh

 

and e for R
e
). The average-based aggregation is the only approach which was applied 

by Stein and Hess [10]. According to this calculation rule, authors are equally 

weighted, independent of the amount and the persistence of their contributions to the 

given article. In more detail, if an article is vandalized and even the vandalism is re-

verted completely, the reputation of the vandal is considered within the average-based 

aggregation model. Therefore, articles that are often vandalized tend to have a lower 

aggregated reputation score. 

To deal with these shortcomings, we introduce a second aggregation model in our 

study that takes into account the persistence of contributions. The persistence-based 

aggregation model R
r
pers weights the authors according to the number of words A

lv
 of 

the latest article version that were inserted by an author. The calculation of R
r
pers is 

performed as follows: 

 





n

i reg
lv

lv
r

pers
r

A

A
RR

1  (5) 

A
lv

reg refers to the total number of words of the latest article version inserted by 

registered authors. According to this calculation rule, only authors that have contrib-

uted to the latest article version are considered, whereas authors whose contributions 



have been rejected are disregarded. The persistence-based aggregation model particu-

larly considers the main authors of the given article. 

3.3 Participation of Anonymous Authors 

Anonymous authors tend to have a lower reputation than registered authors [9]. 

Therefore, the level of participation of anonymous authors also reflects the reputation 

of the crowd. In the case of an anonymous edit, the IP address of the author is saved 

in the editing history instead of a username. IP addresses are usually assigned dynam-

ically so that users have varying IP addresses at different times. Hence, anonymous 

authors cannot be identified clearly and the reputation metrics being discussed in the 

previous section are not applicable. To overcome this problem, by analogy with the 

aggregation models for the reputation of registered authors, we introduce two metrics 

to quantify the participation of anonymous authors: 

 total
e

ano
e

e
ano

N

N
R 

 (6) 

 total
lv

ano
lv

pers
ano

A

A
R 

 (7) 

R
ano

e weights the anonymous edits equally, independent from the acceptance and 

the amount of the contribution. It is computed by the quotient of the number of edits 

N
e
ano performed by anonymous authors and the total number of edits N

e
total of the giv-

en article. The persistence-based metric R
ano

pers is calculated by the quotient of the 

number of words A
lv

ano of the latest article version inserted by anonymous authors and 

the total number of words of the latest version A
lv

total. Since the metrics (6) and (7) 

refer to the total group of anonymous authors, the metrics are calculated exactly even 

though the authors are identified by varying IP addresses. In comparison to the aggre-

gated reputation values for registered authors, the reputation values for anonymous 

authors have to be read reversely. High values for R
ano

e or R
ano

pers reflect a low reputa-

tion of the crowd, since anonymous authors are more present. 

4 Impact of Reputation 

In this chapter we first describe our research method and the data being used. Subse-

quently we present the results of our analysis, discuss the findings and draw some 

implications. 

4.1 Research Method and Data 

The present research is based on the data of the German Wikipedia as of 01/21/2008. 

Overall our data set includes 1,023,507 articles and 26,392,081 article versions. The 

data contain the complete editing history and provides all information required for the 



calculation of our reputation metrics. Our data set is also used in [15]. We decided to 

use this data set instead of a newer one since in May 2008 the German Wikipedia 

modifies the editing model by introducing Flagged revisions. According to this ap-

proach a contribution is only accepted if it is verified by an experienced author (called 

Sichter) to avoid obvious vandalism. Since we are interested in the impact of author 

reputation in pure wiki systems, the used data set should not be affected by significant 

modifications of the wiki principle. Therefore, data should be captured before May 

2008. 

Wikipedia is divided into different namespaces. Our study is restricted to the main 

namespace which includes all encyclopedia articles. We disregard other Wikipedia 

pages such as discussion pages and user pages because of their special editing pro-

cess. In order to compute our metrics, we developed a set of Java tools. The calcula-

tion of the persistence-based aggregation models requires information about the au-

thorship of each word of the latest article versions. Since this information is not pro-

vided by Wikipedia, we developed an algorithm that deduces the ownership of words 

from the editing history. In the case of reverted article versions, the algorithm assigns 

the authorship to the author who inserted the text firstly. 

To determine the impact of the reputation on the wisdom of the crowd, we analyze 

the differences of low-quality and high-quality articles regarding the author reputation 

by using statistical techniques. For this purpose we employ a logistic regression [28] 

and calculate the effect size by means of Cohen’s d values [29]. Like previous re-

search [9, 10, 12, 22], we identify the article quality with the aid of quality ratings by 

the Wikipedia community. The community-based rating ensures that the judgment is 

not biased by the subjectivity of a single reviewer. As examples for high-quality arti-

cles we selected featured and good articles [24]. Our data sample includes 1,211 fea-

tured and 2,184 good articles, so that the group of high-quality articles contains 3,395 

articles overall. As representatives for low-quality articles we randomly selected 

3,395 non-labeled articles. Hence, high- and low-quality articles are equally weighted. 

Because of the lack of ratings, the quality of non-labeled articles is in general un-

known, but, as defined by Wikipedia, featured and good articles meet the highest 

quality standards [24]. Therefore, we assume that non-labeled articles are of lower 

quality than featured and good articles. Nevertheless, for the calculation of the author 

reputation we consider all edits of the user, not only the edits on the selected articles. 

Thus, our study considers 37,158 authors and 17,630,621 article versions. 

One could claim that the analysis is affected by the selection of featured and good 

articles as examples for high-quality articles. If an article is nominated as candidate 

for a featured or good article, the article is listed on central Wikipedia sites and there-

fore gets more attention than other articles. In order to take care of this effect, we cut 

the editing histories of high-quality articles immediately before the articles were nom-

inated for the status of featured or good article. Hence, in the considered time interval 

the articles are not listed on central sites and therefore are not distinguishable from 

other articles with regard to their visibility. 

The evaluation is performed in two steps. Firstly, we investigate the reputation val-

ues of registered authors. Subsequently, we study the participation of anonymous 

authors in the development of low-quality and high-quality articles. 



4.2 Results and Discussion 

Impact of the Reputation of Registered Authors. The box plots in Fig. 1 show the 

distribution of the aggregated reputation values in both article categories using the 

different aggregation models and the different reputation metrics. In addition, Table 1 

lists the mean values in the two article groups as well as the output of the logistic 

regression which includes the calculated significance levels and the odds ratio as a 

measure for the effect size. The clearer the odds ratio differs from 1, the larger the 

effect is. An odds ratio less than 1 means that the metric influences the quality of 

articles negatively. Contrarily, an odds ratio of more than 1 refers to a positive effect. 

However, the odds ratio has to be read relating to the range of values and the distribu-

tion of the respective metric. Since in our scenario the metrics differ clearly according 

to these features, the odds radio is difficult to interpret. For that reason we calculated 

Cohen’s d [29] as a further metric to quantify the effect size. Cohen’s d refers to the 

quotient of the difference of the mean values in both article groups and the standard 

deviation. The value is independent from the range of values and allows a simple 

comparison of the metrics to be investigated. 
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Fig. 1. Distribution of Reputation Values 



As a main result, the evaluation challenges previous research and shows that the 

impact of reputation on the article quality in fact matters, but it strongly depends on 

the reputation metric in use. 

Our study confirms the findings of [10] who have already proven the impact of R
qh

 

on the article quality. In Addition to [10], we substantiate the results by a logistic 

regression and effect sizes. Furthermore, we consider the persistence-based aggrega-

tion model to ensure that authors are weighted according to their influence on the 

article. Cohen [29] suggests that Cohen’s d values of about 0.2 can be taken as a small 

effect, values of about 0.5 reflect a medium effect, and Cohen’s d higher than 0.8 

means a large effect. Following this suggestion, the Cohens’s d values of 1.442 and 

1.660 are considerably high and indicate a large effect of R
qh

 on the article quality for 

both aggregation models. 

However, in our setting the use of R
qh

 leads to a bias. In case of high-quality arti-

cles, the calculations of the reputation metric and the aggregated reputation values are 

based on the same data set. Since authors of high-quality articles have edited at least 

one high-quality article, they tend to have a higher reputation. It is obvious that this 

effect leads to higher aggregated reputation values for the group of high-quality arti-

cles. To quantify this bias we performed a second experiment. We split the group of 

high-quality articles randomly into two parts of the same size. We used the first part 

(1698 articles) for training to calculate the reputation of the authors. In this context, 

reputation refers to the percentage of the edits of a given author on the articles of the 

training sample. We applied the second part (1697 articles) as test sample to compute 

the aggregated reputation values. Therefore, we ensure that the author reputation and 

the aggregated reputation values of an article are calculated independently. Even in 

this scenario the difference of R
qh

 between high- and low-quality articles is highly 

significant (α = 0.01). Cohen’s d amounts to 1.060 for the average-based aggregation 

model and 0.962 for the persistence-based aggregation model. Therefore, the effect is 

smaller, but even if author reputation and aggregated reputation values are calculated 

on different samples, a large effect size is measured. 

Regarding the experience-based reputation metric R
e 

our analysis leads to surpris-

ing results. The connection between reputation and article quality is in a different way 

than excepted. As the mean values show, low-quality articles involve a higher per-

centage of experienced authors than high-quality articles. We are not able to explain 

this phenomenon exactly. However, we do not believe that experienced authors are 

not valuable for Wikipedia. But a high percentage of experienced authors means also 

that there is a low percentage of authors with less edits. Whereas experienced authors 

with a high number of edits might be generalists, some authors with a lower number 

of edits might be specialists focusing on a particular subject. An explanation of the 

lower percentage of experienced authors for high-quality articles could therefore be 

that high-quality articles are written by a higher number of specialists. Following this 

argument, a low average experience of the authors can be read as a high reputation of 

the crowd. However, the low Cohen’s d values indicate that this effect is only slightly 

relevant. 



Table 1. Statistics on Reputation Values 

Repu-

tation 

Metric 

Aggregation 

Model 

Mean Logistic Regression 

Effect 

Size 
Low-

quality 

Articles 

High-

quality 

Articles 

Signifi-

cance Level 

Odds 

Ratio 

R
eff

 
R

eff
avg 91.4% 91.8% ** 0.971 0.063 

R
eff

pers 90.8% 91.5% ‒ 0.999 0.097 

R
qh

 
R

qh
avg 4.4% 10.6% *** 2.024 1.660 

R
qh

pers 4.5% 19.0% *** 1.317 1.442 

R
e
 

R
e
avg 14967 11845 *** 0.999 0.234 

R
e
pers 11666 7885 *** 0.999 0.235 

Significance Level: ‒ No Significance;  * α = 0.1;  ** α = 0.05;  *** α = 0.01 

 

Applying the efficiency R
eff

, we identified the lowest relevance in our analysis. The 

difference is only significant applying the average-based aggregation model. Using 

the persistence-based aggregation, which considers the authors according to their 

relevance, the difference in the reputation values is not significant. According to the 

Cohen’s d values there is only a very small effect for both aggregation models. That 

means that the differences in the reputation values are marginal. The low relevance of 

the efficiency R
eff

 is also indicated by the similar means of the aggregated reputation 

values in both article groups  and the odds ratio of almost 1 (see Table 1). 

Impact of the Participation of Anonymous Authors. Fig. 2 presents the distribu-

tions of our metrics to quantify the level of participation of anonymous authors. In 

Table 2 the mean values for the low- and high-quality articles as well as the calculated 

output of the logistic regression and effect sizes are displayed. 
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Fig. 2. Distribution of the Level of Participation of Anonymous Authors  



The evaluation shows that the portion of anonymous authors has a moderate impact 

on the wisdom of the crowd. However, a statistical relevance is only measured using 

the persistence-based aggregation model. Thus, for R
ano

pers Cohen’s d amounts to 

0.273 and the effect size can be judged as small. Regarding the average-based aggre-

gation model R
ano

e, the Cohen’s d value is almost zero. The strong impact of the ag-

gregation model on the measured effects can also be seen clearly by the mean values 

in both article groups. While the mean value of R
ano

e for both article groups is about 

0.2, R
ano

pers varies noticeably. As mentioned above, the persistence-based aggregation 

model weights the authors according to the acceptance and the amount of their contri-

bution. Therefore, the results demonstrate that anonymous authors contribute to low- 

and high-quality articles in the same intensity, but their contributions are less accepted 

on high-quality articles. 

Table 2. Statistics on the Participation of Anonymous Authors 

Calculation 

Model 

Mean Logistic Regression 

Effect Size Low-quality 

Articles 

High-

quality 

Articles 

Significance 

Level 

Odds 

Ratio 

R
ano

e 20.3% 19.7% ‒ 0.998 0.032 

R
ano

pers 19.5% 13.0% *** 0.989 0.273 

Significance Level: ‒ No Significance;  * α = 0.1;  ** α = 0.05;  *** α = 0.01 

Discussion. Our analysis proves that author reputation matters, but the impact on the 

article quality strongly depends on the definition of reputation. Since the different 

reputation metrics regard certain characteristics of authors, our study demonstrates 

that some characteristics are relevant for the article quality whereas other characteris-

tics have no direct impact. A comparison of the relevance of the different reputation 

metrics leads to a better understanding of the editing process of high-quality articles. 

Thus, the high relevance of the participation of authors in the development of high-

quality articles as reputation metric (R
qh

) shows that a specific group of authors is 

particular important to achieve a high quality level. In other words, if an author is 

involved in the development of high-quality articles, the participation of the author in 

the editing process of another article increases the probability that this article also 

achieves a high quality level. As we have already discussed above, the lower average 

experience of authors (R
e
) of high-quality articles might indicate that high quality also 

requires some specialists that focus on certain topics. If reputation is measured by the 

quality of contributions (R
eff

), the reputation has a marginal impact on the article qual-

ity. This means that a high-quality article is not simply defined by the average quality 

of contributions, but by the number and composition of different contributions. Fur-

thermore, the study indicates that contributions of anonymous authors with a tenden-

tially lower quality of contributions are more often rejected on high-quality articles 



than on low-quality articles and therefore the percentage of anonymous authors of the 

last article versions (R
ano

pers) also indicates the quality of the article.
 

It is not the goal of this paper to judge different reputation metrics. Rather, we sug-

gest that reputation metrics should be chosen carefully depending on the purpose of 

the reputation system. Thus, if reputation is used for coloring questionable sections of 

articles [30], reputation metrics based on the quality of contributions might be most 

suitable. If the purpose of the reputation system is the motivation of users to contrib-

ute to Wikipedia frequently, an experience-based reputation metric may lead to the 

best results. However, to assess the quality of articles [11, 12], the participation of 

authors in the development of high-quality articles seems to be a better reputation 

source. 

As a final finding, our analysis proves the self-healing mechanism in wikis. The 

average-based aggregation model regards all authors that have contributed to an arti-

cle, whereas the persistence-based aggregation model only considers authors of ac-

cepted contributions that survive up to the latest article version. In general, with the 

exception of the efficiency, the study shows that the aggregated reputation values 

indicate a higher reputation applying the persistence-based aggregation model in 

comparison to the average-based aggregation model. This phenomenon can be seen 

clearly especially in the group of high-quality articles. Thus, employing the reputation 

metric R
qh

 for example, the aggregated reputation value R
qh

pers amounts to 0.190 

whereas R
qh

avg amounts to 0.106 (see Table 1). A higher reputation of the crowd ap-

plying the persistence-based aggregation model means that high-reputation authors 

are more represented in the latest article version. Consequently, the contributions of 

some low-reputation authors must have been rejected.  

5 Conclusion 

In this paper, we analyzed the impact of author reputation on the wisdom of the crowd 

in wikis. Our study is based on the example of Wikipedia. In particular, we extend 

previous research by applying different reputation metrics and introducing a new 

model to aggregate the reputation of authors of a given article. Our new aggregation 

model weights authors on the basis of the amount and the acceptance of their contri-

butions. Moreover, we analyzed the participation of anonymous authors. Since anon-

ymous authors are judged to have a lower reputation than registered authors, the par-

ticipation of anonymous authors also reflects the reputation of the crowd. 

To determine the impact of author reputation on the wisdom of the crowd, we ana-

lyzed differences in the measured reputation values between low- and high-quality 

articles. We identified the quality of articles with the aid of user ratings by the Wik-

ipedia community. Thus, we used featured and good articles as examples for high-

quality articles and non-labeled articles as representatives for low-quality articles. We 

assessed the impact of reputation by a logistic regression and Cohen’s d as a measure 

for the effect size. 

Our study challenges the conclusion of previous research that reputation matters 

for the quality of articles. We found out, that this claim is not generalizable. The im-

http://www.dict.cc/englisch-deutsch/generalizable.html


pact strongly depends on the definition of reputation and therefore on the correspond-

ing author characteristics. Not all editing patterns that are judged to be valuable have 

a direct impact on the article quality. Our study proves the results from [10] in which 

the participation of authors in the development of high-quality articles was used as 

basis for reputation measurement. Applying this definition, reputation of authors is 

highly relevant for the quality of articles. 

Surprisingly our analysis shows that authors of high-quality articles have a slightly 

lower experience on average than authors of low-quality articles. This effect might be 

explained by the trend that high-quality articles involve some specialized authors that 

focus on certain subjects. Furthermore, reputation of authors is often calculated on the 

basis of the persistence of the contributions of an author [13–15]. Applying this wide-

ly used definition of reputation, the study points out that reputation does not matter. 

Our analysis of anonymous authors shows that a high-quality articles have are lower 

percentage of anonymous authors. The results demonstrate that contributions of anon-

ymous authors are more often rejected on high-quality articles than on low-quality 

articles. 

Our findings can be used for the implementation of approaches [11, 12] that assess 

the quality of articles on the basis of author reputation. According to our investiga-

tion, the reputation metrics for this purpose have to be selected carefully. Thus, repu-

tation metrics based on the experience in the development of high-quality articles 

seem to be the most suitable reputation metrics for such approaches. Finally, we prove 

the effectiveness of the self-healing mechanism in wikis that ensures that contribu-

tions of low-reputation authors are revised more likely. 

The study reveals that some authors are particularly relevant to achieve a high arti-

cle quality. A detailed investigation of this group of authors in future work may iden-

tify tasks and editing patterns of these authors. Such an analysis may derive new repu-

tation metrics that can be used for an automatic assessment of the article quality. As a 

limitation of this paper, the analysis is based on data of Wikipedia. Further research is 

needed to confirm our findings for other wiki systems. 
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