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Abstract. In dispersed, multinational enterprises, complex integrations of in-

formation systems are a commonly hated threat as they render difficult funda-

mental changes of IT structures and standards embedded therein. This paper 

explores how integrations can turn into a burden and how thereby a company’s 

technology platform can lock-in to a local optimum. We conceptualize infor-

mation system architectures – a company’s set of information systems and inte-

grations – as networks. Based thereupon, we suggest a network model of path 

building that formalizes architectural growth processes and on-top technology 

adoptions, as when new systems attach preferentially to important hubs. Agent-

based simulations give insights into how different growth parameters, i.e. new 

systems’ degree of integration and preferentiality, increase the architecture’s 

complexity and can reinforce predominant architectural patterns, such as “is-

lands of shared technologies”. We contrast the simulation results to empirical 

data that show the emergence of a fragmented IT landscape in a regionally-

dispersed recycling company. 

Keywords: EA Modeling and Simulation, Network Analysis, Enterprise Trans-

formation, Path Dependence, EA Visualization 

1 The Problem of Path Dependence in IS Architectures 

In growing enterprises, numerous, close, and diverse integrations of information sys-

tems (IS) can result in ‘rigidity traps’ where fundamental changes of IS structures and 

standards embedded therein become increasingly expensive or even impossible [1–4]. 

One example is multiple co-existing enterprise systems that we observed at a recy-

cling company. The regionally dispersed firm with some East European branches 

aimed at consolidating overlapping “technological islands” but was drawn back by 

many integrated add-ons and apps that were hard to map, assess, and eventually re-

place. Similar challenges exist in other industries such as financial services [5] or 

retailing [6] where embedded legacy ecosystems create significant change barriers. 

In this article, we build on the notion of path dependence as an explanatory for the 

challenging nature of enterprise transformations (e.g., due diligence for mergers and 

acquisitions, outsourcing, cost-cutting projects). Our aim, which is first and foremost 



theoretical, is to examine IS architectural networks – a firm’s set of IT systems and 

integrations, or application landscape [7] – and  how their growth invokes path build-

ing (i.e. increasing change complexity, technological lock-ins). We work toward our 

objective by drawing on a model of path dependence by Arthur [8] and melding it 

with a network formation model by Jackson and Rogers [9]. 

While we build on the notion of path dependence, we also extend it in an important 

respect. As IS architectures differ significantly from market-based settings, it is nec-

essary to go beyond traditional notions of network effects – increasing returns from 

growing network sizes – and to take into account local spillovers and domino effects 

within a dynamic graph that forms the IS architecture at different points in time. Con-

sistent with this view, in what follows, we develop an IS architecture network model 

of path building that jointly takes into account strategic complementarities and growth 

processes. We use the term strategic complementarities to refer to technological spill-

overs in an architectural network, as when a SAP CRM is selected as a new system as 

a consequence of an earlier SAP adoption decision. By growth, we refer to processes 

in which new IT systems entering an architectural network will not integrate fully 

with all other systems, as when a new controlling app links only to an important ERP 

cluster. We turn our attention exclusively to growth processes where nodes are born 

and linked to existing nodes. Following [7], this describes transformative events in 

which new IT systems are augmented and integrated with the architecture.  

Consistent with [10] and [11], we believe that inertia is often the unintended con-

sequence an IS architecture that grows highly independent from central control. We 

thus turn to an agent-based simulation approach devoting particular attention to emer-

gent outcomes of incremental IS architectural growth.  

Our contribution is structured as follows: sec. 2 introduces theoretical antecedents 

and scientific questions. Sec. 3 derives empirical requirements from an exploratory 

recycling case and thereupon suggests a conceptual model to understand better how 

enterprise transformations are inhibited by tendencies of IS architectures towards 

inertia. Sec. 4 contrasts findings from simulations with empirical data on the recycling 

company’s fragmented IT landscape. Sec. 5 concludes and discusses future directions. 

2 Theoretical Foundation, Previous Work, and Research Gap 

We discuss path dependence in IS architectures from a network perspective, we point 

to the research gap and introduce an agent-based simulation as our research approach. 

2.1 Organizational IS Architectures as Networks 

As our starting point, we draw on previous work that has shown that IS architectures 

can be usefully visualized and analyzed as networks [7, 12, 13]. Network models 

enable novel insights into enterprise architecture (EA) topics such as the patterns of 

shadow IT usage in a company [12] or failure propagation in IT landscapes [14]. 

Thereby, network models allow examining effects of interdependencies between indi-

vidual elements, e.g. IT systems, in contrast to aggregated patterns of occurrence, as 



typically suggested by EA approaches (e.g. absolute number or coverage of SAP ap-

plications in a company). Within IS architecture networks, IT systems – e.g., an SAP 

financial accounting application or an MS Access database for customer data man-

agement – can be understood as nodes and edges materialize in specific technical or 

business integrations. Thus, an edge can mean information flowing through a trans-

ferred file, a remote procedure call or any other sort of interface. 

Following suit, we conceptualize the technology platform as an attribute (feature, 

property) associated with the nodes in the IS architecture. Think of a financial ac-

counting application as a node that is based on an ‘SAP’ platform, its property. Con-

sistent with [15–17], we assume that “on-top” adoption of technology platforms is 

primarily guided by positive network influences. Along with [15], we denote such 

tendencies to adopt well-fitting solutions among individual nodes in IS architecture 

networks as a strategic complementarity. 

2.2 Growth of IS Architecture Networks as Path Building 

We turn to observed tendencies of IS architectures towards inertia. Inertia comes in 

two flavors: firstly, changes within a grown IS architecture often become complex as 

applications are cobbled together in numerous, diverse, and close ways [7, 29–31]. 

Secondly, technologies and standards, basic building blocks of applications and inte-

grations, become often deeply embedded in the architecture, making the emerging 

architecture a “sunk and sticky investment” [32, 33]. Both pitfalls affect the innova-

tive capability of a company and hinder the transformation of enterprises. 

This points to classical problems of path dependence [8, 18, 19]. How can local 

optima (standards, technologies, platforms) lock-in? The answer is through self-

reinforcing mechanisms. Referring to early work on path dependence, four generic 

sources of self-reinforcement have been outlined [20]: large setup costs, learning 

effects, coordination effects, and adaptive expectations. In IS architectures, network 

effects combine them and unleash positive feedback in which “the benefits of owning 

a product, or using a standard, or, in fact, taking any action, increase [...] with the 

number of people doing the same thing” [21]. A larger installed base (number of users 

in a company, departments, or subsidiaries) attracts more complements and services, 

makes the dominant technology more credible, and thus attracts further adoptions 

[10]. This is the classical notion of network effects. 

Brian Arthur formalized this observation in his classical portrayal of a path-

dependent process [8]. Network effect models take the form of U = a + bN where an 

agent’s (e.g., firm, department, individual, or any other entity) utility U to select a 

technology is a function of its standalone utility a, a network multiplier b and the 

network size N [22]. Accordingly, the model can be written as a growing network 

where new agents (nodes) enter sequentially over time (agent1, agent2, and so forth). 

They form links to all existing agents in the network as they are influenced by N – the 

entire network size. The more adopters already exist, the larger the likelihood of the 

same technology being selected in the future [23]. Hence, network influences grow 

linear with increasing network sizes.  



2.3 Research Gap 

Previous work on enterprise transformations has primarily focused on building an EA 

planning capability to manage the architectural evolution effectively [2, 24–26]. This 

view assumes that evolution equals planning. Equating planning and evolution, how-

ever, underemphasizes how transformation initiatives can be undermined by unin-

tended consequences of highly-emergent, bottom-up changes of the architecture [27], 

i.e. workarounds, business user add-ons, and shadow IT systems. 

To the limited extend that work on enterprise transformations has covered un-

planned and incremental changes [11, 28], theorizing remains partial and largely  

anecdotal. To allow for a more nuanced portrayal of how inertia builds up, we thus 

see a need to complement existing approaches by a perspective of IS architectures as 

growing networks exposed to path dependence. Thereby, the notion of path depend-

ence offers a simple account of inertia - how one technology or standard can lock in – 

in settings where incentives to select a solution exhibit positive feedback. However, 

the traditional notion of path dependence overgeneralizes outcomes of path building 

processes (“winner-take-it-all”) while ignoring the underlying network structure [22, 

29]. In contrast, existing work on “hidden structures” suggest that IS architecture tend 

towards clustering and primarily form core-periphery structures [14, 30]. We thus see 

the need for a more powerful IS architecture network model of path dependence cov-

ering a larger set of growth logics. In summary, we thus ask:  

How will an architectural network’s growth logic affect path building? 

2.4 Agent-Based Simulation as Research Approach 

We turn to an agent-based simulation approach as a means for theory building that is 

useful in complex settings with many actors, nonlinear interactions and long-ranged 

horizons [31]. Fig. 1 shows our research design and how it relates to different sections 

of this article. Starting with a definition of the “target”, we collected empirical re-

quirements and reconciled them with existing theories and models (“abstraction”). 

Based thereupon, we specified a conceptual “model” (sec. 3.2). 

Target

Grown IS architectures in

medium to large enterprises

Model

A network model of growing

IS architectures (sec. 3.2)

Simulated data

Experimental results

(sec. 4.2)

Collected data

„Recycle Inc.“ case

(sec. 3.1)

Similarity

(discussion

in sec. 4.3)

Abstraction

(sec. 3.2)

Data gathering

(single case study; sec. 3.1)

Simulation

(parameter setup; sec. 4.1)

 

Fig. 1. Research design (adapted from [31]) 



The model was implemented in an agent-based simulation environment. It was veri-

fied and validated (e.g. by replicating Arthur’s path dependence model as a special 

case). Finally, we produced “simulation data” by performing experiments in a virtual 

laboratory (sec. 4.2). We eventually discuss results against the backdrop of data gath-

ered on the problem instance of a German recycling company (“Recycle Inc.”). 

3 Recycle Inc. Case and Conceptual Model 

We begin by turning our attention to the case site of Recycle Inc. Founded in 1968, 

the company is a representative example for our target, medium to large enterprise 

with organically grown IT landscapes. The case is also supportive for our main argu-

ment that incremental growth invokes inertia, as within the time of our observation, 

the company had started an initiative to consolidate its IT landscape in one business 

domain – waste operations – our unit for our analysis, but was drawn back by the 

complex characteristics of its grown IS architecture. 

3.1 Recycle Inc. as an Example for a Grown IS Architecture 

To begin, consider a typical waste management process. As shown in Fig. 2, the pro-

cess consists of three straightforward activities: distribution (i1), operations (i2) and 

invoicing (i3). Firstly, one needs to price and sell waste operations services such as 

containers of different qualities (i1). Secondly, these services have to be delivered, 

which requires some kind of personnel and vehicle planning as well as real-time dis-

position (i2). Finally, one needs to invoice the delivered services (i3). A service-

oriented approach may suggest decomposing some of these top-level services, result-

ing, for instance, in a sales/pricing and customer relationship management service. 

This is what we expect given a rational, top-down approach to EA planning. 

 

distribution operations invoicing

 

Fig. 2. A typical waste management process 

However, our analysis of the company’s grown IT landscape supports a different view 

towards bricolage and ad-hoc evolution. Drawing on data from the company’s enter-

prise architecture repository, Fig. 3 shows a network plot representing the IS architec-

ture in the waste operations domain. The data was collected in a real requirements 

engineering project by the company over a 3-month period in 2011 and it was com-

plemented by 13 interviews with IT managers, developers, and business unit heads 

over a 6-month period in 2012. To construct the visualization, we coded the compa-

ny’s IS architecture into an n x n adjacency matrix A. Within the figure, each node 

represents an IT application. The links represent integrations among systems. The 

color of the nodes denotes which organizational unit owns the system, e.g. bluish 



systems are owned by the corporate or headquarter IT department. In addition, nu-

merous systems are maintained and operated by business units. The size of the nodes 

shows the number of integrations, which is denoted as ‘degree’ in network analysis 

terminology. Critical systems with numerous integrations are larger while applica-

tions with few integrations are smaller. The three systems that are most important for 

our theorizing are surrounded by light-bluish cluster boarders: SAP – used for invoic-

ing and financials, Memo – an operations and logistics system operated mainly in the 

company’s southern regions, and Recyclix – another ERP and logistics system. 
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Financials
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Memo

applicat ion

integrat ion

legend of elements descriptives
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giant component 178
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avg. path length 4.36

business context (28 units)
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headquarter IT
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Fig. 3. Recycle Inc. as an example for a grown IT landscape 



3.2 A Network Model of Growing IS Architectures 

We next introduce a model of a growing network where new agents enter a network 

sequentially, one at a time, and select technologies (or platforms, standards). Think of 

an IT manager confronted with new business requirements to deliver a distribution 

solution, as in the waste management process. The manager will implement the appli-

cation, which materializes as a node in our model that integrates with other nodes 

(i1,…,in) via links. For example, when selecting a distribution solution (i1), the IT 

manager could consider integrations with operations (i2) and invoicing (i3). 

We now introduce the agents’ strategic decision-calculus to select technologies by 

turning to Brian Arthur’s path dependence model [8]. As shown in Table 1, two types 

of equally-distributed agents, r and s agents, maximize their utility when selecting 

which technology platform A or B (e.g. SAP or mainframe) they should adopt. The 

selected technology becomes a property (attribute, feature) of a node. 

Table 1. Agent decision calculus. Adapted from [8] 

 Platform A Platform B 

R-agent aRA + bRN aRB + bRN 

S-agent aSA + bSN aSB + bSN 

The agents’ decision function is based on two main ingredients: individual inclina-

tions and network influences. In our context of IS architectures, the agents’ base utili-

ties denote solutions’ ability to cover a specific process whereas network influences 

denote their utility from integrating with other departments, regions, and systems. In 

detail, a is the agent’s preference towards one of two technologies A or B within the 

architecture. In addition, bN is the network influence where b is the network multipli-

er and N is the size of the network. Consistent with [8], we assume positive network 

multipliers, which corresponds to benefits for an agent to adopt the same technology 

as its peers (strategic complementarities), as this ensures compatibility and data ex-

change [32] or learning from the experiences of others [33]. Moreover, integrating 

new applications based on ill-fitting technologies would often impose additional costs 

from conversions or manual efforts. We assume that influences materialize in links 

between different nodes. For reasons of simplicity, we don’t consider link directions. 

A look at the agents’ decision function reveals that, in this simple conceptual mod-

el, agents will be influenced by the entire network (“N”). Consistent with [34], we 

therefore unpack “N” taking into account interaction patterns between individual 

agents. To achieve this, we turn to models of network formation [15, 35]. These mod-

els explain to which existing nodes a new node will form links to, which equips them 

with a greater power than urn-type models to consider selective network influences. 

Different classes of network formation models have been suggested. One may uti-

lize a random growth model [15] in which new nodes entering the network form links 

to existing nodes uniformly at random. Furthermore, one may think of a preferential 

attachment model where new nodes entering a network connect to existing nodes with 

probabilities proportional to their degree [36]. We, however, find a third class of 



models superior for our analysis – hybrid random growth models [15]. These models 

set themselves apart from other random growth models by fitting real degree distribu-

tions, clustering coefficients, and other structural characteristics more closely [15]. 

Drawing on a hybrid random growth model by Jackson and Rogers [9], the main 

idea is illustrated in Fig. 4. Let m be the absolute number of links that a new node 

forms and let  be the real-valued degree of preferentiality (0 <  < 1). Then,  * mR 

links are formed uniformly at random by attaching to random nodes (“meeting 

strangers”), as shown in Fig. 4a, and (1 – ) * mNW nodes are formed by traversing 

adjacent links (“meeting friends-of-friends”), as illustrated in Fig. 4b. We replace N in 

the agents’ calculus in Table 1 by the extended growth logic  mR + (1 – ) mNW. 

a b

 

Fig. 4. Meeting strangers and friends-of-friends in hybrid random growth model by [9] 

As illustrated in Fig. 5, two main parameters thus describe our network’s growth log-

ic: its degree of integration (m) and its degree of preferentiality (). The degree of 

integration is a measure of a network’s connectedness where increasing levels of 

connectedness will correspond to a more densely connected network. In these net-

works, individual nodes will have more ties among each other and average paths 

lengths will become smaller. Referring to IS architectures, such situation describes a 

more centralized architecture with higher levels of integration as illustrated by core 

banking or airline inventory systems. The degree of preferentiality measures the ex-

tent to which new nodes will attach predominantly to hubs; or put differently, to what 

extent are resources pooled to already important core applications [7]. One may think 

of a hub-and-spoke network as one extreme whereas a completely regular network 

would be the other extreme. However, growing networks will tend naturally towards 

clustering as nodes gain links as a function of their age and not only their degree [9]. 
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Fig. 5. Main parameters and extreme points in hybrid random growth model 



Within the framework of Fig. 5, we can discuss two extreme points that are particular-

ly important for our theorizing. Firstly, we can refer to a situation where the network 

grows with degrees of integration (m) exceeding the number of nodes in any period 

(Fig. 5-I). This designates a situation in which any new system needs to be integrated 

with any existing one. Then, we expect that – with growing networks – network influ-

ences increase linearly with the network size; at some point the agent’s base prefer-

ences become subordinate and any new IT solution uses the predominant solution. 

This is the classic case of lock-in to one technology as described by [8]. As another 

extreme, imagine a situation in which any new node forms exactly one link to the 

architecture and attachment is preferential (cf. Fig. 5-II), i.e. each new IT system inte-

grates with one important “hub” exclusively. Then, we expect that the network clus-

ters around several hubs which may be – depending on the initial configuration – 

based on different platforms (technologies, standards). Hence, the network grows 

homogeneous around individual hubs but diverse clusters evolve. 

4 Insights from Agent-based Simulations 

4.1 Experimental Setup and Dependent Variable 

We implemented the model in Netlogo 5.0.3, an agent-based simulation tool, as it 

allows for graphical interaction and because of its useful extensions, i.e. for networks. 

We turn to one experiment that illustrates insights we can derive from the model. 

Fixing the preferentiality to hybrid ( = 0.5), we vary the degree of integration (m) in 

a setting with k = 2 technologies. We chose to vary the degree of integration as [7] 

showed its importance in modeling different kinds of emerging IS architectures. Em-

pirical data informed our decision on model runtimes to guarantee firstly the model 

converging to equilibrium while secondly staying in proportion to empirically ob-

served sizes of IS architectures. 

As a measure of technological lock-in in an architectural network, we turn to the 

diversity index [37]. The diversity index is also known as Herfindahl index in eco-

nomics where it is useful to measure, for instance, the concentration of vendors in a 

market. Is the market concentrated to one vendor exclusively or is the market shared 

equally among several vendors? The diversity index also serves useful because it has 

been transferred recently from market contexts to EA’s where it can be used to quan-

tify the heterogeneity of technologies in an IT landscape [38]. More specifically, we 

express the diversity index D, our dependent variable, as follows:  

           (1) 

The mechanics are straightforward: let p be a non-negative selection probability that 

is based on the distribution of k technologies in the network. Then, the diversity index 

is the squared sum of the selection probabilities for all technologies. As an example, 

we refer to a network in which agents can select between two technologies and both 

technologies are distributed equally in the network, i.e. both have a 50% share. Then, 

p is ½ for each of the technologies and ½² = ¼ and, thus, ¼ + ¼ = ½. We use the in-

http://de.wikipedia.org/wiki/Herfindahl-Index


verse diversity index, hence, 1 / (½) = 2. Its maximum always equals the number of 

technologies; it is 2 in our example. Its minimum is 1 if all nodes adopt one technolo-

gy and the network is concentrated exclusively to one technology. Thus, the diversity 

index helps to identify “lock-in” situations in history-dependent processes as inertia 

materializes in decreasing diversity over time where the system eventually converges 

to a state in which one technology comes to dominate exclusively [39]. 

4.2 Results 

Fig. 6 turns our attention to results from different sample runs. In Fig. 6a, we see a run 

for high degrees of integration (m = 20). As expected theoretically, for high levels of 

integration, the network rapidly locks in to one technology and all subsequent agents 

select the dominant platform as can be seen by the agglomeration dynamics in Fig. 6a. 
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Fig. 6. Comparing diversity for (a) high and (b) low degrees of integration 

Pointing to our first main observation, the three lines on the right (Fig. 6b) show sam-

ple runs for low degrees of integration (m = 1). From the plot we see that while it is 

possible that the network locks in to one technology, it is unlikely. What is more like-

ly is that a hybrid state with “islands of shared technologies” will arise. The network 

convergences to one ratio of technologies (e.g. 80:20, 60:40). This configuration be-

comes constantly reinforced as can be seen from the flattening of the diversity curve 

in Fig. 6b. Transformation barriers build up by new elements being attached constant-

ly to either of the predominant hubs. In Fig. 6b, the two hubs on the bottom left and 

top right feature technology A (red) while the other hubs start with technology B 

(blue). This early imprint becomes reinforced by constant growth around the hubs. 

This result is particularly important because as it highlights that the emergence of 

technological silos can be expected as a consequence of an IS architecture growth 

process with low degrees of integration. It also shows the importance of timing as late 

interventions make it more likely that a ‘rigidity trap’ has occurred in which the initial 

configuration has been stabilized (i.e. after 200-500 periods in our simulation). 



Table 2 shows numerical results for varying degrees of integration (m). We see clear-

ly, that diversity decreases with increasing degrees of integration. For low degrees of 

integration (m = 1), “islands of shared technologies” arise that grow increasingly ho-

mogenous. For medium degrees of integration (m = 3), diversity decreases and clus-

tering dynamics are less pronounced. The more integrated the network becomes (m = 

7), the more susceptible it becomes to technological lock-ins. As a by-product, change 

complexity will also increase as nodes will gain comparatively more links resulting in 

a higher average degree of the network. Thus, another main observation is that the 

lock-in effect for high degrees of integration goes together with increasing change 

complexity in a highly-standardized but rigid architecture. 

Table 2. Effects of varying degrees of integration (m) on diversity (D) fixing all other parame-

ters. Batch simulation results were averaged over 1,000 simulation runs. 

Degree of integration (m) 

Low (m = 1) Medium (m = 3) High (m = 7) 

Mean Std. dev. Mean Std. dev. Mean Std. dev. 

1.53 0.35 1.26 0.34 1.01 0.03 

4.3 Discussion: Implications for the Recycle Inc. Case 

We can now turn to a discussion of the results’ similarity with data from the Recycle 

Inc. case. As shown in Fig. 3, the firm’s IT landscape was characterized by compara-

tively low levels of integration. Within a network of 212 applications, we found 234 

integrations, resulting in an average degree of 2.18 (as each undirected link may be 

written as one incoming and outgoing link). Hence, the network is rather sparse with 

pronounced clustering around important “hubs” such as Memo, SAP, or Recyclix. We 

denote these hubs as core applications or application platforms. 

How did the growth logic of the architectural network affect path building pro-

cesses? Firstly, we turn to the architecture’s structure and its consequences for change 

complexity. The network’s clustered form and its “long-tailed” degree distribution 

suggest a preferential growth process. These properties points to “Matthew effect” 

where several important hubs’ embeddedness in the network became increasingly 

reinforced over time (“the rich get richer” and the “poor get poorer”). Interviews also 

showed that IT investments had been preferential, pooled to different core applica-

tions (and not functional domains). Preferential growth, however, made a consolida-

tion of the IT landscape increasingly difficult as different core applications had grown 

as separate ecosystems of complementing systems (e.g. controlling cockpits or Excel-

based reporting tools). This let us conclude that even in IS architectures with low 

degrees of integration, change complexity becomes problematic when medium or high 

degrees of preferentiality (pooling of resources to different hubs; as in simulation 

setup) result in a Matthew effect fostering the emergence of segregated silos. 

Secondly, we consider the architecture’s exposure to technological lock-ins. Tak-

ing into account the network’s sparseness, our simulations let us suspect that different 

clusters lock into different technologies. Indeed, our interviews supported this view 



and some hubs overlapped widely in functionality (e.g. Recyclix and Memo). Howev-

er, our empirical data did not confirm that the spokes were primarily based on the 

same technology as these hubs (refer to Fig. 6b). In contrast, we found a surprising 

technological variety in Recycle Inc.’s architecture (e.g. refer to the colors in Fig. 3). 

While some spokes where indeed based on the hub’s platform, many were Excel-

based or proprietary. Alongside [40], our data thus suggest the importance of addi-

tional factors (e.g. ease-of-use, availability) in explaining the observed heterogeneity. 

Altogether, our analysis shows that trends towards (a) clustering and (b) technolo-

gy agglomeration around hubs both contributed to constantly reinforce a path towards 

“fragmentation”. The firm’s CIO tapped into the underlying factors: “acquisitions, 

little standardization on the vendor side, thus one turned to proprietary solutions and 

then we have also been very withholding with […] the positioning of the IT, in the 

sense of new topics, which has, over the last couple of years, involved a restrained 

investment policy, which, as a side-product, as demands have still been existent but 

remained at the business units, produced a situation where in the surroundings a lot of 

uncontrolled growth took place.” This results today in a ‘rigidity trap’ that business 

units aimed to counteract by constantly adding new IT systems responding to emerg-

ing demands, which further piled up barriers moving to a unified business solution. 

5 Concluding Remarks 

This paper aimed at gaining a better understanding of how an IS architecture net-

work’s growth logic affects change complexity and technological lock-ins. Drawing 

on a network perspective, we suggested a model of path building that considers a set 

of flexible growth logics where new IT systems, necessary to support emerging busi-

ness requirements, link to the existing architecture based on a mix of random and 

preferential attachment. The model highlights how segmented structures around im-

portant hubs can emerge and how technologies can cluster in “silos” or “islands of 

shared technologies”. These experimental findings served useful to explain tendencies 

towards fragmentation in a recycling company’s grown IT landscape. 

Before sketching theoretical implications, we emphasize conditions that limit the 

generality of our approach. Firstly, we have chosen an unweighted network. However, 

integrations come in different qualities. We thus performed an additional analysis re-

coding integrations in two categories: automatic (i.e. online, semi-automatic, or batch) 

and manual ones. Table 3 shows results. We found that, of the 234 interfaces, roughly 

50% had been automated while equally significant amounts involved manual steps. 

This raises questions on how integration qualities link to an IS architecture’s inertia 

potential. In particular, one may suspect that automatic integrations are more exposed 

to inertia as they require long-lasting contracts, e.g. on a syntactic and semantic level. 

Table 3. Manual and automatic interfaces in Recycle Inc.’s IS architecture 

 Automatic Manual Missing 

Value 118 (50.4%) 107 (45.7%) 9 (3.8%) 

 



Secondly, we focused on one-time decisions of agents that aim to support business 

requirements by augmenting new IT solutions with integrations to the existing archi-

tecture. Out of scope have been other events that transform IS architectures such as 

shrinking, death, splits, and mergers (refer to [7] and also more generally to [41] for 

social networks). Thirdly, we assumed irreversibility of agent’s decisions. In reality, 

organizations have limited switching points to change their IT platforms given re-

source restrictions and so forth. However, future research could investigate network 

interventions that tap into the extent to which trotted paths that have been built up 

over extended time intervals can be left. Fourthly, we assumed rational agents that 

select technologies based on individual inclinations and network influences. Our 

agent’s decision calculus is a flexible module that can be extended in future research 

to account for adaptive expectations, learning effects and bounded rationality. This 

presents interesting future research challenges. 

In addition to replicating our approach in other organizational settings, especially 

in those in which less dispersed structures are expected, future research aims to de-

velop a more general model of IS architecture evolution. Informed by longitudinal 

data, such model would be useful to examine whether an IS architecture is in a phase 

of expansion or consolidation and to support decisions on transformation scenarios. 

Turning in conclusion to theoretical implications, we offered a novel, path depend-

ence perspective on enterprise transformations that goes beyond assuming that evolu-

tion equals planning. In contrast to [24], we don’t believe that the notion of “chaos” is 

appropriate to describe the evolution of enterprise architectures and we instead sug-

gest a perspective of path dependence as a useful reference point for further theory 

building on the emergent dynamics of organizational IS architectures. While both – 

chaos and path dependence theory – share some notions such as fix point attractors, 

path dependence theory puts much more emphasis on nonlinear positive feedback 

dynamics, which can be observed, modeled, and potentially controlled in real world 

settings. We believe that understanding organizational IS architectures as “complex 

networks” [42] and managing them by network models, as the one presented in this 

article, is a long overdue extension to our toolkit as enterprise architects. Our contri-

butions are as follows. Firstly, we introduced a network model that formalizes path 

building processes in organizational IS architectures by a set of flexible growth logics. 

We believe that future work can fit parameters such as new systems’ degree of inte-

gration and preferentiality directly to real world problem instances, which will shed 

new light on the growth logics of architectural networks and which will help to un-

cover their “hidden structure” [30]. In relation to that point, our model helps to reason 

about (i) how structural complexity emerges in increasingly interdependent IS archi-

tectures and (ii) how technological variety develops as a function of the current distri-

bution of technologies in the architecture. Secondly, our results point to potential 

pitfalls that can occur when IS architectures grow increasingly complex and enterprise 

transformation initiatives miss a critical point of no return. Then, critical systems that 

are deeply embedded within the organization often stay operational despite capability 

shortcomings or missing vendor support [4]. Our results point to the interesting theo-

retical possibility to sense such ‘rigidity traps’ earlier. Finally, as a by-product, we 

developed a simulator that can be foundational for a management-dashboard. 
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